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Abstract
We present a model to describe thermophysical and optical properties of two-temperature systems consisted of heated

electrons and cold ions in a solid lattice that occur during ultra-fast heating experiments. Our model is based on ab initio
simulations within the framework of density functional theory. The optical properties are obtained by evaluating the Kubo-
Greenwood formula. By applying the material parameters of our ab initio model to a two temperature model we are able
to describe the temperature relaxation process of a femtosecond-laser heated gold and its optical properties within the same
theoretical framework. Recent time-resolved measurements of optical properties of ultra-fast heated gold revealed the dynamics
of the interaction between femtosecond laser pulses and solid state matter. Different scenarios obtained from simulations of
our study are compared with experimental data.1

PACS numbers: 52.50.Jm, 52.27.Gr, 71.15.-m, 72.80.-r

I. INTRODUCTION

The temporal behavior of non-equilibrium states of
metals in the Warm Dense Matter (WDM) regime is un-
der intense investigations using advanced experimental
pump-probe techniques.1–11 In these experiments WDM
is created with the irradiation of metals by ultra-short
laser pulses. While the electrons are heated during laser
absorption in typical durations of 40-150 fs, the ions re-
main cold for a much longer period of time because the
process of electron heating by the laser pulse is much
faster than the kinetic energy transfer to the ionic degrees
of freedom by means of electron-phonon coupling.12–18

As a consequence, a transient state of non-equilibrium
matter consisting of these two subsystems with different
temperatures is created by this procedure. This state
can be observed prior to the disassembly of the metal by
hydrodynamic expansion. During this time the excited
electrons are expected to thermalize within one picosec-
ond12,13 to form an equilibrium Fermi distribution with
a well-defined temperature. Simultaneously, heat trans-
fer from the electrons to the ions will occur. This can
be described by rate equations in the well-known two-
temperature model (TTM) that is widely used to de-
scribe laser-heated materials.19,20 The heat transfer rate
can be accounted for by electron-phonon scattering where
electron kinetic energy is transferred to the degrees of
freedom of bound ions, described as phonons.21–23 Other
approaches consider the scattering of electrons with plas-
mons24,25 that is applicable at higher ion temperatures.

An important quantity for characterizing the WDM
state is electrical conductivity. It has been calculated for

plasmas at high temperatures using the Spitzer theory.26

In the low-temperature, high-density regime characteris-
tic of WDM, Spitzer theory becomes invalid and a many-
particle theory is necessary. Lee and More27 used the
Boltzmann equation in relaxation time approximation.
Another approach was the extended Ziman formula,28

which was successfully used to obtain the electrical con-
ductivity of warm dense metals.29,30 The combination of
the Ziman formula and density functional theory has en-
abled the treatment of electron-ion plasmas over a wide
range of thermodynamic parameters.31–33 Measurements
of the DC conductivity in aluminum and copper plas-
mas at a few thousand Kelvin34 have revealed signifi-
cant deviations from the Lee-More model. The conduc-
tivity in that particular region of the phase diagram is
governed by the metal-nonmetal transition, as shown by
Desjarlais et al.35 In their model they applied density-
functional-theory molecular dynamics simulations (DFT-
MD) in combination with the Kubo-Greenwood formula
to describe the behavior near that phase transition. This
method was used earlier to treat semiconductors36,37 and
metals.38

Since then DFT-MD simulations in combination with
the Kubo-Greenwood formula has proven to be an effec-
tive tool for calculating electrical conductivity of WDM.
In particular, the ability to obtain frequency dependent
ac conductivity turned out to be useful when optical
properties, i.e. the complex ac conductivity, of WDM
states produced by isochoric laser heating in an ultra-
thin gold foil were measured.4 In their simulations of
non-equilibrium conditions pertinent to the experiment,
Mazevet et al.20 showed that the calculated ac conduc-
tivity value agrees well with measurements if the sim-
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ulated state was taken to be a combination of heated
electrons and a cold ion lattice. Such a state was also
observed experimentally by Ping et al.5 Despite their im-
portance, both experiments did not provide sufficiently
precise characterization of the temporal evolution in op-
tical properties. Only recently the time-dependent non-
equilibrium optical properties of gold were obtained in
single-shot pump-probe measurements for a duration of
picoseconds and with a temporal resolution of 540 fs.1

In this paper we present an ab initio model based on
DFT to calculate material parameters like the electron
heat capacity and the electron-ion coupling factor on the
one hand and the optical conductivity on the other hand
within the same theoretical framework. The model is well
suited to be applied to non-equilibrium warm dense mat-
ter, where the term “non-equilibrium” refers to a state
where electrons and ions are at different temperature. In
our simulations we considered a system electron states in
equilibrium. The ions remain in an fcc lattice structure
while moving around their equilibrium position. Cou-
pled with a two-temperature model, it has enabled us to
model the temporal evolution of AC conductivity dur-
ing thermal equilibration between electrons and ions in
femtosecond-laser heated gold.1

The paper will begin with a description of the theoret-
ical model in section II. This is followed by the compar-
ison of model results with recent experimental data1 in
section III and conclusions in section IV.

