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Abstract— As mobile applications deliver increasingly complex 
functionalities, the demands for even more intensive 
computation would quickly transcend energy capability of 
mobile devices. On one hand and in an attempt to address such 
issues, fog computing paradigm is introduced to mitigate the 
limited energy and computation resources available within 
constrained mobile devices, by moving computation resources 
closer to their users at the edge of the access network. On 
another hand, most of electric vehicles (EVs), with increasing 
computation, storage and energy capabilities, spend more than 
90% of time on parking lots. In this paper, we conceive the basic 
idea of using the underutilized computation resources of parked 
EVs as fog nodes in order to provide on-demand computation at 
the vicinity of the access network. The proposed Vehicular Fog 
Computing (VFC) architecture aggregates the abundant unused 
resources of parked vehicles, and uses it to serve mobile users’ 
demands. The resource allocation problem is formulated as a 
Markov Decision Process (MDP) and dynamic programming is 
used to solve the underling decision problem. Extensive 
simulation results show the effectiveness of the proposed 
approach by improving the global reward value by 51% and 
scoring an energy gain of 66% compared to two other models.  

Keywords— Vehicular Fog Computing, Markov Decision 
Process, Electric Vehicle, Energy. 

I. INTRODUCTION 

Nowadays, the widespread of mobile devices and wireless 
communications has led to higher demands for data exchange 
and computing requirements [1]. However, mobile devices 
have usually limited capabilities in terms of computation 
power, battery lifetime, storage space and even available 
bandwidth. In order to address these limitations and to 
continue supporting the ever-increasing applications 
demands, service providers are usually willing to make use of 
powerful servers offered through the cloud. Therefore, cloud 
computing is considered as a promising solution to deliver 
services to end-users and provides locally-deployed 
applications with elastic resources at a lower cost [2]. 
However, cloud computing does not solve all the problems 
due to its own drawbacks, which are for instance related 
primarily to latency and quality of service (QoS) issues for 
real-time applications. Thus, the recent development is to push 
the storage and processing capabilities to the edge of the 
access network closer to their end users, which introduces the 
new concept of fog computing. Fog computing is a 

decentralized computation framework which essentially 
extends cloud computing resources and services to the edge of 
the network, by bringing the advantages and power of the 
cloud servers closer to where requests are created [2].  

Many recently body of research focuses on introducing 
vehicles to the fog computing paradigm. They mostly 
proposed integrating the resources available locally within 
vehicles as part of the fog computing infrastructure. The 
resulting framework would constitute the new paradigm 
called Vehicular Fog Computing. Instead of sending users’ 
computation requests to remote cloud servers, VFC handles 
the nearby users’ demands using locally available vehicular 
resources [3]. Furthermore, VFC distinguishes itself from 
other existing techniques with its proximity to end-users, 
dense geographical distribution and mobility support [3]. 
Besides, it focuses on the usage of vehicles as a service 
delivery to improve communication [4]. 

Nowadays, the number of vehicles roaming the streets is 
ever increasing. Besides networking and communication 
interfaces, most recent vehicles may be equipped with fairly 
high computation and storage capabilities. Moreover, the 
technological advances in automotive sector and the battery 
storage capabilities have led to the proliferation and the wide 
spread of EVs, especially in city centers. The vast majority of 
EVs are equipped with pretty powerful processing units, large 
data storage and decent communication capabilities. 
However, according to a survey [5], more than 90% of 
vehicles travel is less than 100 miles daily, which on average 
represents a 34 KWh of energy consumed for a Tesla Model 
S whose battery capacity is 85 KWh with ~40% energy 
consumption. Based on another statistic [5], vehicles spend 
only between 4-5% of the day traveling while they spend the 
rest of the time in parking lots. Therefore, with the right 
incentive mechanisms for the owners of the parked EVs, the 
latter may be used to deliver different services. One of the 
most promising potential ideas is to use EVs as computing 
devices for nearby mobile users. This will make a better 
usage of the underused available resources in electric 
vehicles for computation services. 

