

First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone

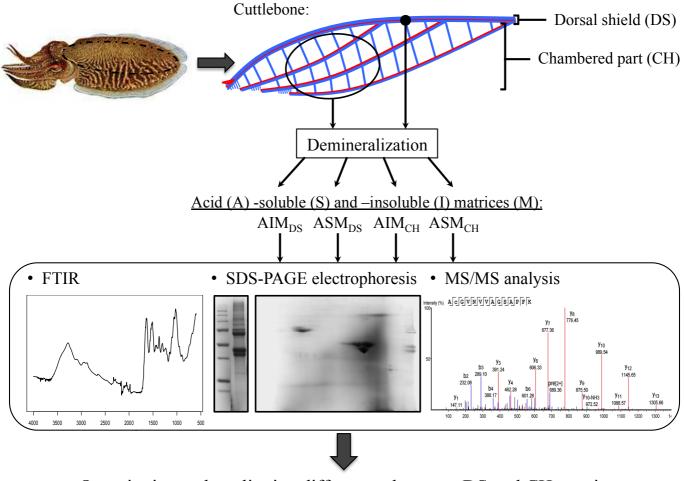
Charles Le Pabic, Arul Marie, Benjamin Marie, Aline Percot, Laure

Bonnaud-Ponticelli, Pascal Jean Lopez, Gilles Luquet

► To cite this version:

Charles Le Pabic, Arul Marie, Benjamin Marie, Aline Percot, Laure Bonnaud-Ponticelli, et al.. First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone. Journal of Proteomics, 2017, 150, pp.63-73. 10.1016/j.jprot.2016.08.015. hal-02557239

HAL Id: hal-02557239 https://hal.science/hal-02557239


Submitted on 28 Apr 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis
2	cuttlebone
3	
4	Charles Le Pabic ^{a,*} , Arul Marie ^b , Benjamin Marie ^b , Aline Percot ^c , Laure Bonnaud-Ponticelli ^a ,
5	Pascal Jean Lopez ^a , Gilles Luquet ^{a,*}
6	
7	^a Unité Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR 7208),
8	Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS, Université Pierre et
9	Marie Curie, Université de Caen Normandie, IRD 207, Université des Antilles, CP 26, 43 rue
10	Cuvier 75005 Paris, France.
11	^b UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-
12	organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 43 rue
13	Cuvier 75005 Paris, France.
14	^c UMR MONARIS, Sorbonne Universités, de la Molécule aux Nano-objets : Réactivité,
15	Interactions et Spectroscopies, UMR 8233 CNRS-Université Pierre et Marie Curie, 75005
16	Paris, France.
17 18 19	* Corresponding authors.
20 21	<i>E-mail addresses:</i> <u>clepabic@mnhn.fr</u> (C. Le Pabic); <u>gluquet@mnhn.fr</u> (G. Luquet)

Significance

The cuttlefish's inner shell, better known under the name "cuttlebone", is a complex mineral structure unique in mollusks and involved in tissue support and buoyancy regulation. Although it combines useful properties as high compressive strength, high porosity and high permeability, knowledge about organic compounds involved in its building remains limited. Moreover, several cuttlebone organic matrix studies reported data very different from each other or from other mollusk shells. Thus, this study provides 1) an overview of the organization of the main mineral structures found in the *S. officinalis* shell, 2) a reliable baseline about its organic composition, and 3) a first descriptive proteomic approach of organic matrices found in the two main parts of this shell. These data will contribute to the general knowledge about mollusk biomineralization as well as in the identification of protein compounds involved in the Sepiidae shell calcification.

- Quantitative and qualitative differences between DS and CH matrices

- Low number of identified proteins

- Identified proteins with domains previously described in mollusk shells

Highlights:

- First proteomic investigation on organic matrix compounds of a cuttlefish shell.
- Protein composition of DS and CH parts of *S. officinalis* shell appear different.
- Shell organic matrices are globally rich in glycoproteins and low p*I* compounds.
- Most of identified protein compounds contain domains known in biomineralization.
- Our results suggest a transferrin function in the shell DS of *S. officinalis*.

1	First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis
2	cuttlebone
3	
4	Charles Le Pabic ^{a,*} , Arul Marie ^b , Benjamin Marie ^b , Aline Percot ^c , Laure Bonnaud-Ponticelli ^a ,
5	Pascal Jean Lopez ^a , Gilles Luquet ^{a,*}
6	
7	^a Unité Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR 7208),
8	Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS, Université Pierre et
9	Marie Curie, Université de Caen Normandie, IRD 207, Université des Antilles, CP 26, 43 rue
10	Cuvier 75005 Paris, France.
11	^b UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-
12	organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 43 rue
13	Cuvier 75005 Paris, France.
14	^c UMR MONARIS, Sorbonne Universités, de la Molécule aux Nano-objets : Réactivité,
15	Interactions et Spectroscopies, UMR 8233 CNRS-Université Pierre et Marie Curie, 75005
16	Paris, France.
17 18 19	* Corresponding authors.
20 21	<i>E-mail addresses:</i> <u>clepabic@mnhn.fr</u> (C. Le Pabic); <u>gluquet@mnhn.fr</u> (G. Luquet)

22 Abstract

23 Protein compounds constituting mollusk shells are known for their major roles in the 24 biomineralization processes. These last years, a great diversity of shell proteins have been 25 described in bivalves and gastropods allowing a better understanding of the calcification 26 control by organic compounds and given promising applications in biotechnology. Here, we 27 analyzed for the first time the organic matrix of the aragonitic Sepia officinalis shell, with an 28 emphasis on protein composition of two different structures: the dorsal shield and the 29 chambered part. Our results highlight an organic matrix mainly composed of polysaccharide, 30 glycoprotein and protein compounds as previously described in other mollusk shells, with 31 quantitative and qualitative differences between the dorsal shield and the chamber part. 32 Proteomic analysis resulted in identification of only a few protein compounds underlining the 33 lack of reference databases for Sepiidae. However, most of them contain domains previously 34 characterized in matrix proteins of aragonitic shell-builder mollusks, suggesting ancient and 35 conserved mechanisms of the aragonite biomineralization processes within mollusks.

36 Significance

37 The cuttlefish's inner shell, better known under the name "cuttlebone", is a complex 38 mineral structure unique in mollusks and involved in tissue support and buoyancy regulation. 39 Although it combines useful properties as high compressive strength, high porosity and high 40 permeability, knowledge about organic compounds involved in its building remains limited. 41 Moreover, several cuttlebone organic matrix studies reported data very different from each 42 other or from other mollusk shells. Thus, this study provides 1) an overview of the 43 organization of the main mineral structures found in the S. officinalis shell, 2) a reliable 44 baseline about its organic composition, and 3) a first descriptive proteomic approach of organic matrices found in the two main parts of this shell. These data will contribute to the 45 general knowledge about mollusk biomineralization as well as in the identification of protein 46 47 compounds involved in the Sepiidae shell calcification.

48

49 Keywords:

50 Cuttlefish, Biomineralization, Shell, Aragonite, Organic matrix, Sepia officinalis, Proteomics

51

52 **1. Introduction**

53 Mollusks are known for their ability to build shells having a huge diversity of sizes, 54 forms and structures. The mollusk shells are mainly composed of calcium carbonate under 55 calcite and/or aragonite polymorphs (rarely vaterite) associated to a small amount of organic 56 compounds (mainly polysaccharides, proteoglycans, glycoproteins and proteins) [1]. 57 Although constituting a very minor fraction of the biomineral, the shell organic matrix is 58 thought to regulate the crystal nucleation, orientation, polymorph, growth and morphology in 59 the calcification process [2]. In order to better understand how organic compounds control 60 calcification and because of their promising applications in biotechnology, shell proteins have 61 been widely studied these last years resulting in the description of a great diversity of protein 62 compounds [e.g. 1,3-10]. However, most of studies describing shell proteins were realized on two groups of mollusks - the bivalves and the gastropods - that share some shell 63 64 particularities. Indeed, their shells are constituted by the superposition of few calcified layers 65 used for protecting the animal against environmental pressures and predators as well as to 66 support tissue. Moreover, the formation of their shell occurs externally between a thin organic 67 layer (the periostracum) and a calcifying epithelium secreting compounds needed for the shell 68 synthesis [11].

69 Among other shell-builder mollusks, some Cephalopoda form an original calcified 70 shell constituted by superposed hollow chambers, used to stock gas and thus regulate their 71 buoyancy. Nowadays only three extant cephalopod families conserved this particularity: the 72 Nautilidae, which includes few species with an external coiled shell; the Spirulidae, which 73 contains only 1 species with an inner coiled shell; and the Sepiidae (*i.e.* the cuttlefish), which 74 counts more than 100 species that form an inner straight shell [e.g. 12-14]. This latter 75 structure (also called "cuttlebone"), essentially composed by aragonite, is involved in tissue 76 support and buoyancy regulation as for Spirulidae and Nautilidae, but its morphology and 77 structural organization is quite different. Indeed, Sepiidae shell consists in two distinct 78 regions: the upper side called the dorsal shield and the ventral chambered part (Fig. 1). The 79 dorsal shield is a dense and rigid layer playing an important mechanical role, whereas the 80 chambered part is formed by the superposition of independent hollow chambers of few 81 hundred micrometers height, separated by lamella called septa. Each chamber is open 82 posteriorly allowing the animal to fill them with variable volumes of gas and liquid in order to 83 adjust its buoyancy. Within the chambers, vertical pillars form the supporting elements of the 84 septa. These pillars can be independent or linked together depending on the inner area 85 observed [15–17]. Although both cuttlebone parts associate lamellar and prismatic structures,

their organization differs according to their mineralogy organization and microstructures (Fig. 1). The dorsal shield consists in three layers: the uppermost one is formed of prismatic calcareous tubercles, the central one is characterized by a lamellar organization and the inner one is made by prismatic crystals [16,18]. In the chambered part, each septum consists of a prismatic layer on its lower side, similar as in the pillar, and a lamellar structure on its upper side (previously described as nacre [18,19]) resulting in a septa of around 20 µm-thickness (Fig. 1; for a more detailed description, see [16,17]).