The comparison of data from this experiment with pre-
dictions from simulations indicate, that the electron-ion
coupling is much weaker than predicted by Lin et al.23

Measurements for graphite39 point to a similar conclu-
sion.

II. THEORETICAL MODEL

In this section we present the theoretical framework
of our study. This includes electron structure calcula-
tions and calculations of the AC conductivity. Knowledge
of the electronic structure allows us to obtain the elec-
tron heat capacity and the electron-ion coupling factor,
which can be used to describe energy relaxation processes
of systems with different electron and ion temperatures.
This enables us to compare our model calculations for
the AC conductivity with findings from dynamic experi-
ments, see Sec. III .

A. Electron structure calculations

The electron system is described using the ab initio
plane wave code Abinit40, which can readily be im-
plemented on high performance computers.41 Here, the
quantum many-body Schrödinger equation is solved us-
ing the density functional theory (DFT) that reduces to
an effective one-particle problem for the electron density.
The main approximation needed is the formulation of

the exchange-correlation function, for which we apply the
local density approximation (LDA), that gives a lattice
constant in best agreement with known data compared
to other approximations.42,43 In order to increase compu-
tational efficiency the projector augmented wave method
(PAW)44 was applied, using a PAW data set that has
been extensively tested.45 The used PAW data set con-
siders 11 valence electrons per atom. Depending on the
electron temperature up to 48 DFT bands were used for
single-atom calculations, that were carried out to obtain
the electron density of states (DOS), the heat capacity,
and the properties of the phonons. To obtain those prop-
erties highly converged, a cutoff energy of up to 40 Ha
(1090 eV) was used for the electron structure calcula-
tions. To ensure converged results the Brillouin zone was
sampled using a Monkhorst-Pack k-point sampling46 of
up to 32× 32× 32.

To incorporate effects of the ion system at elevated
temperatures, molecular dynamics (MD) simulation is
also carried out. All simulation results presented in the
present work were obtained using 108 atoms in a cu-
bic simulation box with periodic boundary conditions.
For two-temperature MD simulations the ion and elec-
tron temperatures were controlled independently. While
the electron temperature was fixed for every timestep in
the simulation, the ion temperature was controlled by a
Nosé-Hoover thermostat.47 Before reaching a stable ion
temperature we had to allow the system to relax for a
few hundreds of timesteps. After convergence of the ion
structure has been reached, the ion temperature fluctu-
ates around a well defined temperature and thermody-
namic parameters as well as the conductivity can be ob-
tained. Depending on the electron temperature we had
to choose the number of DFT bands as high as 2048. We
found a cutoff energy of 20 Ha (545 eV) to be sufficient
for all MD simulations within the present work. All MD
simulations were carried out at the Γ-point of the Bril-
louin zone.

The DOS for three different electron temperatures is
shown in Figs. 1 (a-c). Here, the origin of the en-
ergy scale was chosen to be the Fermi energy which
is the chemical potential at 0 K. Also shown is the
Fermi distribution with a width determined by the elec-
tron temperature. The chemical potential, which is
obtained by the conservation of the electron number
N =

∫
g(ε, T )f(ε, µ, T ), changes with temperature and is

shown in Fig. 1(d). At the lowest temperature shown, the
DOS in the vicinity of the Fermi energy is slowly increas-
ing depicting a behavior similar to that of a free electron
gas, which itself would be represented by a square-root
function. This region of the DOS is populated by the 6s
electrons of the gold atom. For physical properties gov-
erned only by contributions arising from a region of the
DOS where the temperature-derivative of the Fermi func-
tion is non-zero, the system behaves like a free electron
gas. At higher temperatures the region with changing
Fermi function is broadened and overlaps with the DOS
structure at lower energy that is dominated by the 5d

2



0

1

2

3

4
D

O
S

 [
1
/e

V
] 300 K(a)