In the light of such insight, the current work suggests using 
electric vehicles energy for locally processing mobile 
application computation requests. Particularly, we consider 
the parked electric vehicles as fog nodes that would offer 
computing services to serve nearby users. Here, we address 
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the problem of resource allocation for mobile applications 
with highly intensive computation tasks. The abundant 
unused resources of parked EVs are aggregated in order to 
serve the computation and storage demands of these mobile 
devices particularly constrained in terms of energy and 
processing capabilities. A Markov Decision Process is 
adopted to model this resource allocation problem and solve 
the underling optimization problem using a dynamic 
programming. 

The reminder of this paper is organized as follows: in 
Section II, we present related work. The system architecture 
is presented in Section III and both the problem and the 
corresponding solution are described in Section IV. The most 
prominent simulation results are summarized and discussed 
in Section V. Finally, concluding remarks and future research 
directions are highlighted in Section VI. 

II. RELATED WORKS

Several previous works have been achieved with as main 
goal to serve mobile applications demands in terms of 
intensive computation. Most of the works have been 
conducted about the decision making for offloading 
computation to the cloud, cloudlet, VCC (Vehicular Cloud 
Computing), or VFC.  Zheng et al. [6] proposed a resource 
allocation scheme to maximize the reward of the vehicular 
cloud. Their approach is based on infinite horizon Semi 
Markov Decision Process (SMDP). The proposed scheme 
uses four stages to formulate the resource allocation problem: 
(i) state space - represents the current resources and request
states in a vehicular cloud; (ii) action space - is a set of actions
that can be used by vehicular cloud based on the current state;
(iii) reward - consists of the income and cost that allow to use
a discount model that computes and analyzes the sum of the
rewards; (iv) transition probability - calculates the probability
of a state of the system to change to another state under a
specific action. The aim was to maximize the long-term
expected total reward of the vehicular cloud.

The authors in [9] proposed to use parked vehicles to 
improve communication in a vehicular ad hoc network 
(VANETs) due to the sparsity of the network and the 
unbalanced nature of its traffic. The idea is to use parked 
vehicles as a static backbone infrastructure to serve and 
improve the VANET communication. Likewise, authors in 
[8] investigated network connectivity between parked
vehicles through theoretic analysis and realistic survey and
simulation. They also envisage new services and application
based on resources sharing among moving and static
vehicles.

In [3], the authors investigated the potential of using 
vehicular networks as an infrastructure for communication 
and computation. Furthermore, they considered both moving 
and parked vehicles to deliver communication and 
computation resources in order to serve requests from nearby 
end users. The proposed VFC works by aggregating 
abandoned resources of individual vehicles. Their results 
showed an improvement in the computational performance, 
compared to conventional systems, due to making the best 

use of under-utilized computational resources of individual 
vehicles. 

With the transition to hybrid and fully electric 
transportation, in terms of battery power, vehicles are 
becoming uniquely positioned among mobile devices. As 
energy represents the main critical resource in a constrained 
mobile environment, we consider that higher intensive 
computation tasks can be offloaded from mobile devices to 
parked electric vehicles. Therefore, in this paper we propose 
a novel system of VFC that employs electric vehicles as a fog 
node for computation to serve local mobile device application 
demands. To our best knowledge, we are the first to consider 
EVs energy to serve local mobile users application demands. 

III. SYSTEM ARCHITECTURE 

We consider for this study the synoptic architecture for a 
Vehicular Fog Computing as shown in Fig 1. Beside the 
central cloud, the proposed fog computing scheme comprises 
three different components: the fog controller, a set of parked 
EVs considered as fog nodes and finally mobile devices. The 
fog controller, which is deployed by service providers, offers 
wireless access (Cellular or Wi-Fi) for mobile devices. It also 
affects computation demands to the nearby parked EVs 
(within its coverage range). 

Upon the arrival of energy intensive mobile application 
computation requests, the fog controller decides whether to 
run it at the VFC or redirect the requests to cloud according 
to the availability of energy within parked EVs. Cloud 
computing is used whenever there is no sufficient resources 
available to serve users applications demands using the 
parked EVs. 