93 This intricate structure combines contradictory properties as high compressive 94 strength, high porosity and high permeability [20–23], but knowledge about organic 95 compounds involved in its building remains limited. Although the total amount of organic 96 matter – described as being composed of polysaccharides, glycoproteins and proteins – is 97 known to be important in Sepiidae shells (4-10% of the shell dry weight) [22,24-26] in 98 comparison with other mollusks (0.01-5%) [4,7,11]. The main polysaccharide component, the 99 B-chitin, plays a major framework role that allows the set up of the shell [22,24,25,27,28] in 100 association with protein compounds, proposed as organic precursors of the mineralization 101 [29]. Most of the organic compounds involved in this process are synthesized by a 102 monolayered epithelium that surrounds the shell – named "shell sac", described as a complex 103 tissue composed by 3 to 5 different cell-types [15,16,20,30,31] (Fig. 1). This particularity 104 represents a major difference with other shell-builder mollusks studied thus far.

Despite the importance of proteins in the mollusk shells formation, no detailed protein description has been published yet for Sepiidae shells. Moreover, although obviously distinct and in direct contact with different shell sac tissues (Fig. 1) [16,31], the dorsal shield and the chambered part have been rarely compared (most of studies focusing on the chambered part). In this paper, we analyzed for the first time the shell protein composition of one of the betterknown cuttlefish model, the species *Sepia officinalis*. In addition, both shell parts described hereabove have been discriminated.

112

113 2. Material & Methods

114 2.1. Shell material and matrix extraction

The cuttlebones from eight adult *S. officinalis* that were used in this study were obtained from freshly fished specimens along the English Channel coastline. After cuttlebone removing, the superficial organic contaminants were eliminated by 24 h incubation in a 0.25% NaClO solution under constant agitation, and thoroughly rinsed with Milli-Q water. Thereafter, cuttlebones were air-dried at room temperature for 24 h. 120 In order to investigate the total protein composition of the cuttlebone, an entire 121 cuttlebone (*i.e.* without separation of the dorsal shield and the ventral chambered part) was 122 weighted, grounded into fine powder and demineralized in cold 10% acetic acid for 24 h at 4°C. The solution was then centrifuged at 4°C, 30 min at 1700 g. The supernatant containing 123 124 the acetic acid-soluble organic matrix (ASM) was filtered and concentrated with an Amicon ultrafiltration system on a Millipore[®] membrane (Ultracell[®]; 5-kDa cut-off). After extent 125 dialyses against Milli-O water (at least 8 times), the ASM solution devoid of acetic acid, was 126 127 freeze-dried and kept at 4°C until used. The pellet, corresponding to the acetic acid-insoluble 128 matrix (AIM), was rinsed 10 times with Milli-Q water, freeze-dried, weighed and stored at 129 4°C. These two fractions were kept for direct MS analysis.

To perform a comparative analysis of the protein content of the two main parts of cuttlebone, we carefully separated the dorsal shield from the chambered part. Both parts were then respectively weighed, grounded into fine powder and treated as described above to obtain the AIM and ASM organic fractions from the two structurally different parts. Thus, each shell sample gave 4 fractions, *i.e.* the dorsal shield AIM and ASM (respectively AIM_{DS} and ASM_{DS}) and the chambered part AIM and ASM (respectively AIM_{CH} and ASM_{CH}).

136

137 2.2. Fourier transform infrared (FTIR) spectrometry analysis

138 ATR-FTIR spectra were recorded using a Bruker Equinox 55 spectrometer equipped 139 with an ATR diamond crystal accessory (Golden Gate®, Specac) and purged with dried air. 140 The diamond is cut to obtain a single reflexion at the crystal/sample interface with an 141 accessible area of 50 µm × 2 mm. A Peltier-cooled DTGS Mid-IR detector, a Mid-IR source 142 and an extended KBr beamsplitter were used. An atmospheric compensation was applied with 143 Opus 6.5 software in order to remove residual H₂O/CO₂ vapor signal. A background was collected before each sample's spectra. For each lyophilized samples (*i.e.* AIM_{DS}, ASM_{DS}, 144 AIM_{CH} and ASM_{CH}), 32 scans were accumulated between 4,000 and 600 cm⁻¹ with a 4 cm⁻¹ 145 146 resolution.

147

148 2.3. Protein matrix analysis on 1-D gels

The separation of matrix components of the AIM and ASM fractions were performed
under denaturing conditions by 1-D SDS-PAGE in 12% polyacrylamide gels (MiniPROTEAN TGX; Bio-Rad; Hercules, CA, USA). Samples were individually suspended in
Laemmli sample buffer (Bio-Rad; Hercules, CA, USA) containing 5% β-mercaptoethanol,
heat denatured at 95 °C for 5 min [32], centrifuged for 1 min and kept at 4°C until gel

154 loading. After preliminary trials, the optimal amounts of organic matrix for gel 155 electrophoresis separation were found to be 100 μ g for ASM_{CH}, 200 μ g for ASM_{DS} and 300 156 μ g for both AIM fractions. Because the AIM fractions were only partly solubilized by the 157 buffer, the supernatants collected were called Laemmli-soluble AIM (*i.e.* LS-AIM_{DS} and LS-158 AIM_{CH}).

Gel separated proteins were visualized with CBB (Bio-SafeTM, Bio-Rad; Hercules, CA, USA) or silver nitrate according to Morrissey [33]. In addition, glycosylations were studied qualitatively on gels, and saccharide moieties were detected by the Periodic Acid Schiff (PAS; PierceTM Glycoprotein Staining kit; Fisher Scientific, Illkirch, France) and Alcian blue stainings. At pH 2.5, the Alcian blue staining highlights saccharide moieties of glycosaminoglycans carrying polyanionic groups such as carboxyl and sulfate groups, whereas at pH 1, only sulfated compounds were stained [34,35].

166

167 2.4. Protein assay and matrix analysis on 2-D gels

168 In order to estimate the amount of proteins solubilized by the rehydration buffer (urea 8 M, CHAPS 2%, DTT 50 mM, Bio-Lyte[®] 3/10 ampholytes 0.2% (w/v)) used in the 169 ReadyPrepTM 2-D Starter kit (Bio-Rad; Hercules, CA, USA), the protocol for microtiter plates 170 171 described in the Bio-Rad protein assay kit II was employed. To avoid possible interferences 172 due to the high urea concentration of the rehydration buffer (that must be kept below 6 M, 173 according to manufacturer protocol), all samples and protein standards were diluted to 174 maintain the rehydration buffer/Milli-Q water ratio constant (1/1; v/v). The protein 175 concentrations were measured at 595 nm on the supernatant of the different fractions after 1 176 min centrifugation using as standard a bovine serum albumin standard curve (50-350 μ g mL⁻¹ 177 of Milli-Q water).

178 The four fractions were respectively separated on a 2-D gel PROTEAN® IEF cell 179 (Bio-Rad; Hercules, CA, USA), according to the manufacturer's instructions. AIM_{DS} (500 µg 180 organic matrix in 150 μ L), ASM_{DS} (700 μ g in 150 μ L), AIM_{CH} (1.5 mg in 150 μ L) and 181 ASM_{CH} (400 µg in 150 µL) were rehydrated in the rehydration buffer and briefly centrifuged 182 to avoid pipetting non-dissolved organic matter. Because the AIM fractions were only partly 183 solubilized by the rehydration buffer, the supernatants collected were called urea-soluble AIM 184 (*i.e.* US-AIM_{DS} and US-AIM_{CH}). Supernatants were then used to rehydrate overnight strips (7 185 cm linear, pH 3-10 IPG), and IEF was carried out (250 V for 20 min, 4,000 V for 2 h, 186 followed by 4,000 V until 10,000 Vh). The strips were then transferred for 10 min to equilibration buffer I and II (ReadyPrepTM 2-D Starter kit), rinsed in 1X Tris/Glycine/SDS 187

buffer (Bio-Rad; Hercules, CA, USA), and positioned on top of precast gradient gels (MiniPROTEAN TGX, 12% polyacrylamide) covered with 0.5% low melting agarose (w/v) in 1X
Tris/Glycine/SDS. Electrophoresis was then performed in standard conditions and the gels
were subsequently stained with CBB.

192

193 2.5. Proteomic analysis of the organic matrix fractions

In order to identify protein compounds present in the dorsal shield and chambered part organic matrices, we separately analyzed the most prominent 1-D gel bands from LS-AIM_{DS}, ASM_{DS}, LS-AIM_{CH} and ASM_{CH} using MS. In addition, the total ASM and AIM (*i.e.* without dorsal shield and chambered part split) were directly analyzed by MS (*i.e.* without preliminary protein separation).

- 199
- 200

2.5.1. Band protein digestion and MALDI-TOF/TOF analysis

201 To remove CBB, excised 1-D gel bands were first unstained by at least 3 baths in a 202 200 µL solution of 25 mM NH₄HCO₃, 50% ACN (v/v) for 30 min under stirring. Thereafter, 203 they were subsequently washed in 200 µL Milli-Q water and ACN 100%, each time for 15 204 min under stirring and at room temperature. After supernatant removal, this procedure was 205 repeated a second time. Then, the samples were subsequently reduced with DTT (20 mM, 45 min, 56 °C in 50 mM NH₄HCO₃ pH 8.1) and alkylated in the dark with iodoacetamide (50 206 207 mM, 30 min, at room temperature in 50 mM NH₄HCO₃ pH 8.1). Excised gel fractions were 208 then rinsed once in 300 µL of 25 mM NH₄HCO₃ pH 8.1, and dehydrated using 300 µL ACN 100%. Proteins from dehydrated gel were digested by adding 25 μ L of trypsin (6 μ g mL⁻¹; 209 210 Sigma-Aldrich) in 25 mM NH₄HCO₃ for 15 min at 4 °C. Gel was then completely immersed 211 using 30 µL of 25 mM NH₄HCO₃ solution, and incubated overnight at 37 °C under stirring. 212 Finally, the supernatant was collected and residual peptides contained in gels extracted by 213 subsequent baths of 30 µL ACN 50%, formic acid 5% and ACN 100%, pooled with previously collected supernatant. Tryptic peptides were then dried with a SpeedVacTM 214 215 concentrator and stored at -20 °C until MS analysis.