0

1

2

3

4

D
O

S
 [

1
/e

V
] 10000 K(b)

-10 -8 -6 -4 -2 0 2 4 6
ε − ε

F
 [eV]

0

1

2

3

4

D
O

S
 [

1
/e

V
] 70000 K(c)

DOS
Fermi function

0 1 2 3 4 5 6

T [10
4
K]

0

1

2

3

µ
 −

 ε
F
 [

eV
]

(d)

present work

Lin et al. 2008

FIG. 1: (a) - (c) Density of states (solid) of fcc gold for
several electron temperatures and solid density. Also shown
is the Fermi distribution function (dashed). (d) Chemical
potential of gold computed with Abinit (solid) taking into
account the change of the DOS with Te compared to the result
of Lin et al.23 (dashed).

electrons. The system will then behave differently than
a free electron gas, as will be seen later.

It should also be noted that the DOS is shifted to-
wards lower energies as temperature increases. Further-
more, due to the increasing width of the Fermi function,
the chemical potential has to be increased in order to
satisfy the conservation of particle number. This is com-
pensated by the shift of the DOS towards lower energies,
which causes the chemical potential to increase further
at high temperature. Such a behavior is not seen in the
simulations of Ref. 23 where a constant DOS is assumed.

B. Electron heat capacity

To compute the electron heat capacity we first perform
electron structure calculations for a single atom in a sim-
ulation box with periodic boundary conditions, which re-
sults in a perfect face centered cubic lattice. The DFT
minimization scheme with respect to the free energy of
the electrons yields directly the internal energy. By car-
rying out DFT calculations for different electronic tem-
peratures we then obtain the internal energy as a func-
tion of temperature, which allows us to calculate the elec-
tron heat capacity from its temperature derivative using
Eq. (1),

Ce =

(
∂U

∂Te

)
V

(1)

This expression contains all thermal effects within
DFT, including the temperature dependence of the den-
sity of states.

Our results are presented in Fig. 2. At low electron
temperature the curve of Ce is linear with a slope very

similar to that found in experiment.1 This is the same be-
havior as that expected for a free electron gas. The expla-
nation for this is that the region with non-zero derivative
of the Fermi function is very small and located where the
DOS shows a similar shape as that of the free electron
gas, originating from the 6s electrons. As the temper-
ature increases the curve of Ce becomes nonlinear. In
this situation the derivative of the Fermi function is non-
zero in the same region where the DOS shows the largely
structured feature due to 5d electrons. This causes a sig-
nificant deviation from the free electron gas behavior. Ce
is now increasing faster with temperature. A similar be-
havior is also shown by the results of Ref. 23 except for
a local maximum at ≈ 4× 104 K. This difference can be
traced to the use of a temperature-independent DOS.
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FIG. 2: Electron heat capacity of gold as a function of
electron temperature. The results of the present work are
shown as solid red curve. Also shown are the data of
Lin et al.23 (dashed) and the free electron gas approach with
γe=67.6 J/m3K2 (dotted).

The knowledge of the electron heat capacity enables us
to calculate the excited electron temperature as a func-
tion of absorbed energy density. It is worth to examine
this quantity, because it can be taken to be the initial
temperature of the electrons in experiments after the
pump pulse is absorbed and before significant temper-
ature relaxation has occurred. At such a time, we as-
sume that all of the absorbed laser energy resides in the
electron system. This assumption tends to overestimate
Te since the temperature relaxation process would have
started during the time of the pump laser pulse. How-
ever, the discrepancy is expected to be small. The initial
electron temperature thus calculated is shown as a func-
tion of absorbed laser energy density is shown in Fig. 3.
Also displayed are the results using Ce from the free elec-
tron gas model (FEG). As expected, the lower Ce values
from the FEG model also leads to much higher predicted
electron temperatures.

C. Electron-ion coupling factor

Following Allen21 and Wang et al.22 the process of
electron-ion coupling is treated via an energy transfer

3



0 1 2 3 4 5
Energy density ∆E [MJ/kg]

0

10

20

30

40

50

T
e [

1
0

3
K

]

Free electron gas 
model

DFT calculation
for gold
present work

FIG. 3: Electron temperature as a function of absorbed en-
ergy. The different curves were calculated using different
models: FEG model for Ce (dashed black line) and Ce us-
ing Abinit (solid red line).

rate from electrons to phonons. This is assumed to be
proportional to the temperature difference between the
lattice and electrons. The electron-phonon coupling fac-
tor Gei is introduced as follows:

Gei (Tl − Te) =
∂E

∂t

∣∣∣∣
ep

. (2)

Here we use the definition of the heat transfer rate by
Allen21:

∂E

∂t

∣∣∣∣
ep

=
4π

h̄

∑
k,k′

h̄ωQ |Mkk′ |2 S(k, k′)δ(εk − εk′ + h̄ωQ)

(3)
where k and Q are electron and phonon quantum num-

bers and the matrix element Mk,k′ describes the scatter-
ing probability of an initial electron state k at energy
εk to a state k′ at energy εk′ . The factor S(k, k′) =
(fk−fk′)nQ−fk′(1−fk) contains the electron and phonon
occupation numbers represented by the Fermi distribu-
tion function fk = 1/ {exp [(εk − µ)/kBTe] + 1} and the
Bose distribution function nQ = 1/ [exp (ωQ/kBTl)− 1]
respectively.

Using the definition of the Eliashberg spectral function

α2F (ε′, ε,Ω) =
2

h̄g(εF)

∑
k,k′

|Mkk′ |2 (4)

×δ(ωQ − Ω)δ(εk − ε)δ(εk′ − ε′)

in combination with Eq. (3) we get by multiplying with
the three integrals

∫
dεδ(εk − ε),

∫
dεδ(εk′ − ε′) and∫

dΩδ(ωQ − Ω) the following expression:

Gei =
2πg(εF)

Tl − Te

∫ ∞
0

dΩh̄Ω

∫ ∞
−∞

dε

∫ ∞
−∞

dε′α2F (ε, ε′,Ω)

×S(ε, ε′)δ(ε− ε′ + h̄Ω). (5)

Together with the energy conservation ε′ = ε + h̄Ω the
thermal factor is now

S(ε, ε′) = [f(ε)− f(ε′)][n(ε′− ε, Tl)− n(ε′− ε, Te)]. (6)

We employ the approximation suggested by Wang et
al.22 for the electron-phonon spectral function, a2F (ε, ε+
h̄Ω,Ω) =

[
g(ε)g(ε+ h̄Ω)/g2(εF)

]
α2F (εF, εF,Ω) where

the last function is the electron-phonon spectral func-
tion at the Fermi energy which can by obtained in the
framework of density functional perturbation theory. Us-
ing this approximation one of the energy integrals can be
solved and Eq. (5) becomes

Gei =
2πh̄

Tl − Te

∫ ∞
o

dΩα2F (Ω)Ω

∫ ∞
−∞

dε
g(ε)g(ε+ h̄Ω)

g(εF )

×S(ε, ε+ h̄Ω). (7)

Eq. (7) can be furthermore simplyfied by means of the
high temperature expansion of the Bose functions, i.e.
kBT � h̄Ω. This allows to rewrite the thermal factor
which becomes

S(ε, ε+ h̄Ω) =
kB
h̄Ω

(Tl − Te) (f(ε)− f(ε+ h̄Ω)) . (8)

Introducing the second moment of the of α2F (Ω), which
is λ〈ω2〉 = 2

∫∞
0

dΩα2F (Ω)Ω, assuming the energy range
of the phonon frequencies to be much smaller than con-
sidered electron energies, i.e. g(ε) ≈ g(ε + h̄Ω) and
∂f/∂ε = [f(ε + h̄Ω) − f(ε)]/h̄Ω, we can write down the
electron-phonon coupling factor in the version used by
Lin et al.23:

Gei =
πh̄kBλ〈ω2〉
g(εF )

∫ ∞
−∞

g2(ε, T )

(
−∂f
∂ε

)
dε. (9)

The disadvantage of using Eq. (7) instead of Eq. (9)
is the necessity of knowing the complete electron-phonon
spectral function. This can be avoided by the latter for-
mulation. Instead the electron-ion coupling is expressed
by its second moment, which can be either obtained
from experiments or approximated by the Debye tem-
perature.23 This approximation may introduce additional
errors, which have been found small for aluminum and
other metals at Te = 300 K and becomes negligible at
Te = 1000 K.23 Equally to the findings of Lin et al.23

for aluminum we find no significant changes caused by
this approximations for gold. We find in addition that
for gold the difference is negligible even at room tem-
perature. To analyze the effect of the Ω-integration the
range of phonon frequencies has to be compared to the
energy range of the electronic DOS. For gold we found
that the electron-phonon spectral function is non-zero
only below 5 THz, that is 20 meV (see Fig. 4), which is
rather small compared to eigenenergies of the electronic
states. Within this value the electronic DOS can be as-
sumed almost constant, which is why the Ω-integration
can be reduced to a constant, which leads to Eq. (9).

