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Abstract

In this paper we are interested in applying Bühlmann-Straub credibility for a multiple
population model, in particular, in presence of small sized populations. We introduce a
parsimonious extension of the classic Lee and Carter model in a similar manner as the joint-
κ model, which does impose a common factor to the considered populations. Hence, we
propose an adjustment procedure based on the Bühlmann-Straub linear credibility into a
Lee-Carter model in order to take into account the heterogeneity among the populations
while allowing for learning effect for each population. The updating mechanism is based on
the credibility estimations of future mortality rates depending on past observations through
a recursive credibility formula. By doing so, the forecasts weight the importance of the
information stemming from the single population while taking into account the neighboring
populations. The proposed methodology is applied to real-world datasets and comparisons to
classic mortality models is proposed.
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1 Introduction
Predicting future mortality patterns has been a great concern for a long time for demographers and
actuaries in life insurance companies and pension funds. Today, insurers often rely on regulatory
life tables to make projections, but these are sometimes too conservative. Therefore, this may lead
to both an increase of Best Estimate technical provisions and thus a decrease of Basic Own-Funds,
and an increase of the base figure used for calculating the solvency capital in charge for longevity
risk. That is why, considering an adequate and coherent assumption on the future behaviour
of mortality is of paramount importance. The European prudential regulation, Solvency II, has
emphasized the need of mortality and life tables that best capture and reflect the experienced
mortality in order to adequately quantify the underlying risk, see Salhi and Thérond (2018) and
Barrieu et al. (2012) for more details.

Various approaches have been introduced in the actuarial literature to project mortality such
as the seminal Lee and Carter’s model, see Lee and Carter (1992), and the CBD models, see
Cairns et al. (2006) and Cairns et al. (2011b). These propose a factor-based framework in order to
decompose the mortality patterns into age, period and cohort effects. Recently, some alternative
approaches have also been introduced, e.g. Doukhan et al. (2017, 2020) and Hainaut (2018).
However, in life insurance, the size of the considered populations and the heterogeneity of the
guarantees for the same underlying risk makes difficult the creation of such mortality tables based
on the sole experience of each policy, which may induce significant impacts on the technical reserves
if the tables have to be updated more frequently. This was the case, for instance, when the French
prospective life tables were updated in 2007; replacing the previous set of tables from 1993. The
resulting disparities between the 1993 prospective tables and observed longevity caused French
insurers to sharply increase their reserves by an average of 8%.

Therefore, the goal is to model mortality rates specific to sub-populations with particular char-
acteristics (population of a small country or region, individuals with a specific disease, insurance
portfolio, sectorial pension funds or mortality by cause of death). Traditionally, relational models
are used to overcome this issue, see Delwarde et al. (2004). By doing so, we are left with a bias
known as basis risk, the mortality between the mortality in an individual portfolio and that of
the national population - a result of selection effects, see Salhi and Loisel (2017). Also, these
techniques, in the vein of the Cox (1992) proportional hazard framework, are static, and any dis-
crepancy between the two sets of mortality figures represents a significant risk for the evaluation
of the future mortality of the sub-population. Some recent literature looked at the modelling in
the presence of sufficiently large sub-populations datasets, see Cairns et al. (2011a) and Coughlan
et al. (2011). However, when it comes to the study of the mortality at a single portfolio or small
sized populations, some specific issues arise. In fact, very few deaths are observable at some ages
making it difficult to assess some of the parameters involved in the classic models. Thus, it is very
important to be able to overcome these issues by proposing a well-suited methodology that adapts
to these particular stylized facts. Recent literature, see e.g. Salhi et al. (2016) and Salhi and
Thérond (2018), propose a framework to update the assumptions on the biometric risk of small
populations using the credibility theory. The first methodology consists in using a parametric
approach for graduating mortality with a Makeham mortality law. It is shown that a credibility
approach and adjusting periodically the mortality level, the ability to predict death forecast is im-
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proved for population of small sizes, and that using a Makeham mortality law is better than using
a Poisson-Gamma model. However, the proposed methodology is more adapted to mortality risk
for which the assumptions may be adjusted on a yearly basis. On the other hand, the longevity
risk assessment and modelling using the credibility theory become increasingly important over
recent years. For instance, Schinzinger et al. (2016) proposed an evolutionary credibility model,
using the Lee and Carter framework, that describes the joint dynamics of mortality through time
in several populations. Such an approach is applied to large populations with mortality patterns
that are usually much more regular and easier to accommodate using the Lee and Carter’s model.
In this paper, the adopted methodology roots on the recent advancement of multiple popula-
tion modelling. In contrast to single population modeling, multi-population models are based on
the assumption that mortality experience of one population may contain useful information for
predicting mortality of another population. By incorporating this information, we allow for one
population to learn from the others and thus increase the potential to improve mortality prediction
of individual populations. As noted by Li and Lee (2005): "mortality patterns and trajectories in
closely related populations are likely to be similar in some respects, and differences are unlikely
to increase in the long run". The authors proposed an extension of the Li and Lee (2005) method
to coherently forecast mortality for a group of populations. Their approach assumes that close
populations in a given group must have the same drift driving the mortality pattern as well as
the age-specific sensitivity. Their modelling approach assumes then an additional common factor
in the same line as in the initial Lee and Carter’s model. By doing so, it is possible to ensure
that mortality forecasts in different populations are coherent, i.e., projected mortality differentials
of different populations should not diverge in the long run. Formally, we will suppose that the
mortality profile for each population follows a common factor model as introduced by Li and Lee
(2005) and referred to as the Joint-κ model, see Li and Hardy (2011), which amends to say that
the evolution of mortality follows similar patterns for the different populations. Hence, we aim at
using the available information stemming from the other populations to sequentially adjust the
mortality forecasts. This will implicitly invoke the use of credibility theory in the same line as
Salhi et al. (2016) and Salhi and Thérond (2018). Similarly, Tsai and Lin (2017b) introduced the
Bülmann credibility into the classic stochastic mortality models, with an objective of improving
their forecasting performance. Also, Tsai and Lin (2017a) used a similar approach in order to
enhance the predictive power of the classic multiple population models. In their work the infor-
mation stemming from each population plays the same role in the sense that the weight assigned
to each population does not depend neither on the size nor the credibility of the information itself.
However, the weight is of paramount importance. It reflects the importance of the information
flow over years and implicitly links the variability of the estimation of the parameters to the size
of the underlying population: very small portfolios are subject to larger estimation variability and
vice versa. Taking into account the weight is critical in assigning a credibility factor to the infor-
mation stemming from each population. Therefore, in this paper, the main objective is to allow
for learning effect among the populations and thus expect the forecast to weight the importance
of the information stemming from the single population while taking into account the neighboring
populations.