Mobile devices have become very popular and run 
different kind of energy intensive applications. However, due 
to the device size, its computation, storage and energy 
capabilities are limited [7]. To get good application execution 
and to save energy for mobile devices, computation offloading 
is a promising option. In the proposed model, we proposed to 
use part of the unused resources of parked EVs by nearby 
mobile devices for computation while making sure to not 
exhaust all the EVs energy. 

Fig. 1: Vehicular Fog Computing 
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We consider that electric vehicles parked at parking lot are 
considered as fog servers to use, for computation, vehicles as 
an infrastructure represented by the aggregation of the 
abundant resources of individual electric vehicles. VFC offers 
this resource pool containing a certain level of 
energy/computation in order to compute highly intensive 
computation tasks. In the proposed system, each mobile 
application demand and electric vehicle arrival follows a 
Poisson process. In addition, electric vehicles’ departure rate 
follows an exponential distribution. In this paper, we assume 
that there is no charging mechanism in the parking lot. 
Moreover, available energy in the parking lot depends mainly 
on the parking lot occupancy level and state of charge of the 
parked EVs. If higher energy level becomes available, 
additional computation requests from mobile device would be 
served. Therefore, the main objective in this paper is to 
optimize the state of charge for parked EVs in order to better 
serve the demands of mobile applications. The underling 
optimization problem is formulated through a MDP, where the 
details are provided in the following section. 

IV. MDP BASED RESOURCE ALLOCATION 

The idea of the resource allocation problem is to find an 
optimal allocation of a fixed amount of resources using 
optimization techniques. In this work, the aim is to optimally 
use the available computation resources of parked EVs to 
serve local mobile applications demands. To resolve this 
issue, we formulate the problem as a Markov Decision 
Process. In the following, we recall the MDP concept before 
presenting the problem formulation and solution.  

A. Markov Decision Processes

Markov decision process (MDP) constitutes a
mathematical framework for dynamic controlling systems that 
evolves stochastically [11]. MDPs are used for modeling 
decision making. The systems resolved by MDP are observed 
at times t=1, 2,....,n where n is called the time horizon. The 
decision maker takes a decision regarding the action to be 
done at each time. The target of the decision maker is to 
choose the actions that optimize the performance of the 
system. 

A MDP consists of a set of 5 elements <S, A, P, R, 𝛾> as 
described below: 

o S: is a finite set of the system states,
o A: is a finite set of actions to be chosen by the

decision maker,
o P: is the transition probability; thus, P(S; S’; a) is the

probability of moving from state S to state S’ if
action a is chosen,

o R: is the immediate reward (or expected) received
after moving from state S to state S’ via action a,

o 𝛾: is the discount factor which satisfies 𝛾 ∈ [0, 1]. It
represents the difference between Rt+1 and Rt.

MDPs aim is to specify the mechanism by which the 
decision maker chooses actions at different times. This 
mechanism is called Policy 𝜋(S). The policy is a mapping 

from states S to actions A. It defines which action should be 
taken in each state. Thus, MDP aims to choose a policy that 
will maximize a cumulative function of the random rewards: 

 𝛾௧
ஶ

௧ୀ
 𝑅൫𝑆௧ ; 𝑆௧ାଵ, (𝑆𝑡)൯ 

Several techniques are available in the literature to solve 
MDPs problems: Linear Programming (LP) and Dynamic 
Programming (DP) [11]. In this work, we choose to use 
dynamic programming where the model and simulation 
assumptions are presented in the following sections. 

B. Problem Formulation and Solution
As indicated in the previous subsections, we formulate the

problem as an MDP with the following five elements <S, A, 
P, R, γ>: 

 States S = S0; S1; S2,…, Sn; refers to the different energy
status of the EVs:

 S0: Full Energy,
 Sn: Empty Energy,
 Si: Energy level with load level = i%, i ∈ {1; 2;

3; ….; n-1}. 
 Actions A = a0; a1; a2,…,an; where ai refers to the action

to be selected according to the transition probabilities:
 a0: represents the action taken when no resources

are available for computation,
 ai: use the energy for computation (i% of energy 

level for computation), i ∈{1; 2; 3; ….;n-1}. 