In their previous work, Lin et al.23 found values of
Gei significantly higher than indicated by experimental
findings.14 This would reduce the temperature relaxation
time drastically. We calculated Gei in a similar way, but
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included the temperature dependence of the electronic
DOS into Eq. (9), which was neglected by the authors
of the former work. The difference between our results
is caused by this temperature dependence, similar to the
case of electron heat capacity.

The calculation of the electron-ion coupling factor Gei
by Eq. (7) requires the knowledge of the electron-phonon
spectral function α2F (Ω), which can be calculated within
the framework of linear response density functional per-
turbation theory calculations that are implemented in
Abinit.48,49 The algorithm for the electron-phonon inter-
action is based on an analysis of the phonon line widths.
These are computed via matrix elements for the tran-
sition between electron Bloch states whose energy dif-
fers by the phonon frequency (see Ref 50,51 for details
of the method). We performed our calculations for a
single atom in a simulation box with periodic bound-
ary conditions in order to simulate a perfect fcc lat-
tice. The electronic wavefunctions were sampled on a
16×16×16 k-point grid and represented by a plane-wave
expansion with a cutoff of 40 Ha. A norm-conserving
pseudopotential52 for the electron-ion interaction and the
local-density approximation (LDA) to account for the
exchange-correlation functional was used. The pertur-
bations of the atoms were resolved on a 8× 8× 8 q-point
grid.
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FIG. 4: Electron-phonon spectral function of fcc gold at 300K
obtained in experiment53 (bold) compared to linear response
DFT results from this work (red solid) and Bauer et al.54

(blue dashed).

The calculated electron-phonon spectral function
α2F (Ω) is plotted in Fig. 4. There are 2 pronounced
phonon frequencies at about 2.5 THz and 4 Thz. The cur-
rent ABINIT results reproduce the observed frequencies
of these features55, while the results of Bauer et al.54 ap-
pear slightly shifted. The intensity of the lower frequency
feature is well reproduced by the ABINIT result, but
the intensity at the higher frequency is overestimated.
The second moment obtained from the ABINIT results
is λ〈ω2〉 = 21 ± 2 meV2 which is in agreement with the
previously measured value56 of 23± 4 meV2.

In Fig. 5 our results for the electron-phonon coupling
factor are plotted. At low temperatures up to 2000 K Gei
is found to be constant, which is in agreement with both
the previous theoretical prediction and experimental val-
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FIG. 5: Electron-phonon coupling factor of fcc gold as a func-
tion of electron temperature at a lattice temperature of 300
K. Results from this work (red solid) are compared to findings
of Lin et al.23 and to the constant factor found in experiments
at lower energy density14 (dotted)

ues. At higher temperatures the curves show a sharp
rise to values ten times higher than the low-temperature
value. While the curve of the current work shows a con-
tinuous increase until 80, 000 K, a maximum at about
40, 000 K can be seen in the curve of Lin et al. This
difference is again caused by our inclusion of tempera-
ture dependence in our electronic DOS. It is worth to
mention, that if we keep the DOS constant we could re-
produce the results of Lin et al. With its much higher
Gei values, our current model would yield a much shorter
equilibration time between electrons and ion. This has
significant impact on the temporal evolution of electron
and ion temperatures, particularly at high values of ab-
sorbed laser energy density.

D. AC conductivity

From MD simulations with 108 atoms at stable ion
temperature we took several snapshots of the ion po-
sitions. These were used to start precise static DFT
calculations in order to apply the Kubo-Greenwood for-
mula.57,58 The results from different snapshots from the
same simulation run were averaged in order to reduce
statistical uncertainties.

σr(ω) =
2πe2h̄2

3m2ωV

∑
k

W (k)

NB∑
j=1

NB∑
i=1

3∑
α=1

[F (εi,k)− F (εj,k)]

×|〈Ψj,k|∇α|Ψi,k〉|2δ(εj,k − εi,k − h̄ω) (10)

Here e and m are the electron charge and mass. The
summations over i and j run over NB discrete Kohn-
Sham eigenstates considered in the electronic structure
calculation. The three spatial directions are averaged by
the α sum and V is the volume of the simulation box.
F (εi,k) is the Fermi distribution function and describes
the occupation of the ith band corresponding to the en-
ergy εi,k and the wave function Ψi,k at k. The δ-function
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has to be broadened because a discrete energy spectrum
results from the finite simulation volume.35