The paper is organized as follows. In Section 2, we recall the classic mortality approaches
starting with the seminal Lee and Carter’s model and its variant. The multiple population mod-
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elling approach is introduced. Then, we motivate the modelling framework which is an extension
of the Lee and Carter’s model. We discuss the limit of such a model, in particular, when it comes
to modelling small populations. In Section 3, we propose a credibility-based adjustment for the
common-factor model, also referred to as the joint κ model. In this section, we propose the es-
timation of the updating factors allowing to learn from the neighboring populations. Finally, in
Section 4, we detail the updating mechanism and propose an application to real-world datasets.

2 Mortality Models and Multiple Population Extension
2.1 Lee and Carter’s Factor-Based Modeling Approach. There is an abundant literature
that propose to predict the evolution of human mortality using stochastic models. In classic dy-
namic mortality models, death probabilities (or mortality intensities) are represented as functions
of age, period (calendar year) and cohort (year of birth) parameters, e.g. Lee and Carter (1992),
Cairns et al. (2006) and Renshaw and Haberman (2003) among others. Most commonly used
mortality models focus on mortality rates time series, starting with the famous Lee-Carter model
Lee and Carter (1992), widely used by insurance practitioners and demographers. This model
describes the intensity of mortality mx,t at age x and time t using three parameters, namely αx, βx
and κt as follows:

log(mx,t) = αx + βxκt + εt(x), εt(x) ∼ N (0, σ), (2.1)

where αx gives the average level of mortality at each age over time; the time varying component
κt is the general speed of mortality improvement over time and βx is an age-specific component
that characterizes the sensitivity to κt at different ages ; the βx also describes (on a logarithmic
scale) the deviance of the mortality from the mean behaviour, κt. The error term εt(x) captures
the remaining variations.

In general, insurance companies and pension funds are facing the heterogeneous evolution of
policyholders mortality making it difficult to apply directly the classic models to their portfolios. In
fact, the Lee and Carter model and more generally the class of factor-based models described above
is applied to large datasets, and thus are most suited to model mortality rates for an underlying
national population. However, as noted the final goal is to model mortality rates specific to sub-
populations with particular characteristics (population of a small country or region, individuals
with a specific disease, insurance portfolio or sectorial pension funds). Traditionally, relational
models are used to overcome this issue, see Delwarde et al. (2004). By doing so, we are left
with a bias known as basis risk, the mortality between the mortality in an individual portfolio
and that of the national population - a result of selection effects, see Salhi and Loisel (2017).
Also, these techniques, in the vein of the Cox (1992) proportional hazard framework, are static,
and any discrepancy between the two sets of mortality figures represents a significant risk for the
evaluation of the future mortality of the sub-population. Some recent literature looked at the
modelling in particular in the presence of sufficiently large sub-populations datasets, see Cairns
et al. (2011a) and Coughlan et al. (2011). However, when it comes to the study of the mortality at
a single portfolio or small sized populations, some specific issues arise. In fact, very few deaths are
observable at some ages making it difficult to assess some of the parameters involved in the model
described above. For instance, when it comes to the estimation of the age-specific mortality profile
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βx, one needs sufficiently large observations at the age level in order to evaluate the sensitivity
of the mortality decline at each age. Secondly, available age-specific mortality statistics lacks of
deepness, making it harder to isolate properly the time trend parameter κt, see Salhi et al. (2016)
and Salhi and Thérond (2018). Therefore, it is very important to be able to overcome these issues
by proposing a well-suited methodology that adapts to these particular stylized facts. Recent
literature, see e.g. Salhi et al. (2016) and Salhi and Thérond (2018), propose a framework to
update the assumptions on the biometric risk of small populations using the credibility theory.
The first methodology consists in using a parametric approach for graduating mortality with a
Makeham mortality law. It is shown that a credibility approach and adjusting periodically the
mortality level, the ability to predict death forecast is improved for population of small sizes, and
that using a Makeham mortality law is better than using a Poisson-Gamma model. However,
the proposed methodology is more adapted to mortality risk for which the assumptions may be
adjusted on a yearly basis. On the other hand, the longevity risk assessment and modelling using
the credibility theory become increasingly important over recent years. For instance, Schinzinger
et al. (2016) proposed an evolutionary credibility model, using the Lee and Carter framework,
that describes the joint dynamics of mortality through time in several populations. Formally, the
same age effect βx was used for all groups to avoid long-run divergence in gender-specific forecast
which is an important criterion for modelling mortality of closely related populations. However,
such an approach is applied to large populations with mortality patterns that are usually much
more regular and easier to accommodate using the Lee and Carter’s model. Similarly, Tsai and
Lin (2017b) introduced the Bülmann credibility into the classic stochastic mortality models, with
an objective of improving their forecasting performance.

In this paper, the adopted methodology roots on the recent advancement of multiple popula-
tion modelling. In contrast to single population modeling, multi-population models are based on
the assumption that mortality experience of one population may contain useful information for
predicting mortality of another population. By incorporating this information, we allow for one
population to learn from the others and thus increase the potential to improve mortality prediction
of individual populations. As noted by Li and Lee (2005): "mortality patterns and trajectories in
closely related populations are likely to be similar in some respects, and differences are unlikely
to increase in the long run". The authors proposed an extension of the Li and Lee (2005) method
to coherently forecast mortality for a group of populations. Their approach assumes that close
populations in a given group must have the same drift κt driving the mortality pattern as well
as the age-specific sensitivity βx, see Equation (2.1). Their modelling approach assumes then an
additional common factor in the same line as in the initial Lee and Carter’s model. By doing so, it
is possible to ensure that mortality forecasts in different populations are coherent, i.e., projected
mortality differentials of different populations should not diverge in the long run.