MS experiments were carried out on an AB Sciex 5800 proteomics analyzer equipped with TOF-TOF ion optics and an OptiBeamTM on-axis laser irradiation with 1,000 Hz repetition rate. The system was calibrated immediately before analysis with a mixture of Angiotensin I, Angiotensin II, Neurotensin, ACTH clip (1-17), ACTH clip (18-39) and mass precision was better than 50 ppm. Dry sample was re-suspended in 10 μ L of 0.1% TFA. One μ L of this peptide solution was mixed with 10 μ L of CHCA matrix solution prepared in 50%

ACN, 0.1% TFA. The mixture was spotted on a stainless steel Opti-TOFTM 384 targets; the 222 223 droplet was allowed to evaporate before introducing the target into the mass spectrometer. All 224 the spectra were acquired in automatic mode employing a typically laser intensity of 3,300 for 225 ionization. MS spectra were acquired in the positive reflector mode by averaging 1,000 single 226 spectra (5 \times 200) in the masse range from 700 to 4,000 Da. MS/MS spectra were acquired in 227 the positive MS/MS reflector mode by averaging a maximum of 2.500 single spectra (10 \times 228 250) with a laser intensity of 4,200. For the tandem MS experiments, the acceleration voltage 229 applied was 1 kV and air was used as the collision gas.

- 230
- 231

2.5.2. LC ESI-QTOF MS analysis of whole ASM and AIM

232 One mg of total ASM or AIM was reduced with 100 µL of 10 mM DTT (Sigma-233 Aldrich) in 100 mM NH₄HCO₃ (Sigma-Aldrich) pH 8.1 for 30 min at 57°C, followed by 234 alkylation with iodoacetamide (50 mM, final concentration; Sigma-Aldrich) for 30 min in the 235 dark and at room temperature. Samples were then freeze-dried. The dry residues were 236 dissolved in 200 µL of a 50 mM NH₄HCO₃ buffer (pH 8.1) containing 5 µg of trypsin 237 (Sigma-Aldrich) and 5% ACN (Sigma-Aldrich), and incubated for 18 h at 37°C. After 238 centrifugation at 14,000 g for 30 min, the supernatants were lyophilized and stored at -20°C 239 until MS analysis.

The peptide digests were re-suspended in 50 µL of a solution containing 0.1% 240 241 trifluoroacetic acid (TFA; Sigma-Aldrich) and 3% ACN. Two µL of the peptide digest from 242 the total organic matrices were separated on a C_{18} column (150 \times 1 mm, Phenomenex, France) at a flow rate of 40 µL min⁻¹ with 0.1% formic acid (solvent A) and ACN (solvent B), 243 244 using a gradient that varied from 3 to 50% of B in 45 min. The eluted peptides were analyzed 245 in an ESI-QqTOF mass spectrometer (pulsar i, Applied Biosystems, France), using 246 information dependent acquisition mode. This mode allows switching between MS and 247 MS/MS scans. A 1-s MS scan was followed by two 2-s MS/MS acquisitions using two most 248 intense multiply charged precursor peptide ions (+2 to +4). The fragmented precursor ions 249 were excluded for 60 s in order to avoid reanalysis. Minimum ion intensity for MS/MS 250 experiments was set to 10 counts and collision energy for the peptide ions was determined 251 automatically by the acquisition software.

252

253

2.5.3. Protein identification and sequence analysis

Data acquisition and analyses were carried out with Analyst QS software (version 1.1). The mass spectra data were searched against the NCBI non-redundant nucleic acid 256 databases of the gastropod Lottia gigantea (188,590 sequences), the bivalves Crassostrea 257 gigas (50,925 sequences), Elliptio complanata (138,349 sequences) and Pinctada fucata 258 (31,477 sequences), and Cephalopods (360,946 sequences; February 2016), with MASCOT 259 (2.1. version, Matrix Science, London, UK) and PEAKS studio (Canada, version 7.1). L. 260 gigantea, C. gigas, E. complanata and P. fucata were chosen as reference shell builder non-261 cephalopod mollusks because of the quality of their databases, the availability of their 262 genomes (for *L. gigantea* [36], *C. gigas* [37] and *P. fucata* [38]) and their protein description 263 considering the biomineralization process. Cephalopod dataset was represented by 114,034 264 ESTs and 246.912 nucleotide sequences (ns) mainly originating from Octopus bimaculoides 265 (197,284 ns), *S. officinalis* (43,625 ESTs + 512 ns), *Euprymna scolopes* (35,420 ESTs + 5240 ns), Octopus vulgaris (32,430 ns) and Doryteuthis pealeii (22,033 ESTs + 177 ns). The 266 267 database search parameters used were: fixed modification = carbamidomethylation, variable 268 modification = deamidation of asparagine and aspartic acid and oxidation of methionine, 269 parent ion mass tolerance = 0.5 Da, fragment ion tolerance = 0.5 Da, missed cleavage = 1, 270 with decoy calculation.

Results from *de novo* sequencing (Peaks studio version 7.5) were filtered by setting average local confidence (ALC) to 80 and residue local confidence to 50%. Only peptides with at least 7 amino acids were considered as reliable sequences. PTM search function of the PEAKS Studio was used to look for unexpected modification in the peptides in order to increase the number of peptide spectral matches. Peptide threshold (denoted as -10lgP) for PEAKS DB was set to 30.

277 In all cases, the peptide spectral matches were validated only if at least one peptide 278 sequence matched to the translated nucleotide sequence using both Mascot and PEAKS 279 programs, guaranteeing the robustness of the results. Identified nucleotide sequences were 280 translated using the EXPASY translate tool (http://web.expasy.org/translate/) and the reading 281 frame and coding sequence were manually validated. The signal peptides and conserved 282 domains were predicted using SMART (http://smart.embl-heidelberg.de), and the recognized 283 sequences attempted to be identified using BLASTp analysis performed against UniprotKB 284 database provided by UniProt server (http://www.uniprot.org/blast/) using default parameters. 285

_ _ _

3. Results

287 3.1. Organic matrix extraction and repartition

The results of the extraction reveals an important difference in the amount of organic matter between the two cuttlebone parts studied (*i.e.* dorsal shield and chambered part) with almost twice more organic matrix in the dorsal shield $(6.2 \pm 1.5\%; w/w)$ compare to the chambered part $(3.4 \pm 0.7\%; w/w)$. As described for other mollusk shells, most of this extracted matrix corresponds to an insoluble form independently of the part of the cuttlefish shell studied (Table 1).

294

295 3.2. FTIR profiles of the dorsal shield and chambered part AIMs and ASMs

296 The global FTIR spectra of organic insoluble and soluble fractions extracted from the 297 dorsal shield and the chambered part of S. officinalis shell exhibit typical protein and 298 polysaccharide absorption bands (Fig. 2; Table 2). Nevertheless, the AIM and ASM shell 299 spectra appear to be different. Indeed, whereas the characteristic bands commonly associated 300 with proteins (*i.e.* amide A, I, II and III) are clearly visible in the four spectra, the bands associated with carbohydrate compounds (between 950-1,200 cm⁻¹), appear stronger in the 301 AIM ones (Fig. 2, Table 2). Also, note that the absorption band at 1,375 cm⁻¹, which is more 302 303 intense in the AIMs, could be attributed to chitin groups (CH bending, CH₃ symmetric 304 deformation [39,40]).

In the insoluble fractions, the AIM_{CH} spectrum exhibits a stronger carbohydrate absorption band compared to the AIM_{DS} , which suggests a more important saccharide fraction in this shell part (Fig. 2A). A slight difference can also be observed in the ASM extracts, where the relative intensity of the band at 1,030 cm⁻¹ (and 1,375 cm⁻¹) is higher in the chamber part than in the dorsal shield one.

- However, these results have to be confirmed because similar patterns can be obtained for protein and polysaccharide mixtures (e.g. for chitin composed of amide groups and a carbohydrate skeleton or for proteins associated to chitin).
- 313

314 3.3. Characterization of matrices by 1-D SDS-PAGE

The four extracted fractions (LS-AIM_{DS}, LS-AIM_{CH}, ASM_{DS} and ASM_{CH}) were analyzed by 1-D SDS-PAGE. Gels were subsequently stained with CBB, silver nitrate, PAS and Alcian blue at pH 2.5 and 1 (Fig. 3 and 4), providing constitutive information on the protein composition of each fraction. The four profiles are found to be composed of various distinct macromolecular elements.

The LS-AIM_{DS} shows 7 main bands migrating at apparent molecular weights around 120, 89, 72, 61, 40 and 38 and below 15 kDa with particular thickness of the bands 61, 40 and 38 kDa (Fig. 3A). Two other minor bands at around 240 and 27 kDa are also visible. It is noteworthy that silver nitrate negatively stained 72- and 61-kDa bands. The pH 1 Alcian blue 324 staining of the compounds present in the 61-kDa band highlights that these compounds 325 carried sulfated sugars. Unfortunately, our experiments did not allow to determine whether 326 the 72-kDa compounds are also sulfated. Faint staining of 40- and 38-kDa bands with Alcian 327 blue carried out at pH 2.5 suggests that they contain small amount of carboxylated sugars. 328 Faint PAS staining suggests that the polypeptides migrating at 120, 89, 61, 40 and 38 kDa are 329 glycosylated (Fig. 3A).

330 The LS-AIM_{CH} shows 3 main bands migrating at around 117, 61 and 38 kDa. Another 331 faint band can also be distinguished around 45 kDa (Fig. 3B). Silver nitrate reveals a more 332 intense staining of this latter band, allows to distinguish two bands at 38 kDa, one faint band 333 just below the 117-kDa band, and strongly stain compounds migrating above 250 kDa. 334 Periodic Acid Schiff stains all bands observed using CBB, with more intense staining of the 335 117- and 38-kDa bands. Alcian blue staining performed at pH 2.5 reveals that the compounds 336 with the highest molecular weight of this fraction carried carboxylated groups associated with 337 sugar moieties, whereas no band was revealed with Alcian blue at pH 1 (data not shown).

The ASM_{DS} shows 4 bands migrating at around 240, 105, 31, and 18 kDa. Notably, the migration front appears intensively stained by CBB. Also, 3 other faint bands can be distinguished around 42, 38 and 19 kDa (Fig. 4A). The 240-, 105- and 31-kDa bands appear clearly glycosylated. Alcian blue staining, at pH 2.5, suggests that compounds around 240 kDa and at the migration front probably carry carboxylated groups but not sulfated groups because no band was revealed with Alcian blue at pH 1 (data not shown).

The ASM_{CH} shows 4 main bands migrating around 105, 38, 27 and below 15 kDa. Two gel areas also appear delimited by 53-45 and 20-17 kDa bands (Fig. 4B). The bands at 38, 27, 20 and 17 kDa, stained by CBB, appear negatively stained by silver nitrate. PAS stains the 105-kDa band and reveals a smear from 45 to 17 kDa with faint staining of bands 38, 27, 20 and 17 kDa and a new band around 35 kDa. No band was revealed using both Alcian blue stainings, whatever the pH, suggesting no carboxylation neither sulfation of sugars carried by ASM_{CH} compounds.