 Transition probability P: P(S; S’; a) is the probability 
of moving from the energy level S at t = n to the energy 
level S’ at t = n + 1 by doing the action a. P(S, S’, a) is
determined by the arrival and departure of EVs with a
certain SoC (State of Charge). Hence, P(S, S’, a) is
related to the energy consumption of users computation
demand and the arrival of EVs in the next times t = n+1,
n+2,…, etc. The availability of energy for computation
for next time t = n+1, t = n+2, ... is related to the arrival
of new EVs in the parking area. Fig. 2 show synoptic
MDP graph with five states. It also shows the different
transition probabilities between different states with
action a0. Each state represented aggregated energy
level of parked EVs.

 Rewards, R: is the reward collected by choosing
different actions. In our study, we represent R as a
positive integer R ∈ {0, 1, 2, 3…n}, where R=0 means
the fog controller do not assign users computation
demand to EVs.

 𝛾: the discount factor, γ ∈ [0; 1].

Fig 2. MDP state diagram (example for action a0) 
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 The controller: represents the fog controller, presented
in the previous sections, which is responsible of
aggregating and managing the resources of nearby 
EVs. It also takes decisions regarding the allocation the
available energy. The fog controller is installed by 
service provider at the parking lots.

The MDP model aims to find the policy that specifies the 
best policy π (s) that the controller has to choose regarding the 
use of the surplus power in the parking lot. The goal is to 
maximize the rewards by using the energy of EVs for 
computation without affecting the energy used by EVs for 
motion. The objective function to be maximized is defined in 
equation (1): 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ൬ 𝛾௧𝑅൫𝑆௧, 𝑆௧ାଵ, 𝛾(𝑆௧)൯
ஶ

௧ୀ
൰  (1) 

Subject to: 

  𝑅

ஶ

௧ୀ

((𝑆 = 𝑆)௧, 𝑆௧ାଵ
ᇱ , 𝑎) = 0 

∀𝑆ᇱ ∈ ൛𝑆ଵ, 𝑆ଶ, 𝑆ଷ,…,𝑆ൟ,   ∀𝑎 ∈ ൛𝑎ଵ, 𝑎ଶ, 𝑎ଷ,…,𝑎ൟ

The algorithm uses the following two equations, (2) and (3), 
to calculate the optimal policy for all the states S until no 
further changes take place (according to the discount factor): 

𝜋(𝑆) = arg max {∑ 𝑃(𝑆, 𝑆′)(𝑅(𝑆, 𝑆ᇱ) +  𝛾𝑉(𝑆ᇱ
ௌᇲ ))}  (2) 

𝑉(𝑆) = ∑ 𝑃గ(ௌ)(𝑆, 𝑆ᇱ)(𝑅గ(௦)(𝑆, 𝑆ᇱ)ௌᇲ + 𝛾𝑉(𝑆ᇱ))  (3) 
Finally, the algorithm generates a stationary policy that 

takes the form 𝜋 ∶ 𝑆 →   𝐴 with 𝜋(S) denoting the action to be 
executed in state S. The detailed description of the algorithm 
is presented hereafter.  

C. MDP-based decision making algorithm
The decision-making approach we proposed is described

through sequence diagram in Fig. 3. In order to make a 
decision to accept or reject computation request of mobile 
users, the controller adopts first come first serve scheduling 
discipline. Up on arrival of EVs into the parking lot, they sent 
their energy status information to fog controller. In addition, 
fog controller receives users’ requests from mobile devices. 
Once the energy status of EVs and mobile applications energy 
demands received, an action that scores maximum reward is 
selected. Then, the tasks will be admitted into fog nodes. 
However, if there is no energy to serve the users demand in 
the parking, the controller rejects the users request and their 
computation request will be redirected to cloud. To evaluate 
the performance of the proposed algorithm, we did simulation 
with different cases. The performance evaluation is presented 
in the following section.  