2.2 Extended Lee and Carter’s Model. When dealing with longevity risk, we are generally
facing various sources of uncertainty. Usually actuaries do consider two main components which
are mainly related to idiosyncratic and systematic aspects of such a risk. First, there is a volatility
component, whether intrinsic or due to small sampling sized populations. Secondly, we are dealing
with the level risk, which is related to the risk of mi-specifying the initial level or mortality. This
can be, for instance, explained by the uncertainty surrounding the estimation of the parameter αx
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in model (2.1). Finally, there is the trend risk which amounts to underestimation of the mortality
decline over time. For the Lee and Carter’s model this corresponds to the uncertainty of estimating
the multiplicative parameters βx and κt. As noted before, these different sources of risk are highly
amplified for small populations, because the volatility may be higher and the trend as well as the
level may differ from those of a bigger population. However, it is better not to simply use a baseline
mortality level and a baseline mortality trend as the goal is to better assess the risks associated to
the small population considered.

First, regarding the level and as soon as it is not the same as the baseline, it will be determined
using the classic Lee-Carter model. · · ·

log(mi
x,t) = αix + βixκ

i
t + εix,t , x = x, . . . , x, t = t0, . . . , T, i = 1, . . . , I . (2.2)

where εix,t ∼ N (0, (σix)
2) and two constraints:

∑x
x=x β

i
x = 1 and

∑T
t=t0

κit = 0 for all i = 1, . . . , I.
As briefly discussed in the above section, using such a model poses some challenges. In fact, when
dealing with small populations (countries or insured populations), at least two questions need to
be answered. First, the underlying population are generally of small size, so very few deaths are
observable at some ages and may cause high fluctuations for the death rate mi

x,t, which will impact
the parameters of the model in (2.2). As noted by Yue et al. (2019), "the biased estimates in
the case of small populations are probably the main reason why many recent studies focus on
modifying mortality models for small populations". Secondly, the available age-specific mortality
statistics for such populations lack of deepness. This will then arise question on the quality of
results than can be expected to derive through the Lee and Carter’s model, see Li et al. (2004).
Indeed, this makes difficult to isolate a possible time trend as it may be captured by κit. A natural
approach to cope with this undesired effect is to include the mortality data from populations with
similar mortality profiles. For instance, Li and Lee (2005) proposed a coherent extension of the
Lee and Carter’s model that aims at reducing the aforementioned estimation’s errors by linking
the mortality data from populations with similar mortality improvements. The model presents
an augmented common factor model for a group of populations. It imposes a common mortality
change by age but allows each population to develop its own age pattern and level of mortality.
Formally, the augmented common factor model writes

log(mi
x,t) = αix + βixκ

i
t + β•xκ

•
t + εix,t , x = x, . . . , x, t = t0, . . . , T, i = 1, . . . , I , (2.3)

where, here and in the sequel, the subscript “•” refers to summation over the corresponding index.
In the above model the common parameters β•x and κ•t are estimated from the combined data for
all populations. The population specific parameters αix, βix and κit have the same interpretation as
in the initial Lee and Carter’s model.

In their work, Li and Lee (2005) discussed the importance of including the population specific
component βixκit in model (2.3). The so-called explanation ratio, which measures the goodness-of-
fit of a model for the ith population, is used to assess the importance of the specific component.
The outcomes of their goodness-of-fit analyses point out the relative importance of such a specific
component only in few cases. In fact, using mortality of 11 countries it is shown that the explana-
tion ratio is high enough, suggesting that there indeed exists a common trend for these countries,
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and that the common factor, without the specific component, model captures this trend quite
well. Moreover, as discussed by Enchev et al. (2017), the augmented model (2.3) incorporates a
significant number of parameters, which result in a considerable computing time and may also
alter the forecasts robustness. Various modifications with a simplified structure and assumptions
of this model were analyzed. All these models have identifiability problems that have been ad-
dressed by applying exact and quasi identifiability constraints. Although the Li and Lee’s model
in Equation (2.3) is showed to fit the data quite well, it exhibited robustness problems along with
associated problems with slow convergence. Enchev et al. (2017) pointed to a need for caution in
the use of that model and, potentially, for the introduction of some quasi identifiability or other
constraints. It is finally showed that a model with a common age effect, see Kleinow (2015), and
an adjusted time-trend in the form of β•x(κ•t − κit) performs fairly well on the considered mortality.
This reinforces the idea that the common factor model without population-specific additional ad-
justment could be a good basis for modelling a group of population. However, we should be able
to adjust for potential local divergence of mortality in the short term. This will be the starting
point of the construction of our model. We should also note that other authors have also carried
out further work, see Li and Hardy (2011) and Danesi et al. (2015), which draw similar conclusions
on the common factor approach.

Therefore, in the sequel and based on these discussions, we will suppose that the mortality
profile for each population follows a common factor model as introduced by Li and Lee (2005) and
referred to as the Joint-κ model, see Li and Hardy (2011), and thus the following assumption holds.

(H1) For each i = 1, . . . , I we let κit = κ•t ,

which amends to say that the evolution of mortality follows similar patterns for the different
populations. Mathematically, the model can be expressed as follows:

log(mi
x,t) = αix + βixκ

•
t + εix,t , x = x, . . . , x, t = t0, . . . , T, i = 1, . . . , I . (2.4)

Similarly to the previous approaches, we will use a two-step approach to estimate this model.
First, κ•t should be obtained from applying the ordinary Lee and Carter’s method to the whole
group, i.e. m•x,t. The remaining population-specific parameters αix and βix can be estimated from
the ordinary least-squares (OLS) regression. We can also obtain the parameter αix by setting it to
the average of logmi

x,t and then regress logmi
x,t−αix on κ•t without the constant term for each age

x to get βix.