The protein band patterns of these four fractions suggest that the protein contents, from a qualitative point of view, are different from each other. Based on their apparent molecular masses and their staining reactivity, only two compounds seem shared by more than one fraction: the bands around 105 and 117-120 kDa with polysaccharide moieties observed respectively in the soluble and insoluble fractions. Of course, it remains possible that several proteoforms with similar apparent molecular mass constitute similar sized bands (e.g. sulfated and non-sulfated 61-kDa bands in LS-AIM_{DS} and LS-AIM_{CH}, respectively). 358

359 3.4. Characterization of matrices by 2-D SDS-PAGE

In order to further characterize the proteins and their putative post-translational modifications, each fraction was analyzed by 2-DE (Fig. 5 and 6). As for 1-D gel, the four profiles were found to be composed of various distinct macromolecular elements.

363 In the case of AIMs, an extremely limited part of the matrix was dissolved in the 364 rehydration buffer, especially considering AIM_{CH} (Table 3). The US-AIM_{DS} matrix is mainly 365 characterized by 3 protein rich areas: a smear around 61 kDa with an pI around 5 (supporting 366 the sulfated sugar moiety of this compound previously underlined), a series of spots around 367 40 kDa with pIs between 7 and 8, and a large spot at 38 kDa just below this latter (Fig. 5A). 368 These compounds are consistent with the most intense bands observed in 1-D electrophoresis 369 (Fig. 3A). Other faint compounds are visualized at higher pI (120 kDa smear at pI around 8 370 and 3 spots at same levels than the 38, 40 and 61 kDa compounds visible on the right). 371 Although difficult to distinguish, compounds of different pIs (around 5 and 8) seem to be 372 present in the protein fraction migrating below 15 kDa (Fig. 5A).

The US-AIM_{CH} matrix is mainly characterized by 2 series of spots respectively around 61 and 38 kDa. The first spreads from p*I*s 5 to 8, whereas the second is a series of 5 spots spread between p*I*s 5 and 6 (Fig. 5B). According to 1-D gel PAS staining, these spot series could be due to different glycosylation states (Fig. 3B). Nevertheless, this could also be attributed to the presence of other post-translational modifications such as phosphorylations.

The 2-DE of both ASM matrices resulted in greater protein extraction and separation (Fig. 5). The main compounds observed in the ASM_{DS} fraction are a series of 6 acidic polypeptides (p*I*s from 4.5 to 6.5) of around 31 kDa. Furthermore, small compounds intensively stained by CBB near the 1-D migration front (*i.e.* 18 and below 15 kDa), appear here at a high p*I* around 9 (Fig. 6A).

The ASM_{CH} mainly exhibits 2 acidic smears around 27 kDa (pI = 4.5 to 6) and a series of spots around 17 kDa spread from p*I*s 4.5 to 8, but mainly located in the acidic area (Fig. 6B). These observations are consistent with the most CBB-stained compounds described using 1-D gel electrophoresis. Two thin smears are also observed at around 105 and 38 kDa and mean p*I*s at around 4 and 6.5, respectively.

388

389 *3.5. Protein identification and sequence analysis*

390 The biochemical characterization performed in this study was complemented by a 391 proteomic analysis aiming to identify proteins involved in the cuttlebone formation. The 392 whole ASM and AIM (*i.e.* without dorsal shield and chambered part split) were analyzed by 393 HPLC-ESI-MS/MS, whereas most prominent gel bands were analyzed by MALDI-TOF/TOF 394 (see Fig. 3 and 4). The resulting peptide sequences were used for screening the NCBI nucleic 395 acid databases described in section 2.5.3. by using Mascot search engine, excluding peptides 396 assigned to trypsin and keratin. De novo sequencing of whole soluble and insoluble fractions 397 allowed identifying 65 unique peptides of between 7 and 14 amino acids length (Table S1). 398 We observed neither some particular richness in Gly, Ser, Ala or acidic residues (Asp and 399 Glu), nor peptides with repetitive residue blocs classically described in biomineralization 400 proteins [e.g. 7.9,49]. However, almost 10% of these peptides present an over-representation 401 of the Leu/Ile residues in their sequence.

Whereas no significant protein hit was obtained from the *L. gigantea*, *C. gigas*, *E. complanata* and *P. fucata* databases, the NCBI Cephalopod database matched for 5 acid nucleic translated sequences. It is noteworthy that all identified protein sequences provided from the embryonic *S. officinalis* ESTs library [41]. This underlined the low representativeness of shell-builder Cephalopods in the NCBI Cephalopod database (less than 15% of the sequence number), especially considering the most diversified group: the Sepiidae.

409 Peptides from ASM matched with 4 EST sequences (FO196371, FO182034, 410 FO201581 and FO162285), whereas peptides from AIM matched only one EST sequence 411 (FO198959; Table 4). Among the 29 analyzed gel bands, only peptides from one ASM_{DS} 412 band (migrating at around 31 kDa, and also found in the whole ASM) were found to match 413 with the FO196371 EST sequence. Among these 5 recognized EST sequences, 4 encode for 414 protein sequences exhibiting a signal peptide (FO182034, FO201581, FO198959, FO162285) 415 and only one being complete (FO182034). This latter contains a type 2 chitin-binding domain 416 (ChtBD2; SM000494) and presents 42.7% identity with a chitin-binding protein (DgCBP-1) 417 of the squid Dosidicus gigas [42]. The protein sequence recognized with the highest score 418 contains 1 transferrin domain (TR FER; SM000094) and matches with more than 42% 419 identity with fish serotransferrins [e.g. 40]. The three other sequences contain respectively 1 420 O-Glycosyl hydrolase (Glyco 18; SM000636), 1 von Willebrand factor type A (VWA; 421 SM000327) and 3 Kunitz (SM00131) domains. The first one best matches with a Sepia 422 esculenta chitinase with 63% identity, the second one, with a Lottia gigantea uncharacterized 423 protein (42.2% identity) having a chitin binding GO function [36], and the last one, with 424 various serine protease inhibitors.

425

426 **4. Discussion**

427 Although the aragonitic shell of the cuttlefish presents intriguing features (*i.e.* inner 428 position, straight form, hollow chambers structuration allowing buoyancy regulation, high 429 strength, porosity and permeability combination), no detailed description of its protein 430 compounds have been published thus far. Yet, a better understanding of the processes 431 regulating the biomineralization of this shell-type could bring new perspectives for 432 applications in biotechnology. In order to understand whether the building of the cuttlefish 433 shell is regulated by the same mechanisms than other mollusks, we described the proteins 434 present in the cuttlefish shell organic matrix distinguishing its two main parts: the dorsal 435 shield and the chambered part.

436 Firstly, from a quantitative viewpoint, the total amount of organic matter extracted 437 with our protocol $(4.7 \pm 1.1\%)$; Table 1) appears consistent with data classically measured in 438 other mollusk shells (0.01-5%) although in the high range [4,7,11]. However, this amount 439 appears half as data reported by Florek et al. [26] in whole S. officinalis shell using 440 thermogravimetric analyses (9.8%). This difference could be due to sample characteristics 441 (i.e. shell part used and/or origin) or differences in the measurement technique used. 442 Considering the organic matter amounts obtained from the chambered part, our value $(3.4 \pm$ 443 0.7%) is in agreement with the 3-4.5% previously reported by Jeuniaux [25] and Birchall and 444 Thomas [22] after HCl aragonite dissolution. Finally, we observed a relatively high amount of 445 organic matter in the dorsal shield $(6.2 \pm 1.5\%)$ compared to other mollusk shells [4,7,11]. 446 However, in view of this measure, the 30-40% estimated from the same shell part by Birchall 447 and Thomas [22] seems largely overestimated. In the light of these discrepancies and 448 according to the known cuttlebone intraspecific variations [44,45], it appears important to 449 consider a likely variation of the amount of organic matter found in S. officinalis shells in 450 function of the animal living environment. In this study, all cuttlebones used came from a 451 low-depth area (i.e. the English Channel). Thus, according to 1) the shell plasticity 452 highlighted in some mollusks in function of their environment [46], to 2) the absolute need for 453 cuttlefish to have a shell resistant to ambient pressure [23], as well as to 3) the role of organic 454 matter in the mineral structure hardness/elasticity compromise [47,48], it would be interesting 455 to compare our data with S. officinalis populations living in deeper environments (e.g. from 456 the Mediterranean Sea).

The FTIR spectra of the four fractions studied exhibit mainly protein and carbohydrate bands (Fig. 2; Table 2) as previously observed for organic compounds extracted from other aragonitic mollusk shells [e.g. 28,47–49] and cnidarian skeletons [52,53]. Our analyses also suggest that the insoluble fractions contain more carbohydrates than the soluble ones (Fig. 2). This carbohydrate richness is likely due to β -chitin that is known in cuttlefish shell for its scaffold role and was previously described as the main polysaccharide compounds of Coleoidea shells [26,28,52]. Notably, the AIM_{CH} seems to be the fraction with the highest polysaccharide proportion as previously suggested by Okafor [27]. However, such polysaccharide bands could also originate from sugars moieties linked with proteins as evidenced by PAS and Alcian blue gel staining (Fig. 3 and 4).

467 Although non-exhaustive (i.e. because describing only urea-soluble fractions of both 468 AIMs), our quantitative protein assays suggest that ASMs are richer in protein compounds 469 than AIMs with ASM_{DS} being the richest soluble fraction (Table 3). Such protein richness of 470 the dorsal shield organic matrix has been previously suggested by several studies interested in 471 the chitin-linked compounds in the S. officinalis shell [24,25,27]. In view of our SDS-PAGE 472 data (Fig. 4 and 6), this protein amount is likely due (at least in part) to the high amount of 5-473 15 kDa polypeptides. Such richness in small protein compounds (< 8 kDa) has been reported 474 in the nacre water-soluble matrix of the black-lip pearl oyster *Pinctada margaritifera* with 475 self-organization and protease inhibition properties [55,56]. Finally, the carboxylate moieties 476 present in these small protein compounds suggest an ability to bind calcium ions (Fig. 4).