Integration over the Brillouin zone is performed by
sampling special k-points,46 where W (k) is the respective
weighting factor. A 4× 4× 4 Monkhorst-Pack sampling
grid was applied, i.e. the Brillouin zone was sampled at
32 k-points. Simulating multiple atoms also introduces
additional Kohn-Sham eigenstates per band, which al-
lows for taking into account also intraband transitions,
which are neglected in single atom conductivity calcula-
tions. As it was recently shown for sodium59 an increase
in the number of simulated atoms yields a convergence
towards the correct value of DC conductivity which is
usually underestimated for metals by DFT calculations.
However, within the current work we had to limit our
simulations to 108 atoms, resulting in a minimum dis-
tance of ≈ 0.1 eV between the Kohn-Sham eigenstates.
As a consequence, the DC conductivity as well as AC con-
ductivity at energies below 0.1 eV cannot be reproduced
correctly. The AC conductivity at the experimental value
of 1.55 eV is converged and agreement with experiments
could be shown.

The imaginary part σi of the conductivity can be de-
rived from the σr using the Kramers-Kronig relation, i.e.
the principal value of the integral over σr is calculated.

σi(ω) = − 2

π
P

∫
σr(ν)ω

(ν2 − ω2)
dν (11)
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FIG. 6: (a) Real and (b) imaginary part of the AC conductiv-
ity of gold at a photon energy of 1.55 eV and room temper-
ature. The results of the current simulations aure compared
to the measured data of Johnson et al.55

In Fig. 6 the real and imaginary part of the gold AC
conductivity at ambient conditions is depicted. The ex-
perimental data are also included for a direct comparison.
It can be seen that the general characteristics of the mea-
surement can be reproduced. However, the DFT curves
are clearly shifted towards the lower energies. This is
the result of the LDA approximation which is used for
the exchange-correlation part of the energy functional.
It leads to inaccuracies in the Kohn-Sham eigenvalues,
producing a shift of the AC conductivity curve. The
influence of different approximations for the exchange-
correlation potential was examined in another study on

the band structure of gold.60 It was found that accuracies
of the Kohn-Sham eigenvalues might be improved using
hybrid HSE functional. Since simulations with the HSE
functional are far more demanding computationally, we
were not able to perform those calculations for the large
number of elevated electron temperatures needed to de-
scribe the experiment. Instead we rely on the LDA val-
ues to construct model predictions. At photon energy of
1.55 eV pertinent to the experiment of interest, the spec-
tral shift has only minor impact on the real part of AC
conductivity since the latter is almost constant in this
region. On the other hand, the impact is much larger
on the imaginary part of AC conductivity because of its
steep slope at 1.55 eV. This renders its calculation less
reliable.

Another problem in our model is the calculation of
the imaginary part of AC conductivity from its real part
using the Kramers-Kronig relation. Such a procedure re-
quires accurate values of the real part of AC conductivity
down to the DC limit. In our calculation based on 108
atoms in a unit cell, the DC limit is a factor of two be-
low experimental value. Test calculations with 256 atoms
leads to no significant improvement. It is well known that
improvement with particle number in DFT calculations is
not always guaranteed. Results from Ref. 59 have shown
success with around 1000 atoms for some metals. An-
other study61 on high-density hydrogen plasma is find-
ing even higher atom numbers are necessary to obtain
converged results for the DC limit. Currently, calcula-
tions with such a number of atoms in a unit cell are not
practical for gold. On the other hand, the error in the
calculation of the imaginary part of AC conductivity ap-
pears to be significant only at low temperature.

Both errors are expected to be smaller at high temper-
ature, because on the one hand the influence of the ap-
proximation for the exchange-correlation functional be-
comes smaller62 and on the other hand it was shown that
DFT can reproduce the DC conductivity for metals in the
WDM regime well.35 We therefore think that our model
will give reliable values for the prediction of the real part
of the AC conductivity in WDM experiments. Although
the imaginary part is expected to be less precise we will
do a comparison with the measured values.

III. COMPARISON TO EXPERIMENT FOR
FEMTOSECOND-LASER HEATED GOLD

A. AC conductivity of initial heated states

As the first application of our model, we calculate the
AC conductivity of initial heated states in which all ab-
sorbed laser energy is assumed to reside in a thermalized
electron subsystem as the ions remain at 300 K. Such
initial heated states are taken to occur 540 fs after the
peak of the pump laser pulse in the experiment.1 The
electron temperatures of these initial heated states are
derived from the excitation energy density due to laser

6



absorption as presented in Fig. 3.
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FIG. 7: (a) Real and (b) imaginary part of the initial AC con-
ductivity of gold at a photon energy of 1.55 eV as a function
of excitation energy.