2.3 Joint-κ Population-Specific Adjustment. The common factor model in Equation (2.4)
offers a parsimonious and transparent way of assessing mortality differentials. However, it may
be too stringent for some applications. In particular, when small populations are concerned, the
estimation of some parameters would pose some problems. First, it has large number of parameters,
even if these were reduced compared to the augmented common factor. In particular, the specific
factor βix can produce excessive divergences between projections for the different populations. As
noted by Debón et al. (2011), the age-specific sensitivity parameter can behave erratically for
small populations. This particular behavior is due to the lack of sufficiently large information
on the mortality at the age level as well as the estimation bias of the initial mortality, see Salhi
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et al. (2016) and Salhi and Thérond (2018) for instance. In order to overcome this issue, we will
introduce the following assumption.

(H2) For each i = 1, . . . , I, we assume that the ratio βix/β•x is age-independent.

This hypothesis assumes the stability of the variability in the improvement rates for the considered
population with respect to the aggregated population. Furthermore, in order to link this to the
actuarial literature for multiple population modelling, we let X i = βix/β

•
x be the ratio considered

in (H2). Then, as with the joint-κ model, the interpretation of mortality differentials can be made
easier under this assumption. Formally, we consider a re-parametrisation of Equation (2.4) in the
form

log(mi
x,t) = αix +X iβ•xκ

•
t + εix,t , x = x, . . . , x, t = t0, . . . , T, i = 1, . . . , I . (2.5)

Thus, we can recognise the three-way decomposition of the mortality rates introduced by Russolillo
et al. (2011). It gives a straightforward interpretation of mortality evolution among the populations
and decompose the mortality evolution into three factors: age, time and population. The latter
is an indicator of the improvement differentials among populations. In fact, a population with
faster (slower) rate than the mortality of global population has a parameter X i > 1 (X i < 1) see
Villegas and Haberman (2014) and Villegas et al. (2017). As argued in Carter and Lee (1992), this
simple arrangement may enforce greater consistency and is a parsimonious way to model multiple
populations. However, by doing so, Assumption (H2) implicitly assumes that the death rates of
the considered populations are perfectly associated, an assumption with limited empirical under-
pins and most notably important consequences in risk management. Secondly, when considering
small populations, mortality differentials captured by the population-factor X i may change from
an estimation period to another. In fact, the instability discussed in the previous sections will
undoubtedly be recovered on this parameter making it vary (considerably) over time. Therefore,
it is important to correctly capture this effect.

Therefore, and due to these different sources of uncertainty on the assessment of the differential
mortality level X i, among other things, we suppose that the true level X i is known up to unobserv-
able factor Θi. In fact, one may think of the I populations as a subset of the aggregate population
and thus each population is characterized by a risk profile Θi. This can be seen as a random effect
or heterogeneity characterizing the specific differential mortality for each population. This invokes
the use of the credibility theory in order to assess the future evolution of each X i, while taking
into account the information stemming from the remaining populations.

3 Credibility Adjustment for Joint-κ Lee and Carter’s Model
We suppose that the model in Equation (2.4) is estimated on each period [t0, t] and denote
X i
t = βix/β

•
x the corresponding population-specific differential ratio. The time index for the param-

eter X i
t relates to the estimation period. We are now at time T and observations X i

t0
, . . . , X i

T are
the available information at this time. The aim is then to predict the conditional future expected
observations E[X i

T+k|Θi], with k = 1, 2, . . . , for each population i = 1, . . . , I.
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3.1 Assumptions and Credibility Framework. The conditional expected differentials, i.e.
E[X i

T+k|Θi], is of paramount importance in predicting future evolution of mortality rates. The
main objective is to allow for learning effect among the populations and thus expect the forecast
to weight the importance of the information stemming from the single population while taking into
account the neighboring populations. This implicitly invoke the use of the credibility theory, see
e.g. Bühlmann and Straub (1970) who developed the theoretical foundation of modern credibility
theory. This approach has been widely applied in non-life insurance and more recently in life
insurance, see among others Hardy and Panjer (1998), Salhi et al. (2016), Salhi and Thérond (2018),
Tsai and Lin (2017a,b) and Li and Lu (2018). The fundamental idea underlying the credibility
approach is the construction of a yearly decrement of the differential level as weighted average of
the aggregate level and the sample mean of the past observations. In other words, the objective
is to propose an estimation for E[X i

T+K ] based on the population mortality experience balanced
with the collective observations. However, in order to adequately constructed this estimator we
shall need the following classic assumptions.

(H3) Conditionally to the risk profile Θi = θi, the random variables X i
t , for t = t0, · · · , T , are

i.i.d. with distribution given by Gθi .

(H4) The two first moments µ(θi) =
∫ +∞
0

x dGθi(x) and σ2(θi) =
∫ +∞
0

(x − µ(θi))
2 dGθi(x) are

finite.

Assumption (H3) translates the dependency of the differential mortality over time. It is only
captured by the risk profile Θi. Conditionally on the knowledge of this risk parameter, the succes-
sive differential levels of mortality with regard to the aggregate are independent. Finally, the last
hypothesis (H4) assumes the existence of the conditional moments, which is a critical condition
to ensure the convergence of the mortality rates over time. In fact, if any of the two first moments
diverges, it would implicitly induce a divergence of the forecast and thus the divergence of mor-
tality rates among the considered populations. Indeed, it is usually desirable that the forecasts
do not diverge over time. This is referred to as the coherence property, see Li and Lee (2005),
and ensures that the forecast maintain a given structural relationship and thus populations with
similar mortality profiles do not diverge in the long run, see Salhi and Loisel (2017).

Hereafter, for each population i, we focus on the projection of X i
T+1. We will detail the

adjustment mechanism in the following sections for k = 2, 3, . . . . From a more mathematical point
of view, a collection of I random variables (X iΘi) is considered. Population-specific observations
are assumed to be an outcome of the random vector (X i

t)t=t0,...,T . The objective is to estimate
the next period projection of the differential ratio for each portfolio i. More precisely, in view
the available data up to time T , one aims to find the best estimate of E

[
X i
T+1|Θi

]
, which is

unknown. Here, we will look for the best linear predictor denoted µ(Θi) in terms of the random
vector (X i

t)t=t0,...,T . Let µ̂(Θi) be this estimation. For this purpose and using the usual credibility
setting, we shall make the following additional hypotheses.

