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ABSTRACT  

This paper presents the real-time implementation of deep neural networks on smartphone platforms to detect and classify 
diabetic retinopathy from eye fundus images. This implementation is an extension of a previously reported 
implementation by considering all the five stages of diabetic retinopathy. Two deep neural networks are first trained, one 
for detecting four stages and the other to further classify the last stage into two more stages, based on the EyePACS and 
APTOS datasets fundus images and by using transfer learning. Then, it is shown how these trained networks are turned 
into a smartphone app, both Android and iOS versions, to process images captured by smartphone cameras in real-time. 
The app is designed in such a way that fundus images can be captured and processed in real-time by smartphones 
together with lens attachments that are commercially available. The developed real-time smartphone app provides a cost-
effective and widely accessible approach for conducting first-pass diabetic retinopathy eye exams in remote clinics or 
areas with limited access to fundus cameras and ophthalmologists.  

Keywords: Real-time implementation of deep neural networks on smartphones, real-time smartphone app for detection 
and classification of diabetic retinopathy, first-pass eye exam by smartphone app.  

1. INTRODUCTION  

According to the International Diabetes Federation (IDF), there are currently about 460 million adults worldwide 
suffering from diabetes which is the leading cause of blindness in most countries3. Diabetic Retinopathy (DR) is an eye 
retinal disease that can lead to visual impairments. DR is caused by microvascular complications of diabetes reflected by 
morphological changes in the eye fundus. There are five stages associated with DR. These stages correspond to no 
apparent retinopathy, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative DR (PDR), 
respectively.  

The current practice for diagnosis of DR involves the examination of color fundus images taken from the retina by an 
expert eye professional. Works have been reported in the literature to make this process more automated, more time 
efficient, and more cost-effective, e.g.4,5. Due to the success of deep learning models in object detection and image 
classification applications6,7, recently there have been studies using deep neural networks to diagnose DR from fundus 
images1,8,9,10,11.  

The medical device that is currently used to capture retina images for diagnosis of DR is fundus cameras which are 
expensive, bulky and not available in all clinics, in particular in remotely located areas. Nowadays, smartphones are 
widely available and also there exist commercially available lenses that are designed for smartphones to capture retina 
images, e.g., WelechAllyn PanOptic Ophthalmoscope12, D-EYE lens13,14,15. A picture of two such lens is shown in 
Figure 1. These lenses can be easily attached to the front of a smartphone camera for capturing retina images. The use of 
smartphones together with such lenses enables a cost-effective and widely deployable approach for initial screening of 
DR at clinics where fundus cameras and ophthalmologists are not available.  

Towards this objective, a real-time smartphone app based on deep learning models was previously developed in 
reference1 to detect the presence of DR and other retinal abnormalities from fundus images. This paper is an extension of 
this previous work by first detecting the presence or absence of DR and then if DR is detected, by finding the stage 
associated with it. More specifically, a deep learning-based smartphone app (both iOS and Android versions) is 



 
 

 

 

developed in this paper to detect the presence or absence of DR and its stages in real-time. In addition to the stage 0 of 
DR, meaning absence of DR or no DR, four stages of DR are detected which correspond to mild, moderate, severe, and 
proliferate. The app developed here enables an initial screening of DR in a cost-effective and widely accessible manner 
by only using a smartphone and a lens attachment. The initial screening enabled by this app will be of great benefit to 
those living in remote areas since a first-pass eye examination can be easily performed to refer users to an 
ophthalmologist. 

The remainder of the paper is organized as follows. In section 2, the dataset used to train the deep neural networks for 
detecting and classifying DR is presented. The training and testing of the deep neural networks are covered in section 3. 
The deployment of the deep neural networks on smartphones is described in section 4. The real-time processing rates of 
the developed smartphone app are then reported in section 5 followed by the conclusion in section 6. 

2. DATASET CONSIDERED  

Availability of training dataset is essential for training deep neural networks to distinguish the five stages of DR 
including stage zero which means no DR. The two public domain datasets that incorporate a large number images of all 
the five stages of DR are EyePACS (Eye Picture Archive Communication System)16 and APTOS 2019 (Asia Pacific 
Tele-Ophthalmology Society)17 dataset. In this work, both of the datasets are considered.  