477 As for the diversity of proteins, our results of 1- and 2-D SDS-PAGE electrophoreses 478 underlined the predominance of low pI proteins, especially considering ASMs, and a global 479 richness in glycoproteins for the four fractions (Fig. 3 to 6). These properties are consistent 480 with the current literature interested in mollusk biomineralization [e.g. 1,3,5,24,48,49,55,56]. 481 Notably, the only sulfated glycoprotein detected in our study has been found in the AIM_{DS} 482 whereas compounds with similar moieties are usually considered soluble (Fig. 3A) 483 [49,51,58]. Moreover, it is noteworthy that the electrophoretic profiles from 20 kDa and below, observed on ASM_{DS} 1-D gels (Fig. 4A), seems similar to those from Nautilus 484 485 macromphalus (Cephalopoda) nacre presented by Marie et al. [51]. Although the main acidic 486 compounds from this previous study has not been observed in our 2-DE, the migration profile 487 likenesses suggests the conservation of some organic compounds between Nautilidae nacre 488 and Sepiidae dorsal shield (partly constituted by mineral organized similarly than nacre [18]; 489 Fig. 1). Of course, only the complete identification of these putatively shared proteinaceous 490 compounds could allow to assess the existence and the level of conservation.

491 Proteomics study carried out on the whole soluble and insoluble shell fractions and on
 492 the 29 prominent gel bands resulting from LS-AIM_{DS}, LS-AIM_{CH}, ASM_{DS} and ASM_{CH} SDS 493 PAGE electrophoresis resulted only in the identification of 5 protein compounds from current

494 nucleotide and protein databases (Table 4). Moreover, the detected peptides only matched 495 with the embryonic S. officinalis ESTs library [41]. This low number of matches highlights 496 the lack of reference databases for Sepiidae that are under-represented in the used Cephalopod 497 data set. Nevertheless, among the 5 protein compounds identified here, 4 of them (*i.e.* aside 498 from the transferrin protein) contain domains that were previously characterized in matrix 499 proteins of aragonitic shell-builder bivalve and gastropod mollusks [e.g. 8,9,57] - namely 500 ChtBD2, Glyco 18, VWA and Kunitz domains - suggesting ancient and conserved 501 mechanisms of the aragonite biomineralization processes within mollusks.

502 The ChtBD2, Glyco 18 and VWA domains are known for their role in the interaction 503 between organic shell components such as polysaccharides (mainly chitin) and proteins. The 504 presence of ChtBD2 and Glyco 18 domains are consistent with the chitin scaffold role 505 previously described in various mollusk shell matrices [1,24,25,60,61]. Their likely respective 506 roles consist in the attachment of mineral precipitating compounds and in the chitin 507 framework modification or in shell repair [9,62]. Moreover, the chitin richness of the S. 508 officinalis shell (around 25% of organic matrix is B-chitin [25,27]) and its ubiquitous inner 509 repartition (*i.e.* in the central layer of the dorsal shield, septa, inter-septa zones and pillars 510 [16,26,29]) provide good correspondence with our identification of proteins bearing chitin-511 interaction domain. Similarly, VWA domain have been previously retrieved in various 512 mollusk shell matrices (especially in the Pif-177 nacre matrix protein [63]) and is believed to 513 contribute to biomineralization processes, as being involved in protein-protein interactions 514 and subsequent formation of matrix protein complexes [e.g. 1,62]. In addition, various serine 515 protease inhibitors containing Kunitz-like domains have been previously identified in shell 516 organic matrix and tissues involved in mollusk shell synthesis with potential role(s) in inner 517 proteases regulation and/or exogenous proteases protection [e.g. 8,9,63,64].

518 To the best of our knowledge, a transferrin protein has not been described in mollusk 519 shell organic matrix so far. The transferrin family is a group of monomeric glycoproteins defined by conserved residue motifs allowing the reversible binding of ferric ion (Fe^{3+}) 520 521 synergistically with a carbonate anion [67,68]. It has been firstly described as performing 522 essential iron transportation and delivery functions. More recent studies underlined that 523 transferrins are multifunctional proteins with diverse physiological roles only beginning to be 524 understood [e.g. 66,67]. Nevertheless, the function of some transferrin family members can be 525 related to mineralization processes, as it is the case for the ovotransferrin found in the calcitic 526 eggshell [70] and for a mammalian transferrin with a carbonic anhydrase inhibitor activity 527 [71]. In aragonite biomineralization, a transferrin protein has been identified as a major 528 component of the fish otolith organic matrix necessary for otolith growth [72,73]. Thus, our 529 finding suggests a transferrin role in S. officinalis shell biomineralization, especially in the dorsal shield part. Moreover, this observation is consistent with the relative high amount of 530 iron previously reported in the S. officinalis shell (from 24 to 300 µg g⁻¹ of shell, making the 531 iron the second most concentrated trace metal in this shell [26,74,75]) and guestions about a 532 533 role of this trace element in such structure. Finally, according to the known synergistic 534 ligation of carbonate anion in transferrin binding site [67,68], it can also be hypothesized that 535 transferrin achieves a carbonate supply function for calcium carbonate crystal formation.

536

537 **5.** Conclusion

538 This study is the first proteomic report on organic matrix compounds of a cuttlefish 539 shell. Moreover, we have separately analyzed the proteins of the dorsal shield and chambered 540 part, the two main parts of the shell, both being aragonitic but with clearly different 541 architectures. The general description of the shell organic matrix highlights a similar 542 composition compared to other previously analyzed mollusk shells, with some quantitative 543 and qualitative differences between the dorsal shield and the chamber part. These differences 544 suggest dissimilar processes of biomineralization between both shell parts, associated with 545 different shell sac cells and secretory materials.

546 Our proteomic analysis identified protein domains already known to play some roles 547 in biomineralization processes, suggesting an ancient and common origin of aragonitic shell 548 biomineralization within mollusks. However, the number of matched proteins remained 549 limited, highlighting the scarcity of databases considering the shell builder cephalopods (*i.e.* 550 mainly the Sepiidae). In order to overcome this hurdle, the transcriptome of the S. officinalis 551 shell sac has been recently sequenced and is under analysis. It will allow to complete the 552 proteomic analysis presented here and to better understand how organic compounds are 553 involved in the setting up of this intricate structure.

554

555 Acknowledgments

556 This work was financially supported by the Muséum national d'Histoire naturelle ATM 557 funding (ATM "Interactions Minéral-Vivant"). The authors thank all the members of the 558 platform PROTEOGEN of the University of Caen for MALDI-TOF/TOF analysis as well as 559 Dr Christelle Jozet-Alves for cuttlebone supply.

- 560
- 561

References

[1] M. Suzuki, H. Nagasawa, Mollusk shell structures and their formation mechanism, Can. J. Zool.
91 (2013) 349–366. doi:DOI 10.1139/cjz-2012-0333.

[2] H.A. Lowenstam, S. Weiner, On biomineralization, in: Oxford University Press, London (1989)pp. 7–23.

[3] L. Addadi, S. Weiner, Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization., Proc. Natl. Acad. Sci. U. S. A. 82 (1985) 4110–4114. doi:10.1073/pnas.82.12.4110

[4] J. Keith, S. Stockwell, D. Ball, K. Remillard, D. Kaplan, T. Thannhauser, R. 571 Sherwood, Comparative analysis of macromolecules in mollusc shells, Comp. Biochem. Physiol. Part B Comp. Biochem. 105 (1993) 487–496. doi:10.1016/03050491(93)90078-J

[5] J.C. Marxen, W. Becker, The organic shell matrix of the freshwater snail *Biomphalaria glabrata*, Comp. Biochem. Physiol. Part B Biochem. & Mol. Biol. 118 (1997) 23–33. doi:10.1016/S0305-0491(97)00010-2.

[6] S. Sudo, T. Fujikawa, T. Nagakura, T. Ohkubo, K. Sakaguchi, M. Tanaka, K. Nakashima, T. Takahashi, Structure of mollusc shell framework proteins, Nature. 387 (1997) 563–564.

[7] F. Marin, G. Luquet, B. Marie, D. Medakovic, Molluscan shell proteins: primary structure, origin, and evolution, Curr. Top. Dev. Biol. 80 (2008) 209–276. 582 doi:10.1016/S0070-2153(07)80006-8

[8] K. Mann, E. Edsinger-gonzales, M. Mann, In-depth proteomic analysis of a mollusc shell: acidsoluble and acid-insoluble matrix of the limpet *Lottia gigantea*, Proteome Sci. 10 (2012) 1–18

[9] B. Marie, C. Joubert, A. Tayalé, I. Zanella-Cléon, C. Belliard, D. Piquemal, N. Cochennec-Laureau, F. Marin, Y. Gueguen, C. Montagnani, Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 20986–20991. doi:10.1073/pnas.1210552109//DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1210552109.

[10] F. Marin, B. Marie, S. Ben Hamada, P. Silva, N. Le Roy, S. Wolf, C. Montagnani, C. Joubert, D. Piquemal, D. Saulnier, Y. Gueguen, "Shellome": proteins involved in mollusc shell biomineralization – diversity, functions, Recent Adv. Pearl Res. (2013) 149–166. http://hal.archives-ouvertes.fr/hal-00793668/.

[11] F. Marin, N. Le Roy, B. Marie, The formation and mineralization of mollusk shell, Front. Biosci. S4 (2012) 1099–1125.

[12] E.J. Denton, On buoyancy and the lives of modern and fossil cephalopods, Proc. R. Soc. London. Ser. B. 185 (1974) 273–299.

[13] B. Kröger, J. Vinther, D. Fuchs, Cephalopod origin and evolution: A congruent picture

emerging from fossils, development and molecules, Bioessays. 33 (2011) 602-613. doi:10.1002/bies.201100001.

[14] A.L. Allcock, A. Lindgren, J.M. Strugnell, The contribution of molecular data to our understanding of cephalopod evolution and systematics: a review, J. Nat. Hist. 49 (2015) 1373–1421. doi:10.1080/00222933.2013.825342.

[15] A. Appellöf, Die schalen von *Sepia*, *Spirula* und *Nautilus*. Studien über den bau und das wachsthum, K. Sven. Vetensk. Akad. Handl. 25 (1893) 1–106.

[16] K. Bandel, S. von Boletzky, A comparative study of the structure, development and morphological relationships of chambered cephalopod shells, The Veliger. 21 (1979) 313–354.