(H5) For each t = t0, . . . , T and i = 1, . . . , I, E [X i
t |Θi] = µ(Θi) and Var [X i

t |Θi] = σ2(Θi)/ω
i
t

where ωit is a predefined weight.

(H6) The pairs (Θi, X
i
t), (Θk, X

k
t ), k 6= i are independent and identically distributed.

9



Assumption (H5) implies that for each population i, the true relative ratio µ(Θi) (conditionally
on the knowledge of the risk profile Θi) does not change over time, and its variance given by Θi,
Var [X i

t |Θi] changes in proportion to the relative importance of the portfolio. Here, the weight
ωit reflects the importance of the information flow stemming from population i over the year
t. It implicitly links the variability of the estimation of the parameter X i

t to the size of the
underlying population: very small portfolios are subject to larger variability on the estimation of
X i and vice versa. Taking into account the weight is critical in assigning a credibility factor to the
information coming from each population. In fact, as discussed earlier, for small sized populations
the variance of the differential level X i. For instance, in Tsai and Lin (2017b,a), it is assumed
that the populations of interest have common (conditional) mean and variance. Although, the
underlying model used the improvement rates, i.e. logmi

x,t − logmi
x,t−1, as a risk factor, it still

shows some limits when it comes to the modelling of small sized populations. In fact, the authors
only focus on the populations (male and females) of the United Kingdom and Japan.

Finally, Assumption (H6) means that the risk profiles are independent. The successive re-
alizations of the relative ratio X i, i.e. X i

t for t = t0, . . . , T , for any portfolio are independent of
each other except through the risk parameter Θi. Intuitively, Assumption (H6) implicitly suggests
that populations are comparable as they share common characteristics and are related to the same
reference population, but not entirely similar which induces the conditional independence. These
assumptions imply the following results.
(i) The expected prediction of X i

T+1 unconditionally on the risk profile Θi is given by E
[
X i
T+1

]
=

E
[
X̂T+1(Θi)

]
= 1. In other words, in the absence of any information on the heterogeneity level

on the parameter Xi, the best next-period prediction of the latter is set to 1. Alternatively, when
it comes to the modelling of mortality rates, this means that the common factor model of Li and
Lee (2005) in Equation (2.4) is best suited for such a population, i.e. E [βix] = β•x.
(ii) Using the law of total variance, the dependence structure of population i’s relative level with
the associated risk factor over time is given as

Cov(X i
l , X

i
t) = Cov

(
E
[
X i
l (Θi)

]
,E
[
X i
t(Θi)

])
+ E

[
Cov(X i

l , X
i
t |Θi)

]
,

= Var [µ(Θi)] + E
[
Cov(X i

l , X
i
t |Θi)

]
,

=


τ 2, if l 6= t,

τ 2 +
σ2

ωit
, if l = t,

(3.1)

for l, t ∈ {t0, . . . , T}, where Var [µ(Θi)] = Var [Θi] := τ 2 and E [σ2(Θi)] = E [Θi] := σ2.

3.2 Credibility Estimator and Adjustment for the Differential Levels. In order to
estimate µ(Θi) we use the Bühlmann and Straub’s credibility approach. It consists in estimating
the next-period best prediction as a projection in a relevant Hilbert space onto a linear subspace.
In other words, the relative mortality improvement for portfolio i and year T + 1 belongs to class
of linear estimators in observations and has the form ci0 + cit0X

i
t0

+ · · ·+ ciTX
i
T . Hence, the expected
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mortality differential E[XT+1|Θi] = µ(Θi) will be estimated by µ̂(Θi) which is of the form:

µ̂(Θi) = ĉi0 +
T∑
t=t0

ĉitX
i
t , (3.2)

where the coefficients ĉit for t = t0, . . . , T are those minimizing the mean squared errors criterion:

(ĉit)t=t0,...,T = argmin
(cit)t=t0,...,T

E

(µ̂(Θi)− ci0 −
T∑
t=t0

citX
i
t

)2
 , (3.3)

where the expectation is over the joint distribution of (X i,Θi). In view of Equation (3.1) and
taking the derivatives of the above criterion with respect to the cit’s and equalizing to zero gives
the following estimations

ĉi0 = 1− τ 2ωi

σ2 + τ 2ωi
and ĉit =

τ 2ωit
σ2 + τ 2ωi

with ωi =
T∑
t=t0

ωit. (3.4)

Using these estimations, we can derive the Bühlmann and Straub’s credibility estimator of X i
T+1

by substituting (3.4) into (3.3):

X̂ i
T+1(Θi) = ZiX

i
+ (1− Zi)µ̂, (3.5)

with

Zi =
τ 2ωi

σ2 + τ 2ωi
, X

i
=

1

ωi

T∑
t=t0

ωitX
i
t and µ̂ =

∑I
i=1 ẐiX

i∑I
i=1 Ẑi

. (3.6)

Here, Zi represents an individual weight on historical observations, is called the credibility factor
for portfolio i and takes values in [0, 1]. For each portfolio i the larger the volume of historical
data, the larger Zi will be (close to 1) .

3.3 Estimators of the Structure Parameters. As the risk parameters Θi are assumed to be
identically distributed, their moments are identical, see Assumption (H6). Therefore, τ 2 and σ2

are the same for all populations and measure the residual heterogeneity of the risk profiles and
the pure randomness respectively. These parameters are the key determinants of the credibility
estimator. Let us recall the definition of the structure parameters:

σ2 = E
[
σ2(Θi)

]
= ωitE

[
Var

[
X i
t |Θi

]]
and τ 2 = Var

[
E
[
X i
t |Θi

]]
. (3.7)

Following Bühlmann and Straub (1970), we propose the estimators σ̂2 and ̂̂τ 2, based on the obser-
vations (X i

t)t=t0,··· ,T :

σ̂2 =
1

I

I∑
i=1

s2i ,
̂̂τ 2 =

ω

(ω)2 −
∑I

i=1(ω
i)2

{
I∑
i=1

ωi(X
i −X)2 − (I − 1)σ̂2

}
,
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with

s2i =
1

T − t0

T∑
t=t0

ωit(X
i
t −X

i
)2, X =

1

ω

I∑
i=1

ωiX
i and ω =

I∑
i=1

ωi.