V. EXPERIMENTAL EVALUATION  AND ANALYSIS
As we presented in section IV, the state space is modeled 

with the number of each parked EVs energy level. However, 
considering each parked EVs in the parking as a state will 
create larger and infinite state space. In order to simplify 
simulation process, we used an aggregated state space. The 
idea behind is that the resulting reduced state space forms 
small stationary finite state MDP, which can then be 
efficiently solved.  Hence, we identified five possible different 
states to represent the occupancy rates, namely S = {Full, 

High, Medium, Low, Empty} which represent the overall 
available energy in the parking: up to 100%, up to 75%, up to 
50%, up to 25 and ≈0% respectively. In addition, we also 
define four possible actions, namely A = {a0; a1; a2; a3}, 
which represent the action taken at each energy level. Thus, 
action a0 is taken when there is 0% up to 25% energy is 
available in the parking. An action a1 is selected when the 
available energy level is from 25% up to 50%, a2 selected 
when energy status is from 50% up to 75% and action a3 is 
selected when the available energy is greater than 75%. 

Furthermore, for each action ai, we defined its 
corresponding transition probability matrix P (S, S’, ai). The 
matrix is an n-by-n matrix that comprises all the probabilities 
for moving from energy status S at time t to energy status S’ 
at time t+1 using action ai. Finally, we use reward and global 
reward value for measuring the performance of the proposed 
model. Reward is collected at each decision slot whereas 
global reward is the sum for all rewards collected over 
simulation time. In order to study the performance of our 
approach, we calculate the reward of our MDP strategy 
(MDP_str) at each decision period throughout simulation 
time. Then, we compute the global reward for each case.  
Thus, higher global reward value shows the availability of 
higher energy gain in parked EVs. Whereas, lower global 
reward shows lower energy level in parked EVs. 

A. Simulation scenarios
In order to evaluate the performances of the proposed

MDP model, we used Matlab and its MDP Toolbox [10] to 
implement our MDP_str scheme for resource allocation. 
Furthermore, in order to prove the effectiveness of our 
strategy, we compared the simulation results with Fixed_str1 
and Fixed_str2 strategies. The later are defined as two 
different resource allocation algorithms that define fixed 
thresholds for the available energy in order to decide whether 
to serve users’ demand or not. Specifically, Fixed_str1 and 
Fixed_str2 use respectively 30% and 60% of the available 
energy to process highly intensive computation tasks. 
However, no computation demands are served if the available 
energy level is less than the previously fixed thresholds. 

We chose six different scenarios for the change in 
occupancy level over a 24 hours period as shown in Fig. 4. 
Specifically, the first 3 scenarios shown in Fig. 4.(a) consider 
3 different Poisson distribution for occupancy level of EVs in 

Fig. 3: Sequence diagram for the algorithm 
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a given parking lot. The corresponding values of parameter λ 
are: 30%; 60% and 80%. Whereas, in Fig. 4.(b) shows the 
three other scenarios with fixed occupancy level over time, 
namely; 30%; 60% and 80%. Table 1 summarizes the used 
scenarios. Furthermore, the level of energy available in the 
parking lot is determined by the amount of energy offered by 
each EV. It is also influenced by the deference between arrival 
rate and departure rate of EVs over time. The following 
subsections present the different simulation scenarios 
followed by the summary and discussion of the main results. 

B. Performance evaluation and discussion
As mentioned before, the proposed system is evaluated

with six different cases (shown in Fig. 4). Fig. 5 shows the 
simulation results achieved by each resource management 

strategy for the different scenarios. We can notice from Fig. 
5(a) that our MDP_str always achieves higher scores in terms 
of global reward. Hence, MDP_str makes better use of the 
overall energy available in EVs in order to optimally serve a 
higher number of users’ demands compared to the two other 
strategies. Specifically, the global reward is improved on 
average by 37.78% compared to Fixed_str1 and 57.33% 
compared to Fixed_str2. Moreover, Fig. 5.(b) shows the 
global energy gain obtained by the three resource allocation 
policies for the six different scenarios. Indeed, MDP_str 
scores higher energy gain compared to Fixed_str1 and 
Fixed_str2. The MDP_str improves the energy gain by 
65.40% and 54.41% on average compared to Fixed_str1 and 
Fixed_str2 respectively. 