[17] C. Le Pabic, M. Rousseau, L. Bonnaud-Ponticelli, S. von Boletzky, Overview of the shell development of the common cuttlefish *Sepia officinalis* during early-life stages, Vie Milieu -Life Environ. 66 (2016) 35–42.

[18] Y. Dauphin, Microstructures des coquilles de céphalopodes II -La seiche (Mollusca, Coleoidea), Palaeontogr. Abteilung A. 176 (1981) 35–51.

[19] H. Mutvei, Ultrastructure of the mineral and organic components of molluscan nacreous layers, Biomineralization. 2 (1970) 48–72.

[20] E.J. Denton, J.B. Gilpin-Brown, The buoyancy of the cuttlefish, *Sepia officinalis* (L.), J. Mar.Biol. Assoc. United Kingdom. 41 (1961) 319–342.

[21] E.J. Denton, J.B. Gilpin-Brown, Floatation mechanisms in modern and fossil cephalopods, Adv. Mar. Biol. 11 (1973) 197–268.

[22] J.D. Birchall, N.L. Thomas, On the architecture and function of cuttlefish bone, J. Mater. Sci. 18 (1983) 2081–2086.

[23] P.D. Ward, S. von Boletzky, Shell implosion depth and implosion morphologies in three species of *Sepia* (Cephalopoda) from the Mediterranean Sea, J. Mar. Biol. Assoc. United Kingdom. 64 (1984) 955–966.

[24] R.H. Hackman, Studies on chitin IV. The occurrence of complexes in which chitin and protein are covalently linked, Aust. J. Biol. Sci. 13 (1960) 568–577.

[25] C. Jeuniaux, Chitine et chitinolyse : un chapitre de la biologie moléculaire, Masson ed., Paris, 1963.

[26] M. Florek, E. Fornal, P. Gómez-Romero, E. Zieba, W. Paszkowicz, J. Lekki, J. Nowak, A. Kuczumow, Complementary microstructural and chemical analyses of *Sepia officinalis* endoskeleton, Mater. Sci. Eng. C. 29 (2009) 1220–1226. doi:10.1016/j.msec.2008.09.040.

[27] N. Okafor, Isolation of chitin from the shell of the cuttlefish, *Sepia officinalis* L., Biochim.Biophys. Acta. 101 (1965) 193–200.

[28] Y. Dauphin, F. Marin, The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulsed amperometric detection, Experientia. 51 (1995) 278-283. doi:10.1007/bf01931112.

[29] A.G. Checa, J.H.E. Cartwright, I. Sánchez-Almazo, J.P. Andrade, F. Ruiz-Raya, The cuttlefish *Sepia officinalis* (Sepiidae, Cephalopoda) constructs cuttlebone from a crystal precursor, Sci. Rep. 5 (2015) 1–13. doi:10.1038/srep11513.

[30] S. Kawaguti, A. Oda, Electron microscopy on the cuttlebone-producing cells, Biol. J. Okayama Univ. 9 (1963) 41–53.

[31] P.E. Spiess, Organogenese des schalendrüsenkomplexes bei einigen coleoiden cephalopoden des mittelmeeres, Rev. Suisse Zool. 79 (1972) 167–226.

[32] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature. 227 (1970) 680–685.

[33] J.H. Morrissey, Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced unform sensitivity., Anal. Biochem. 117 (1981) 307–310.

[34] R. Lev, S.S. Spicer, Specific staining of sulphate groups with Alcian blue at low pH, J. Histochem. Cytochem. 12 (1964) 309.

[35] R.S. Wall, T.J. Gyi, Alcian blue staining of proteoglycans in polyacrylamide gels using the "Critical electrolyte concentration" approach, Anal. Biochem. 175 (1988) 298–299. doi:10.1016/0003-2697(88)90392-2.

[36] O. Simakov, F. Marletaz, S.-J. Cho, E. Edsinger-Gonzales, P. Havlak, U. Hellsten, D.H. Kuo, T. Larsson, J. Lv, D. Arendt, R. Savage, K. Osoegawa, P. de Jong, J. Grimwood, J.A. Chapman, H. Shapiro, A. Aerts, R.P. Otillar, A.Y. Terry, J.L. Boore, I.V. Grigoriev, D.R. Lindberg, E.C. Seaver, D.A. Weisblat, N.H. Putnam, D.S. Rokhsar, Insights into bilaterian evolution from three spiralian genomes, Nature. 493 (2013) 526–531. doi:10.1038/nature11696.

[37] G. Zhang, X. Fang, X. Guo, L. Li, R. Luo, F. Xu, P. Yang, L. Zhang, X. Wang, H. Qi, Z. Xiong, H. Que, Y. Xie, P.W. Holland, J. Paps, Y. Zhu, F. Wu, Y. Chen, J. Wang, C. Peng, J. Meng, L. Yang, J. Liu, B. Wen, N. Zhang, Z. Huang, Q. Zhu, Y. Feng, A. Mount, D. Hedgecock, Z. Xu, Y. Liu, T. Domazet-Lošo, Y. Du, X. Sun, S. Zhang, B. Liu, P. Cheng, X. Jiang, J. Li, D. Fan, W. Wang, W. Fu, T. Wang, B. Wang, J. Zhang, Z. Peng, Y. Li, N. Li, J. Wang, M. Chen, Y. He, F. Tan, X. Song, Q. Zheng, R. Huang, H. Yang, X. Du, L. Chen, M. Yang, P.M. Gaffney, S. Wang, L. Luo, Z. She, Y. Ming, W. Huang, S. Zhang, B. Huang, Y. Zhang, T. Qu, P. Ni, G. Miao, J. Wang, Q. Wang, C.E. Steinberg, H. Wang, N. Li, L. Qian, G. Zhang, Y. Li, H. Yang, X. Liu, J. Wang, Y. Yin, J. Wang, The oyster genome reveals stress adaptation and complexity of shell formation, Nature. 490 (2012) 49–54. doi:10.1038/nature11413.

[38] T. Takeuchi, R. Koyanagi, F. Gyoja, M. Kanda, K. Hisata, M. Fujie, H. Goto, S. Yamasaki, K. Nagai, Y. Morino, H. Miyamoto, K. Endo, H. Endo, H. Nagasawa, S. Kinoshita, S. Asakawa, S. Watabe, N. Satoh, T. Kawashima, Bivalve-specific gene expansion in the pearl oyster genome: implications of adaptation to a sessile lifestyle, Zool. Lett. 2 (2016) 1–13. doi:10.1186/s40851-016-

0039-2.

[39] I.F. Amaral, P.L. Granja, M.A. Barbosa, Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study., J. Biomater. Sci. Polym. Ed. 16 (2005) 1575–1593. doi:10.1163/156856205774576736.

[40] D. Biniaś, M. Wyszomirski, W. Biniaś, S. Boryniec, Supermolecular structure of chitin and its derivatives in FTIR spectroscopy studies, Polish Chitin Soc. 12 (2007) 95–108.

[41] Y. Bassaglia, T. Bekel, C. Da, J. Poulain, A. Andouche, S. Navet, L. Bonnaud, ESTs library from embryonic stages reveals tubulin and reflectin diversity in *Sepia officinalis* (Mollusca — Cephalopoda), Gene. 498 (2012) 203–211. doi:10.1016/j.gene.2012.01.100.

[42] Y. Tan, S. Hoon, P.A. Guerette, W. Wei, A. Ghadban, C. Hao, A. Miserez, J.H. Waite, Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient., Nat. Chem. Biol. 11 (2015) 488–495. doi:10.1038/nchembio.1833.

[43] R. Scudiero, F. Trinchella, M. Riggio, E. Parisi, Structure and expression of genes involved in transport and storage of iron in red-blooded and hemoglobin-less antarctic notothenioids, Gene. 397 (2007) 1–11. doi:10.1016/j.gene.2007.03.003.

[44] S. von Boletzky, Effets de la sous-nutrition prolongée sur le développement de la coquille de *Sepia officinalis* L. (Mollusca, Cephalopoda), Société Zool. Fr. 99 (1974) 667–673.

[45] K.M. Sherrard, Cuttlebone morphology limits habitat depth in eleven species of *Sepia* (Cephalopoda: Sepiidae), Biol. Bull. 198 (2000) 404–414.

[46] M. Charrier, A. Marie, D. Guillaume, L. Bédouet, J. Le Lannic, C. Roiland, S. Berland, J.S. Pierre, M. Le Floch, Y. Frenot, M. Lebouvier, Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, *Notodiscus hookeri*, PLoS One. 8 (2013) e84527. doi:10.1371/journal.pone.0084527.

[47] J.D. Currey, The mechanical consequences of variation in the mineral content of bone, J. Biomech. 2 (1969) 1–11. doi:10.1016/0021-9290(69)90036-0.

[48] A.P. Jackson, J.F. V Vincent, R.M. Turner, The mechanical design of nacre, Proc. R. Soc. London. Ser. B. 234 (1988) 415–440.

[49] J.C. Marxen, M. Hammer, T. Gehrke, W. Becker, Carbohydrates of the organic shell matrix and the shell-forming tissue of the snail *Biomphalaria glabrata* (Say), Biol. Bull. 194 (1998) 231–240. doi:10.2307/1543052.

[50] B. Marie, G. Luquet, J.P. Pais De Barros, N. Guichard, S. Morel, G. Alcaraz, L. Bollache, F. Marin, The shell matrix of the freshwater mussel *Unio pictorum* (Paleoheterodonta, Unionoida): Involvement of acidic polysaccharides from glycoproteins in nacre mineralization, FEBS J. 274 (2007) 2933–2945. doi:10.1111/j.1742-4658.2007.05825.x.

[51] B. Marie, F. Marin, A. Marie, L. Bédouet, L. Dubost, G. Alcaraz, C. Milet, G. Luquet, Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod

Nautilus macromphalus, A Eur. J. Chem. Biol. 10 (2009) 1495–1506. doi:10.1002/cbic.200900009. [52] S. Goffredo, P. Vergni, M. Reggi, E. Caroselli, F. Sparla, O. Levy, Z. Dubinsky, G. Falini, The skeletal organic matrix from Mediterranean coral *Balanophyllia europaea* influences calcium carbonate precipitation, PLoS One. 6 (2011) e22338. doi:10.1371/journal.pone.0022338.