These estimators are unbiased and consistent, see Bühlmann and Straub (1970). We may note
that ̂̂τ 2 can be negative. In such case ̂̂τ 2 is set to 0 which means that there would be no difference
between the risks. The trend κ•t will be the same for all the sub-populations, see Assumption
(H3), and thus the common factor model of Li and Lee (2005) in Equation (2.4) is used to predict
future pattern of mortality.

The credibility formula can now be evaluated by replacing its structural parameters by their
consistent estimators. Formally, the empirical credibility estimator for X i

T+1 is obtained from
(3.1) by replacing the structural parameters σ2 and τ 2 by their estimators σ̂2 and τ̂ 2, which can
be written as follows:

̂̂
X i

T+1 = ẐiX
i
+ (1− Ẑi)µ̂, with Ẑi =

τ̂ 2ωi

σ̂2 + τ̂ 2ωi
. (3.8)

It thus follows, from Equation (2.5), that the forces of mortality can be successively updated as
follows:

m̂i
x,T+1 = exp

(
α̂ix + β̂•xX̂

i
T+1κ̂

•
T+1

)
= exp

(
α̂ix + β̂•x

(
µ̂+ Ẑi(X

i − µ̂)
)
κ̂•T+1

)
. (3.9)

4 Numerical Analyses
4.1 Data. We perform our analysis based on data obtained from the Human Mortality Database,
University of California, Berkeley (USA), and Max Planck Institute for Demographic Research
(Germany)1. The typical data set consists of the numbers of deaths Di

x,t and the central exposure
Ei
x,t. We wanted to work with dataset covering a longer period in such a way that an out-of-

sample analysis can be carried out. In fact, a first time-frame will be used to calibrate the models
as well as the credibility updating procedure and a second period is used to assess the accuracy
of forecast. Hence, the age and time periods range considered is from 55 up to 95 years-old and
from 1975 up to year 2014 (40 years in total). Table 1 specifies the countries that were cho-
sen. They were explicitly selected to have different population sizes. These are all countries of the
Humand Mortality Database for which the data are available over the desired period and age band.

4.2 Joint-κ Model Estimation. The model considered in Equation (2.4) can be estimated
using the two-step procedure discussed in Subsection 2.2, which gives the parameters κ•t and β•x
needed for our model. Recall that these are estimated using the usual procedure proposed by Lee
and Carter and based on the singular value decomposition on the matrix logm•x,t − α•x, where α•x
is the average mortality (on logarithmic scale) over the considered period. Hence, the estimation
of the level X i

t for each period [t0, t], where t = t0, . . . , T , can be done by equating it to the ratio
of the estimated parameters βix and β•x over the same period. Here, we rather advocate the use of

1The data is available at www.mortality.org (data downloaded on September 2019)
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Figure 1: The estimated parameters αix, βix and κit for the 18 countries as well as the aggregate
parameters α•x, β•x and κ•t in black.

the procedure described in Russolillo et al. (2011) based on the so-called Tucker 3. The Tucker
3 method is also known as the natural extension of principal component analysis for three-way
data, i.e. age, time and population, see Russolillo et al. (2011) and Giordano et al. (2019) for more
details. In Figure 1, we depicted the corresponding estimations as well as the population specific
parameters in the single population model in Equation (2.1), i.e. αix, βix and κit. We recall that the
selected countries corresponds to those with available data over the desired period. However, as
we can see in Figure 1, these countries have experienced different mortality improvements over the
period. If we look at the evolution of the time-dependent factor κi in Figure 1, we see that some
countries are exhibit a different pattern. In fact, as we can see in the first column of Table 1, the
average decrease of mortality approximated as the average of the decrement of κi, i.e. E[∆κi], is
positive. For instance, Estonia and Hungary have known an overall increase of mortality over the
consider period. However, as we can in Figure 1, the corresponding βix for these countries is very
erratic and takes negative values. This is mainly due, as discussed in Section 3 to the size of these
populations. In fact, these two countries represent respectively 0.38% (266, 258 exposure-to-risk)
and 3.01% (2, 101, 963 exposure-to-risk) of the aggregate population.

4.3 Mortality’s Forecasts and Credibility Adjustment. In the following, we will not focus
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Table 1: Population specific characteristics over the estimation period 1975 − 2005 and ages
55− 95. We report the average decrease of mortality E[∆κit], the exposure-to-risk and the number
of deaths over the period, Ei

•,• and Di
•,•, as well as the relative size compared to the aggregate

population.

E[∆κit]
Exposures Deaths

Ei
•,• Ei

•,•/E
•
•,•(%) Di

•,• Di
•,•/D

•
•,•(%)

BEL -0.90385 2,220,401 3.18% 48,335 3.30%
CHE -0.97535 1,533,425 2.20% 26,327 1.80%
DNK -0.55322 1,157,804 1.66% 25,533 1.74%
ESP -0.73799 8,381,679 12.00% 154,255 10.54%
EST 0.05750 266,258 0.38% 7,669 0.52%
FIN -1.01264 1,070,255 1.53% 21,654 1.48%
FRA -0.94483 11,924,920 17.07% 238,996 16.32%
GBR -1.03243 12,434,604 17.80% 272,356 18.60%
HUN 0.18475 2,101,965 3.01% 65,393 4.47%
ISL -1.00579 49,190 0.07% 771 0.05%
ITA -1.16494 12,804,063 18.33% 250,967 17.14%
LUX -1.20779 89,894 0.13% 1,773 0.12%
NLD -0.79229 3,202,909 4.59% 58,603 4.00%
NOR -0.86319 932,387 1.33% 19,085 1.30%
POL -0.29149 6,929,435 9.92% 171,078 11.69%
PRT -0.83511 2,058,053 2.95% 45,517 3.11%
SWE -0.93168 2,000,512 2.86% 41,183 2.81%