To provide yet more extensive insights for the 
performance of the proposed scheme, we evaluated the 
different performance metrics over simulation time. 
Specifically, the noticeable changes in: (i) reward, (ii) global 
reward and (iii) energy level are evaluated throughout 
simulation time. Fig. 6 shows the result evaluation for a 
selection of three different scenarios, namely: case 2, case 4 
and case 6. 

First, the occupancy rates in case 2 follows a Poisson 
distribution with a mean value λ = 60%. As it is shown in 
Fig.6.case2.(a), the MDP_str achieves higher values for 
rewards over time compared to Fixed_str1 and Fixed_str2, 
which achieved comparable rewards. Consequently, in 
Fig.6.case2.(b) the final overall reward value achieved by 
MDP_str was twice the value achieved by the other two 
policies. Moreover, MDP_str obtained respectively 62.5% 
and 31.2% better energy gains at time t=24 compared to 
Fixed_str1 and Fixed_str2. 

Second, case 4 characterizes a stable energy level over 
time (30%). As depicted in the different sections of Fig. 
6.case4, Fixed_str1 scored zero reward (section (a) & (b)) and
no energy gain (section (c)) throughout simulation time. This 
is because the available energy in EVs was below the fixed 

(a) Global Rewards values for each Scenario

(b) Energy gain evaluation for each scenario 
Fig. 5: Overall performance evaluation for the different simulation scenarios 
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Fig. 4: Different simulation scenarios for the changes in occupancy 
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threshold. However, MDP_str achieved better global reward 
and better energy gain compared to Fixed_str2.  

Finally, in case 6, when the parking occupancy level is as 
high as 80 %, the results depicted in Fig. 6.case 6 (a) show a 
rather stable reward values for the three policies. However, 
MDP_Str always obtained higher rewards values than those 
of Fixed_str1 and Fixed_str2. This would also have an 
influence on the global reward values depicted in Fig. 6.case 
6 (b), where MDP_Str outperformed once again the other 
models. Furthermore, the high occupancy levels in the parking 
lot would results to a better availability of energy resources 
and consequently serves higher number of users demands. 
Fig. 6.case 6 (c) shows that, at time t=24, MDP_str has 
provided 78.7% and 42.4% better energy gain compared to 
Fixed_str1 and Fixed_str2 respectively. Specifically, 
Fixed_str1 and Fixed_str2 offered respectively 324 and 877 
units of energy, while MDP_str achieved 1524 units.  

As a summary to the performance evaluation section, the 
analysis of the obtained simulation results has shown the 
effectiveness of our MDP-based solution for resource 
allocation. Moreover, we proved that such scheme is suitable 
to optimize the usage of constrained resources, such as energy 
in parked EVs. MDP_str improves the overall energy used to 
compute highly intensive computation tasks by 75% and 58% 
compared with Fixed_str1 and Fixed_str2 respectively. 

VI. CONCLUSION

In this paper, we proposed a new approach to optimize the 
usage of the surplus of energy available within parked electric 
vehicles for the processing of highly intensive computation 
tasks. The later would be offloaded from nearby mobile 
devices with constrained energy through a VFC architecture. 
An optimal decision-making scheme is formulated using a 
Markov Decision Process in order to maximize the long-term 
reward of the system. In the proposed model, the decision to 
accept or reject users’ demands to fog nodes (EVs) is done by 
fog controller based on the available resources in a parking 
lot. Simulation results show that the proposed strategy 
outperforms other fixed strategies in terms of rewards and 
better energy gain. 

Since using the same batteries all the time might 
significantly degrades EVs battery lifetime, as future work, we 
are already focusing on creating a history profile for battery 
usage in computation tasks. The aim would be to grant a 
fairness of EVs batteries use in order to improve their life 
time. 
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