In Fig. 7 the comparison between measured data and
model predictions for AC conductivity of the initial
heated states is shown as a function of excitation energy
density. There are two different theoretical curves: one
using Ce obtained from FEG model and the other using
Ce from Abinit. Looking at the real part in Fig. 7(a)
it can be noted that the curve using the Abinit result
is in better agreement with the experiment. Although
there are some deviations around 1 MJ/kg the model is
able to describe the measured data. It can be concluded
by these results, that the presented model provides the
real part of the AC conductivity in agreement with the
measurements and that the ABINIT heat capacity is the
more reasonable choice for the input to the TTM.

Looking at the imaginary part in Fig. 7(b) a signif-
icant difference between experiment and model can be
seen at excitation energy densities below ∼ 1 MJ/kg.
As discussed above, this difference results from the not
correctly calculated value for the static limit of the real
part. Nevertheless, also in this case the curve, which was
obtained using the heat capacity derived from Abinit
agreed better with the experimental data.

B. AC conductivity during electron energy relax-
ation

The second application of our model is the calculation
of AC conductivity during electron energy relaxation af-
ter the heated electrons have thermalized to a Fermi dis-
tribution with a well-defined electron temperature. Here,
the process of electron energy relaxation is described us-
ing a Two Temperature Model (TTM).19 Accordingly,
the evolution of electron temperature Te and ion tem-
perature Ti are governed by two coupled equation:

Ce(Te)
∂Te
∂t

= −G(Te)(Te − Ti) + S(t)

Cl(Ti)
∂Ti
∂t

= G(Te)(Te − Ti)

Electron thermal conduction is neglected since uniform
heating of the ultrathin gold foil is produced by ballistic
electron transport.63 The ion heat capacity Ci is taken
to be the lattice heat capacity at a constant value of
2.5 × 106 J/m3K, which is the Dulong-Petit limit of the
Debye heat capacity for gold. The electron heat capac-
ity Ce and electron-ion coupling factor Gei are obtained
from our model as describe above. The initial ion tem-
perature Ti is 300 K and the initial electron temperature
Te is determined by the absorbed laser energy density as
shown in Fig. 3.
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FIG. 8: Temperature evolution in gold for an energy density
of 3.5 MJ/kg and different input parameters for the TTM.
The upper solid curves depict the electron temperature and
the lower dashed the ion temperature. The different curves
were calculated using a Gei from Abinit calculations (red)
which is a function of Te and a constant Gei(Te = 300 K)
(black) which does not depent on electron temperature.

An example of our calculation is shown in Fig. 8 for
an excitation energy density of 3.5 MJ/kg. The electrons
are initially heated to approximately 30,000 K. At this
temperature the temperature dependent Gei from our
model is significantly higher than the over Te constant
one.

This causes the relaxation process to be accelerated,
leading to a faster decrease of Te and a faster increase of
Ti. It is worthwhile to mention here, that temperature
change of the ions is more drastic, compared to the elec-
trons. While the electron temperature stays at the same
order of magnitude the ion temperature increases by a
factor of 50.

We performed conductivity calculations along the path
of the evolution of Te and Ti for different laser energy
densities. For this purpose, we first carried out a DFT-
MD simulation with 108 atoms at different sets of fixed
Te and Ti which correspond to a point in time of the
relaxation process. For a number of 10 snapshots from
these simulations we performed conductivity calculations
applying the Kubo-Greenwood formula.

In Fig. 9 we compare the model findings with experi-
mental data for laser energy densities of 0.55 MJ/kg and
4.0 MJ/kg. Two curves for each case were calculated,
one using Gei calculated as described above and another
one using a constant coupling factor as found in previous
experiment at low laser energy density.14

The AC conductivity evolution at a photon energy of
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FIG. 9: Evolution of the AC conductivity of gold for a laser
energy density of 4.0 MJ/kg (a) and 0.55 MJ/kg (b). Values
from experiment are shown in black, the constant Gei model
in red and the Te-dependent Gei model in green.