on the goodness-of-fit performance as the proposed methodology aims at adjusting future forecasts
of mortality. Also, the models considered so far are generally over-fitting the data especially when
these are of limited amount. We should also recall that the credibility adjustment is, generally,
known to produce smoother paths and thus tends to be less favorable when considering mean
squared errors as a goodness-of-fit indicator. It is even less adequate knowing that the models
used hereafter are based on a minimization of the squared errors and do fit better the realization
but, as already mentioned, tend to overfit that data. Also, the use of the explained variation,
for instance, is not either a satisfactory diagnostic indicator. Therefore, we will only focus on the
predictive performance of the proposed methodology. Hence, in order to forecast mortality we need
to model the time-varying parameters κit and κ•t for the considered models, see Equations (2.1) and
(2.3). Here, we model these time-series using a random walk with drift, although it is not always
the optimal model. Hence, our purpose is to adjust the fit in order to coherently forecast the
mortality and take into account the credibility of the information stemming from each population.
To this end, we should implement the credibility methodology described in Subsection 2.2. Then,
using Equation (3.9), the forces of mortality can be successively updated. However, in order to
adequately implement the adjustment, we will need to specify the weights ωit. In fact, due to
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Assumption (H5), the conditional variance E[X i
t |Θi] is assumed to correspond weights as the

reciprocals of weights. Obviously, the weights ωit should translate that the information stemming
from each population increases with the sample size. Thus, each of the past realization for all
populations has a different degree of contribution to the value of the overall credibility estimate,
see Equation (3.6). Accordingly, weights ωit of each population will be chosen to reflect the sample
size and thus be defined as the expected deaths, by the common factor model in Equation (2.4),
for each t = t0, · · · , T , as follows:

ωit =
x∑

x=x

Ei
x,t exp

(
α̂ix + β̂•xκ̂

•
t

)
.

By doing so, credibility estimators in Equation (3.9), will allocate more weight to population with
large sample sizes and thus give the historical particularities of each country due to their weight
in projecting population-specific trends. In the last column of Table 2, we report the the factor
Zi. We can see that the latter does convey adequately the sample size and thus the credibility of
underlying realization, see also Table 1. We can notic e that the credibility factors Zi are different
depending on the populations considered (from 1.56% for Iceland to 85.42% for United Kingdom).
Small portfolios (e.g Ireland, Iceland, Luxembourg, etc.) have small credibility factors whereas
big portfolios (France, Italy, etc.) have high credibility factors. This is consistent with what we
expected as the credibility factor reflects the individual weight of each population.

4.4 Forecasts and Predictive Performance. The model described above will be used to
predict future evolution of mortality. We look at the mortality rates predicted by our adjusted
Lee and Carter’s model (the joint-κ extension), the Lee and Carter’s model in (2.1) and the multi-
population model Li and Lee. As noted above, we only validate the performance based on an
out-of-sample analysis instead of an in-sample goodness-of-fit inspection. Therefore, in order to
validate the behavior and predictive performance of the considered models we fit these to data
on the period ranging from 1975 to 2005 for each population, i.e. t0 = 1975 and T = 2005,
and forecast the future mortality from year 2006 to 2014. In order to measure the forecast error
between the true mortality rate and the forecast, we use the mean absolute forecast error (MAFE)
and the root squared of the mean forecast error (RSMFE). Let us note h the forecast horizon, then
the MAFE is the average of the absolute values of the deviations from the observations m̂i

x,t and
it is defined as follows:

MAFEih =
1

x− x+ 1

x∑
x=x

1

h

T+h∑
t=T+1

∣∣m̂i
x,t −mi

x,t

∣∣ . (4.1)

In the other hand, the RSMFE is defined, for each population i = 1, · · · , I, as follows:

RSMFEih =

√√√√ 1

x− x+ 1

x∑
x=x

1

h

T+h∑
t=T+1

(
m̂i
x,t −mi

x,t

)2
. (4.2)

Table 2 reports the two indicators over the projection period, i.e. h = 9 years. Also, we
reported the estimated credibility factor Zi in Equation (3.6). We recall that this factor represents
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Table 2: The forecasting performance over the period 2006−2014 of the credibility-adjusted model
in Equation (2.5) (Adj. LC), the Lee and Carter’s model (LC) and the Li and Lee’s model (Li-
Lee) measured by the MAFE (4.1) and RSMFE (4.2). The grayed cells correspond to the best
performing model for each population. The last column reports the credibility factor Zi over the
estimation period.

MAFE RSMFE

Adj. LC LC Li-Lee Adj. LC LC Li-Lee Cred. Factor

BEL 0.0039479 0.0066063 0.0044472 0.0075421 0.0114117 0.0079154 50.08%
CHE 0.0030867 0.0034824 0.0034473 0.0053204 0.0065974 0.0062716 35.73%
DNK 0.0044733 0.0069685 0.0049906 0.0085870 0.0116780 0.0089470 35.23%
ESP 0.0028921 0.0042206 0.0057681 0.0050731 0.0071039 0.0093680 75.36%
EST 0.0130390 0.0255799 0.0155939 0.0268434 0.0367188 0.0335866 12.00%
FIN 0.0043097 0.0061474 0.0047234 0.0077681 0.0111378 0.0081726 29.19%
FRA 0.0031964 0.0031987 0.0040531 0.0061501 0.0058351 0.0070268 82.84%
GBR 0.0048371 0.0049683 0.0054540 0.0072597 0.0078574 0.0083183 85.42%
HUN 0.0080575 0.0087945 0.0071026 0.0160003 0.0146314 0.0142104 55.41%
ISL 0.0159587 0.0157395 0.0236250 0.0338259 0.0309851 0.0661474 1.56%
ITA 0.0022179 0.0024656 0.0025741 0.0034413 0.0038017 0.0042013 83.97%
LUX 0.0148173 0.0154327 0.0164814 0.0331483 0.0350023 0.0358124 3.45%
NLD 0.0049394 0.0116690 0.0075943 0.0074538 0.0183802 0.0113452 54.84%
NOR 0.0048244 0.0075202 0.0056167 0.0100730 0.0136227 0.0103335 29.50%
POL 0.0053159 0.0055251 0.0076762 0.0086950 0.0089433 0.0134398 75.35%
PRT 0.0039544 0.0045444 0.0052898 0.0069503 0.0075475 0.0092128 47.37%
SWE 0.0028745 0.0041731 0.0024075 0.0058471 0.0076027 0.0050234 47.68%