[53] P. Ramos-Silva, J. Kaandorp, F. Herbst, L. Plasseraud, G. Alcaraz, C. Stern, M. Corneillat, N. Guichard, C. Durlet, G. Luquet, F. Marin, The skeleton of the staghorn coral *Acropora millepora*: Molecular and structural characterization, PLoS One. 9 (2014) e97454.
doi:10.1371/journal.pone.0097454.

[54] T. Furuhashi, A. Beran, M. Blazso, Z. Czegeny, C. Schwarzinger, G. Steiner, Pyrolysis GC/MS and IR spectroscopy in chitin analysis of molluscan shells., Biosci. Biotechnol. Biochem. 73 (2009) 1–11. doi:10.1271/bbb.80498.

[55] L. Bédouet, F. Rusconi, M. Rousseau, D. Duplat, A. Marie, L. Dubost, K. Le Ny, S. Berland, J. Péduzzi, E. Lopez, Identification of low molecular weight molecules as new components of the nacre organic matrix, Comp. Biochem. Physiol. Part B. 144 (2006) 733 532–543. doi:10.1016/j.cbpb.2006.05.012.

[56] L. Bédouet, D. Duplat, A. Marie, L. Dubost, S. Berland, M. Rousseau, C. Milet, E. Lopez, Heterogeneity of proteinase inhibitors in the water-soluble organic matrix from the oyster nacre, Mar. Biotechnol. 9 (2007) 437–449. doi:10.1007/s10126-007-7120-y.

[57] L. Addadi, J. Moradian, E. Shay, N.G. Maroudas, S. Weiner, A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization., Proc. Natl. Acad. Sci. U. S. A. 84 (1987) 2732–2736. doi:10.1073/pnas.84.9.2732.

[58] B. Marie, G. Luquet, L. Bédouet, C. Milet, N. Guichard, D. Medakovic, F. Marin, Nacre calcification in the freshwater mussel *Unio pictorum*: carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein, ChemBioChem. 9 (2008) 2515–2523. doi:10.1002/cbic.200800159.

[59] B. Marie, A. Marie, D.J. Jackson, L. Dubost, B.M. Degnan, C. Milet, F. Marin, Proteomic analysis of the organic matrix of the abalone *Haliotis asinina* calcified shell, Proteome Sci. 8 (2010) 1–11.

[60] H. Ehrlich, Chitin and collagen as universal and alternative templates in biomineralization, 2010. doi:10.1080/00206811003679521.

[61] W. Peters, Occurrence of chitin in Mollusca, Comp. Biochem. Physiol. -B Biochem. Mol. Biol.41 (1972) 541–550.

[62] K. Tanabe, Y. Fukuda, Y. Ohtsuka, New chamber formation in the cuttlefish *Sepia esculenta* Hoyle, Venus. 44 (1985) 55–67.

[63] M. Suzuki, K. Saruwatari, T. Kogure, Y. Yamamoto, T. Nishimura, T. Kato, H. Nagasawa, An

acidic matrix protein, Pif, is a key macromolecule for nacre formation, Science. 325 (2009) 1388–1390. doi:10.1126/science.1173793.

[64] E.P. Chang, J.S. Evans, Pif97, a von Willebrand and peritrophin biomineralization protein, organizes mineral nanoparticles and creates intracrystalline nanochambers, Biochemistry. 54 (2015) 5348–5355. doi:10.1021/acs.biochem.5b00842.

[65] L.D. Gardner, D. Mills, A. Wiegand, D. Leavesley, A. Elizur, Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster *Pinctada maxima*, BMC Genomics. 12 (2011) 1–15. doi:10.1186/1471-2164-12-455.

[66] B. Marie, J. Arivalagan, L. Dubost, S. Berland, A. Marie, F. Marin, Unveiling the evolution of bivalve nacre proteins by shell proteomics of Unionoidae, Key Eng. Mater. 672 (2015) 158–167. doi:10.4028/www.scientific.net/KEM.672.158.

[67] E.N. Baker, Structure and reactivity of transferrins, Adv. Inorg. Chem. 41 (1994) 389-463.

[68] L.A. Lambert, H. Perri, T.J. Meehan, Evolution of duplications in the transferrin family of proteins, Comp. Biochem. Physiol. -B Biochem. Mol. Biol. 140 (2005) 11–25. doi:10.1016/j.cbpc.2004.09.012.

[69] A.L. Hughes, R. Friedman, Evolutionary diversification of the vertebrate transferrin multigene family, Immunogenetics. 66 (2014) 651–661. doi:10.1007/s00251-0140798-x.

[70] J. Gautron, M. Hincke, M. Panheleux, J.M. Garcia-Ruiz, T. Boldicke, Y. Nys, Ovotransferrin is a matrix protein of the hen eggshell membranes and basal calcified layer, Connect. Tissue Researvh. 42 (2001) 255–267.

[71] M.W. Wuebbens, E.D. Roush, C.M. Decastro, C.A. Fierke, Cloning, sequencing, and recombinant expression of the porcine inhibitor of carbonic anhydrase: A novel member of the transferrin family, Biochemistry. 36 (1997) 4327–4336. doi:10.1021/bi9627424.

[72] E. Murayama, A. Okuno, T. Ohira, Y. Takagi, H. Nagasawa, Molecular cloning and expression of an otolith matrix protein cDNA from the rainbow trout, *Oncorhynchus mykiss*, Comp. Biochem.
Physiol. Part B Biochem. Mol. Biol. 126 (2000) 511–520. doi:http://dx.doi.org/10.1016/S0305-0491(00)00223-6.

[73] E. Murayama, P. Herbomel, A. Kawakami, H. Takeda, H. Nagasawa, Otolith matrix proteins OMP-1 and Otolin-1 are necessary for normal otolith growth and their correct anchoring onto the sensory maculae, Mech. Dev. 122 (2005) 791–803. doi:10.1016/j.mod.2005.03.002.

[74] P. Miramand, D. Bentley, Concentration and distribution of heavy metals in tissues of two cephalopods, *Eledone cirrhosa* and *Sepia officinalis*, from the French coast of the English Channel, Mar. Biol. 114 (1992) 407–414.

[75] P. Miramand, P. Bustamante, D. Bentley, N. Koueta, Variation of heavy metal concentrations
(Ag, Cd, Co, Cu, Fe, Pb, V, and Zn) during the life cycle of the common cuttlefish *Sepia officinalis*,
Sci. Total Environ. 361 (2006) 132–143.

http://www.sciencedirect.com/science/article/pii/S0048969705007692.

Tables:

Table 1: Quantification of organic matrix fractions extracted from the different part of the *S*. *officinalis* shell (*i.e.* whole organic matrix of shell; respective whole organic matrix of dorsal shield (DS) and chambered part (CH); and respective acid-insoluble and acid-soluble organic matrices of dorsal shield and chambered part; mean \pm SD; n = 5).

Shell part	Fraction	Mean organic matrix (%)			
Domal shield	AIM	5.8 ± 1.4	DS: 6.2 ± 1.5		
Dorsal shield	ASM	0.4 ± 0.2			
Champhanad mant	AIM	3.5 ± 0.7	CII. 2.4 ± 0.7	Whole: 4.7 ± 1.1	
Chambered part	ASM	0.2 ± 0.1	CH: 3.4 ± 0.7		

Band position	Classical	Chitin	Protein	Assignment
(cm^{-1})	polysaccharide	(+protein?)		
950-1,200	NC	VS	W	CC, CO, COC, COH
950-1,200	VS	v 5	w	stretching
1,228-1,265			m	Amide III: NH bending
1,228-1,203			m	and CN stretching
1,310		m		Amide III: CH ₂ wagging
1,375		m		CH bending, CH ₃
1,575	5	m		symmetric deformation
1,445			m	CH ₂ and CH ₃ deformation
1,510-1,550		m	S	Amide II: NH bending
1,510-1,550				coupled to CN stretching
1,600-1,700		m	S	Amide I: CO stretching
2,800-2,950	W	W	W	CH stretching
3,250-3,300		m	m	Amide A: NH stretching
3,550-3,670	m	m	W	OH stretching

Table 2: Position and assignment of the FTIR major bands in the 600-4,000 cm⁻¹ region for polysaccharides, chitin and proteins (vs: very strong, m: medium, w: weak).

Table 3: Protein concentrations (mg g⁻¹ organic matter; mean \pm SD; n = 5) of the dorsal shield and chambered part acid-insoluble (AIM) and acid-soluble (ASM) matrices of *S. officinalis* shell, extracted in the 2-D kit rehydration buffer (US: urea-soluble).

Shell part	Fraction	Mean protein concentration (mg g ⁻¹ organic matter)
Dangal shield	US-AIM	30 ± 5
Dorsal shield	ASM	462 ± 71
Chambanadaant	US-AIM	< 10
Chambered part	ASM	192 ± 34

No.	Fraction	GenBank Acc. No.	Peptide sequence	Peptide score* (Mascott / Peaks)	Protein score* (Mascott / Peaks)	Signal peptide / Complete sequence	Theoritical mass / p <mark>/</mark>	Identified domain
1	ASM /	FO196371	CLEETDADVAFVK	93 / 63	209 / 126	No / No	21.8 kDa / 6.4	1 Transferrin (193 aa)
	31 kDa band ASM _{DS}		ADVTVLDGGDIYLAGK	98 / 63				
			HLTFLDNPAK	80 / 48				
			TSGWFVPMSVLFPNK	31 / 32				
			HGNNLYYGYSGAAK	-/31				
2	ASM	FO182034	LFSEATGK	45	117 / 83	Yes / Yes	16.5 kDa / 8.2	1 Chitin-binding type 2 (66 aa)
			LPGPGYLGDYIDECPYPK	39 / 39				
			CESFEPVSCGSR	- / 47				
3	ASM	1 FO201581	QVFVTSTINFLR	63 / 48	123 / 81	Yes / No	20.8 kDa / 9.5	1 O-Glycosil hydrolase (178 aa)
			GSPIEDKENFAELLK	43 / 49				
4	AIM	FO198959	DGTNTDIGINK	69 / 41	69 / 41	Yes / No	19.2 kDa / 9.3	1 von Willebrand factor type A (167 aa)
5	ASM	FO162285	FDICSLDARPGK	34 / 31	62 / 42	Yes / No	16.2 kDa / 6.7	3 BPTI/Kunitz family (54, 54 and 28 aa)

Table 4: Identification of acid-insoluble and acid-soluble matrix proteins of the *S. officinalis* shell by MS/MS analysis

* maximum score found (independently of the fraction studied)

Captions to figures:

Figure 1: Schematic representation of the main constituents of the cuttlefish shell in sagittal plane, with associate mineral microstructures and repartition of the different shell sac cell types. The pillar distribution (*i.e.* vertical alignment and being closer near chamber openings) has been drawn respectively with our observations and previously made descriptions. Note that around 100 chambers traditionally constitute an adult *S. officinalis* shell. For convenience, only three chambers have been drawn here. Arrows indicate the shell sac area where gas and liquid exchanges occur. DS: dorsal shield, CH: chambered part.