1.55 eV is dominated by two competing processes: a de-
crease while the electron temperature is declining and
an increase that is caused by a growing ion tempera-
ture. The DC conductivity is decreasing with higher ion
temperature, which is usually explained by an increased
perturbation caused by the higher amplitude of the vi-
brations of the ions around their equilibrium positions.
This mechanism is not observed for the AC conductiv-
ity at a photon energy of 1.55 eV. Here the minimum
in σr, which can be observed in Fig. 6(a) vanishes and
consequently the AC conductivity is increasing.

The electron temperature decreases with time, as the
electrons lose their kinetic energy to the ions. Conse-
quently also a decreasing conductivity could be expected,
which is true at an energy density of 0.55 MJ/kg but is
not observed for 4.0 MJ/kg. The higher energy density
causes the ions to be heated strong enough, so that the
resulting change in conductivity can compensate the ef-
fect of decreasing electron temperature. As a result the
conductivity increases. The relative dominance of either
of these two processes is governed by Gei.

The evolution of the AC conductivity at 4.0 MJ/kg
in Fig. 9(a) indicates that the model curve agrees better
with the measurements if the constant value of Gei =
2.2 × 1016 W/m3K is used instead of the temperature-
dependent electron-phonon coupling constant. A conse-
quence from that observation might be that the electron-
phonon coupling factor is smaller than predicted by the
method of electron-phonon coupling explained above.

In a recent approach,64 the electron-phonon coupling
was found to have a similar temperature dependence as
presented here. This suggests, that the uncertainties
within the method itself seem to be well controlled. All

methods, that are implementing electron-phonon cou-
pling so far, do not include the ion temperature into
the calculation of α2F (Ω) and thus the constant λ〈ω2〉
is completely independent from temperature. To our
knowledge, there have been no successful attempts to
include the lattice temperature in calculations of the
electron-phonon coupling. Electron-ion coupling was also
described for plasmas as a scattering of electrons at plas-
mons, which became known as coupled mode calcula-
tions. For aluminum this method results in substantially
lower coupling constants than resulting from the electron-
phonon scattering approach.24,25

At the energy density of 0.55 MJ/kg the reached elec-
tron temperature does not exceed 12, 000 K. In that tem-
perature range the Gei obtained by Abinit is not sub-
stantially higher than the constant one, see Fig. 5. As a
result, the temperature evolution and consequently the
AC conductivity evolution is very similar for the both
cases and is in good agreement with the measured data,
see Fig. 9(b). However, there is a small difference in the
absolute value, which is already be seen in the initial
conductivity at 0.55 MJ/kg plotted in Fig. 7(a).

IV. CONCLUSIONS

We describe the thermophysical properties of two-
temperature warm dense gold using an ab initio model.
DFT simulations allowed the calculation of thermody-
namic parameters and the optical conductivity for two-
temperature states within the same theoretical frame-
work.

Our results for the electron heat capacity have been
corroborated by comparison with experimental data for
the initial conductivity obtained in thin gold foils.1 We
could demonstrate that the real part of the AC conduc-
tivity shows reasonable agreement with the measured
data during the temperature relaxation process. Con-
vincing agreement with experimental result for the imag-
inary part is not observed. We identified the insufficient
precision in our calculation of intraband contributions to
the AC conductivity of metals, which leads to an un-
derestimation of the static limit of the real part as the
main source of error for this behavior. This causes errors
within the application of the Kramers-Kronig relation,
while the real part at the experimental laser frequency is
not effected and is in agreement with the measurements.

We showed, that the model can be used in combina-
tion with experimental data to investigate the material
properties, namely the electron heat capacity and the
electron-ion coupling factor. We found the present ab
initio calculations for the electron heat capacity of warm
dense gold to be sufficient. A comparison of experimental
results clearly shows, that the electron-ion energy trans-
fer rate at high laser energy density is overestimated by
current electron-phonon coupling models.1

The present work can be easily applied to other met-
als and can be used to investigate their material prop-
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erties at warm dense matter conditions. To improve the
conductivity calculations, we propose on the one hand
the increase of the atom number, which will improve the
calculation of intraband contributions and therefore lead
to a more reasonable result also for the imaginary part.
On the other hand, the use of an improved exchange-
correlation functional might fix the shift against the mea-
sured conductivity at 300 K.

A major remaining issue is the behavior of the electron-
ion coupling for the conditions considered here. Experi-
ments suggest that the coupling factor is likely to have a
near constant behavior and lower than predicted by our
model. The inclusion of ion temperature into the calcu-
lation of the electron-phonon coupling might be the an-
swer to that problem. Another possible solution might be
the modelling of the energy transfer as electron-plasmon

scattering, which is implemented in the coupled-mode
approach.24,25
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