an individual weight on historical observations stemming from population i and takes values in
[0, 1]. For each portfolio i the larger the volume of historical data, the larger Zi will be (close to
1). As we can see in the last panel of Table 2, the estimated credibility factor is in line with the
size of the population compared to its neighbors, see Table 1. In fact, for small populations this
factor assign a small credibility the information flow stemming from the sole population and will
favor to learn from the others and thus increase the potential to improve mortality prediction of
individual populations. As we can see, the model with credibility (Adj. LC) improves the forecasts
in terms of the MAFE for most of the portfolios except for Hungary, Iceland and Sweden. This
model also improves the forecasts in terms of the RSMFE except for four countries out of 17. We
may note that Iceland are the is country with the least deaths observed, with sometimes few or no
deaths at some ages. It represents 0.07% of the global exposure. This may explain why the model
with credibility does not forecast better than the model without credibility for these countries.
However, the difference in terms of the MAFE between the adjusted model and the classic Lee and
Carter’s model is less than 1.4%. For Hungary and Sweden, the credibility factor is approximately
50% but the credibility estimator is the closest to 1, see Figure 2. Thus, there are few differences
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Figure 2: Next-period adjustment of the joint-κ model based on the credibility adjustment in
Equation (3.8)

between models with and without credibility, which may explain why the model with credibility
adjustment does not forecast better either for these countries. For the remaining countries, the
adjusted model with credibility estimators (Adj. LC) gives the best results in terms of the MAFE
and the RSMFE, compared to the simple Lee and Carter and Li and Lee. In particular, Estonia,
Norway, Netherlands, Denmark and Belgium have MAFE and RSMFE that are almost half for a
model with credibility compared to the Lee and Carter’s model, and therefore benefit very strongly
from the learning effect. It is interesting to observe that these countries have low credibility factors
but not lower than 11%, see the right panel of Table 2. As soon as the Li and Lee is concerned, we
can see that the adjusted model enhance the prediction up to 60% for the Finland, for instance.
For the other population the same remark holds. Finally, when the RSMFE is concerned the same
conclusion can be drawn, except for France where the adjusted model produce forecast very close
to the Lee and Carter’s model. In order to understand the performance of the adjusted model for
the three populations mentioned above, i.e. Hungary, Iceland and Sweden, we depict the single
age mortality evolution over the validation period 2006 − 2014. Figure 3 displays the historical
observations and the projected medians of the three models. At first sight, we see that the adjusted
model provides forecasts very close to the Li and Lee (Li-Lee). For Hungary, there is no tendency
to a general out-performance of the adjustment except for low ages, i.e. 65 and 75. However,
even if the model is not outperforming, the outputs seem to be more prudent that the benchmarks
as it forecast lower mortality rates and thus a steady decrease of mortality over time. As regard
the Sweden population, we can also see from Figure 3 that the considered models have similar
performance. However, at high ages the adjusted model and the Li-Lee models outperforms the
Lee-Carter. In Figure 4, we use the forecasts provided by the out-of-sample analysis and derive the
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Figure 3: Mortality rates over the period 2006-2014: Observed mortality (black circles), credibility
adjusted forecast (solid line), Lee and Carter’s forecast (dashed line) and the Li and Lee (dotted
line), for ages 65, 75 and 85.

corresponding projected remaining period life expectancies for ages 65, 75 and 85. We can see that
the adjusted model produces forecasts at least equivalent to the benchmarks models. For some
ages, the adjustment gives more accurate predictions closer to the observed life expectancies. For
these three populations, unlike the forecasting performance of the crude mortality the credibility
adjustment model outperforms clearly the benchmarks when it comes to life expectancy prediction.

5 Conclusion
Adequately forecasting mortality is essential in a context of aging societies where people are living
increasingly older, in particular for those bound to pay lifetime annuities, such as insurers, pension
funds and investors. The increase of prudential regulations, such as Solvency II in Europe, also
advocates for a better fit of mortality models in order to better control the risks inherent in
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Figure 4: Life expectancy over the period 2006-2014: Observed life expectancy (black circles),
credibility adjusted forecast (solid line), Lee and Carter’s forecast (dashed line) and the Li and Lee
(dotted line), for ages 65, 75 and 85.

mortality and longevity. In the case of small populations, specific issues arise, and thus more
precise models need to be developed.

In this context, this article analyzes the augmented models based on the Lee and Carter’s
approach in order to better estimate and quantify the longevity risk while relying on a simple
interpretation of the parameters dissociating the level risk from the trend risk. It also proposes a
specific model that allows to better predict the mortality in the case of small populations. Based
on a multiple populations framework, the so-called joint-κ model, the proposed methodology takes
into account the data of each small population while relying on an aggregate model giving coherent
forecasts. The model, that is the credibility-adjusted, relies on the existing literature but differs
from generic models such as relational ones as it takes considers the structure and the data specific
to each population while allowing for a learning mechanism from the other populations. Besides,
the weight of each population in the aggregate structure is taken into account thanks to the
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Bühlmann-Straub credibility framework.
Concretely, a Bühlmann-Straub credibility estimator is applied to the trend of the Lee and

Carter’s model, allowing to improve future forecasts that will be successively updated and offering
more modelling possibilities than a simple Bühlmann credibility estimator. Based on a set of
populations data coming from the Human Mortality Database, the results of the paper show that
for most countries, the credibility-adjusted Lee and Carter’s model gives better forecasts in terms
of mortality and life expectancy than a classical Lee and Carter’s model or a Li and Lee’s model.

This credibility-adjusted model gives results that are easy to interpret thanks to the Lee and
Carter’s framework and can be applied to lot of different studies involving sub-populations with
particular characteristics. In fact, it is possible to forecast deaths of small countries or regions,
mortality by cause of death, insurance portfolios specific mortality or sectorial pension funds
mortality. Such studies are full of promise, and the model developed in this article is an additional
tool to carry them out.
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