Figure 2: Infrared spectra of the acid-insoluble (AIM; A) and acid-soluble (ASM; B) matrices obtained by complete decalcification of the dorsal shield (solid line) and the chambered part (dashed line) from the *Sepia officinalis* shell.

Figure 3: Electrophoretic analysis of the acid-insoluble matrices of the dorsal shield (A) and the chambered part (B) of *S. officinalis* shell. The gels were stained with CBB (lanes 1), silver nitrate (lanes 2), periodic acid Schiff (lanes 3), Alcian blue at pH 2.5 (lanes 4) and pH 1 (lane 5); MM: molecular mass markers. Because of no staining, lane 5 is not presented for B. All bands from these two extracts were excised from the gel for MALDI-TOF/TOF mass spectrometer analyses.

Figure 4: Electrophoretic analysis of the acid-soluble matrices of the dorsal shield (A) and the chambered part (B) of *S. officinalis* shell. The gels were stained with CBB (lanes 1), silver nitrate (lanes 2), periodic acid Schiff (lanes 3) and Alcian blue at pH 2.5 (lanes 4); MM: molecular mass markers. Both matrices were stained with Alcian blue at pH 1 without bands appearance. All bands from these two extracts were excised from the gel for MALDI-TOF/TOF mass spectrometer analyses. Framed band size corresponds to the band allowing protein identification after tryptic digestion and MS analysis.

Figure 5: 2-DE analysis of the acid-insoluble matrices of the dorsal shield (A) and the chambered part (B) of *S. officinalis* shell. The 1-D gels (left) with respective extracts show the correspondence between the protein bands and the spots observed on the 2-D gel (right) after CBB staining.

Figure 6: 2-DE analysis of the acid-soluble matrices of the dorsal shield (A) and the chambered part (B) of *S. officinalis* shell. The 1-D gels (left) with respective extracts show the correspondence between the protein bands and the spots observed on the 2-D gel (right) after CBB staining. Framed band size corresponds to the band allowing protein identification after tryptic digestion and MS analysis.

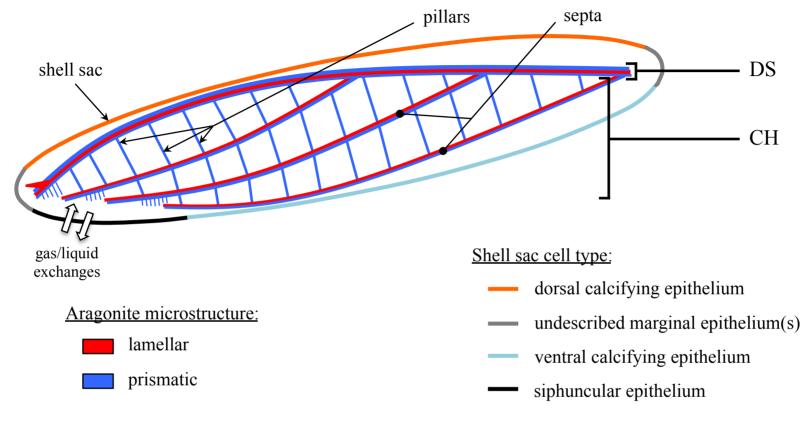


Figure 1

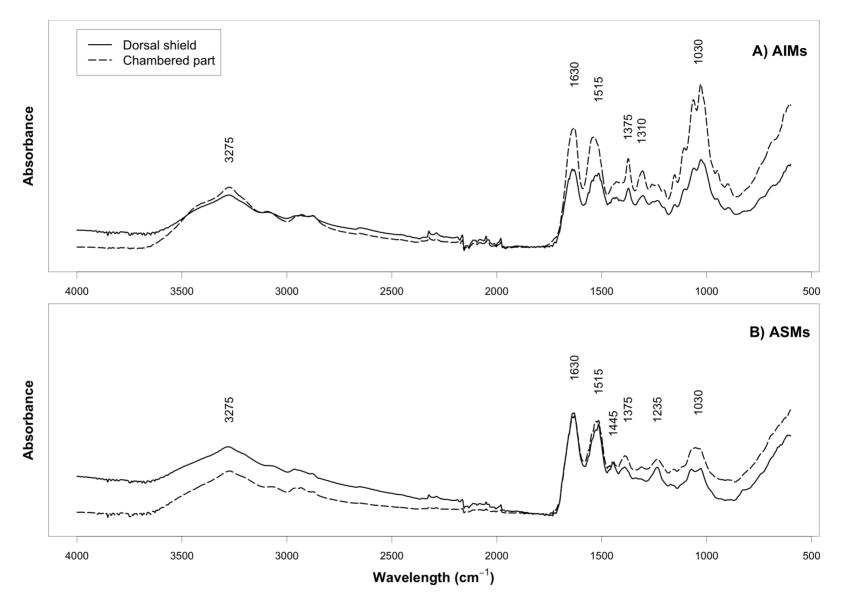
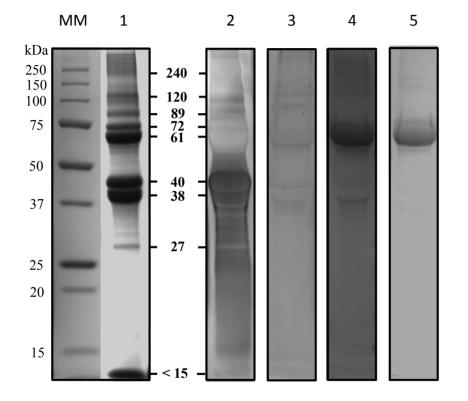



Figure 2

A) LS-AIM_{DS}

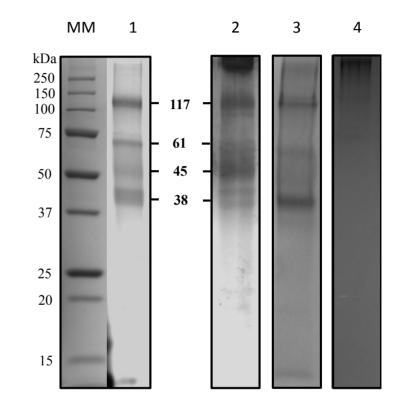
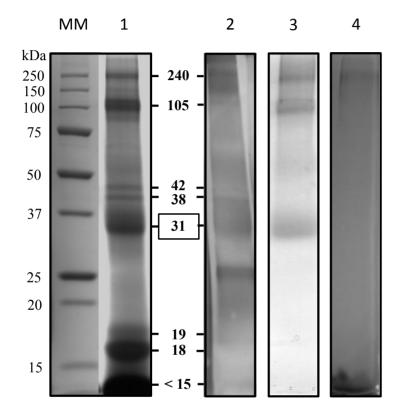



Figure 3

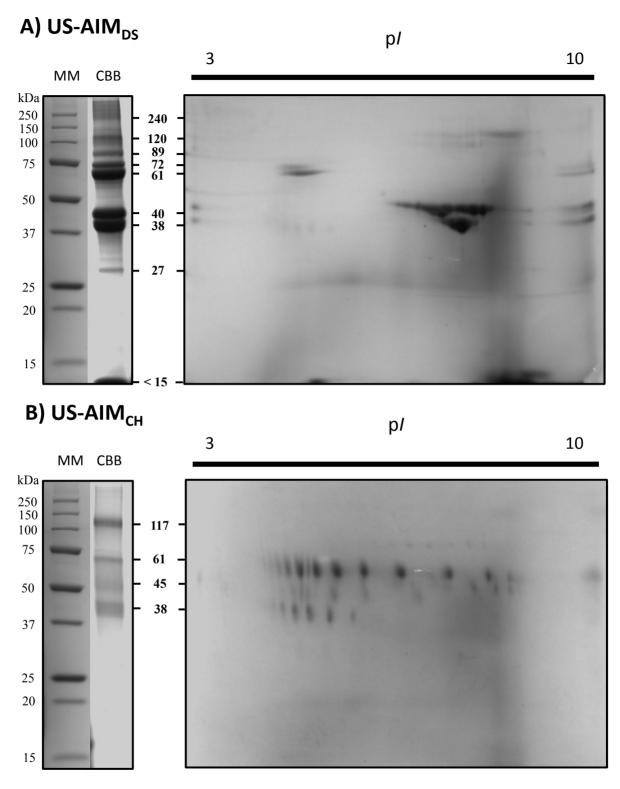



Figure 4

A) ASM_{DS}

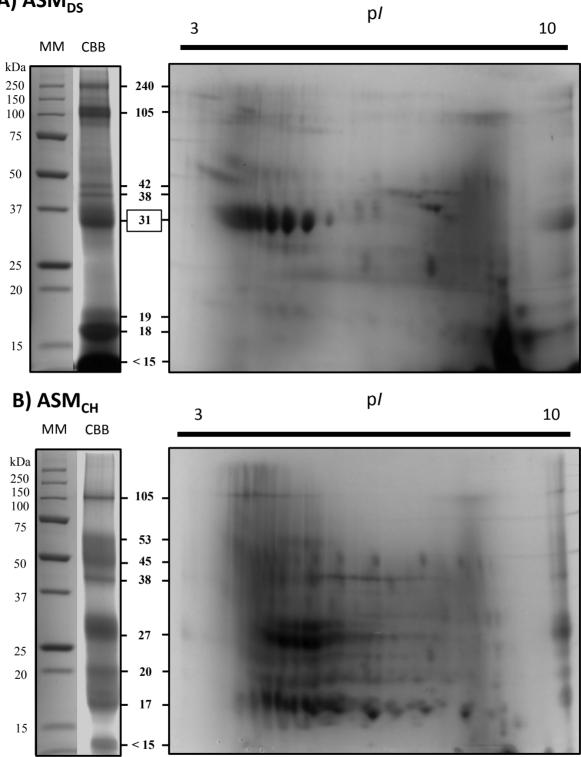


Figure 6

Supplementary material Click here to download Supplementary material: Supplementary Table.docx