The EyePACS dataset has 35126 retina images for both the left and right eyes. It includes the five stages of DR or the 
severity level 0 to 4, where label 0 indicates no DR, label 1 mild DR, label 2 moderate DR, label 3 severe DR, and label 
4 proliferate DR. The dataset contains 25,810 labeled 0 DR (no DR), 2,443 mild DR, 5,292 moderate DR, 873 severe 
DR, and 708 proliferate DR images. For no DR (labeled 0), 10,000 images from EyePACS dataset were considered here 
for designing the deep neural network. Figure 2 illustrates 10 sample retina images from the EyePACS dataset (five from 
the left eye and five from the right eye) corresponding to the five stages of DR.  

The APTOS 2019 Blindness Detection dataset contains a total of 3662 retinal images belonging to the five stages of DR 
similar to the EyePACS dataset. In this dataset, 1805 images belong to no DR (label 0), 370 images to mild DR (label 1), 
999 to moderate DR (label2), 193 images to severe DR (label 3), and 295 images to proliferate DR (label 4).   
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Figure 1. Pictures of commercially available lenses for smartphones: (a) WelechAllyn lens, and (b) D-EYE lens 
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Figure 2. Sample fundus images (top five left eye, bottom five right eye) for five stages of DR from the EyePACS dataset. 

3. DEEP NEURAL NETWORKS FOR DETECTION AND CLASSIFICATION OF DR 

This section discusses the training and the testing of two deep neural networks designed for the purpose of separating the 
five stages of DR images for the above two datasets. Since the training dataset is relatively small for training deep neural 
networks, the transfer learning approach is utilized here. 
 

3.1 Designing the networks  

Deep learning-based methods have been previously proposed to detect ocular pathologies, e.g.18,19,20. For transfer 
learning, a pre-trained Inception-v3 model21 is considered here similar to the work previously reported in reference1. 
This network is pre-trained with the large ImageNet dataset which contains 1.2 million images placed into 1000 different 
object classes22,23. The Inception-v3 model employs convolutional layers and residual connections. The layers of this 
pre-trained model are used up to the last fully connected layer. The last fully connected layer is then trained with the 
above datasets. A graphical representation of the transfer learning approach using the Inception-v3 architecture is shown 
in Figure 3.  
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Figure 3. Depiction of Inception-v3 transfer learning  



 
 

 

 

In this work, a two-step approach is considered involving two deep neural networks. For the EyePACS dataset, in the 
first step, a deep neural network is designed to classify the retinal images into four classes: No DR, Mild DR, Moderate 
DR, and Profound DR. In the second step, another deep neural network is designed to classify the last stage of Profound 
DR images into two further stages: Severe DR and Proliferate DR. As a result, as shown in Figure 4, a retinal image gets 
classified into one of the five classes: “No DR”, “Mild DR”, “Moderate DR”, “Severe DR”, and “Proliferate DR”. 
Various combinations of networks were examined and this two-step combination was found to generate the best 
accuracy for the EyePACS dataset.  

Detection of Diabetic 
Retinopathy

No DR Moderate DR

Proliferate DR

Mild DR Profound DR
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Figure 4. Two-step approach to classify five stages of DR for the EyeSPACS dataset 

A two-step approach is also considered for the APTOS dataset. However, after examining different combinations of two 
networks, the best combination for this dataset was found to be the one depicted in Figure 5. In this combination, the 
absence and presence of DR is considered first and then the DR cases are further classified into four stages.   
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Figure 5. Two-step approach to classify five stages of DR for the APTOS dataset 

3.2 Performance of the networks  

EyePACS Dataset - The first deep neural network for the EyePACS  dataset considered four classes, and was trained and 
tested on the retina images from the EyePACS dataset corresponding to no diabetic retinopathy (label 0), mild diabetic 
retinopathy (label 1), moderate diabetic retinopathy (label 2), and profound diabetic retinopathy (labels 3, and 4), where 
the severe and proliferate images of the EyePACS dataset were considered together in one stage. Randomly selected 
90% of the images from each class were used for training and the remaining 10% of the images were used for testing. 
The confusion matrix associated with the first network is shown in Table 1. As shown in this table, the overall accuracy 
of the first network for the classification of four stages of diabetic retinopathy was found to be 88.4%.  

 



 
 

 

 

Table 1. Confusion matrix of the first deep neural network for the EyePACS dataset 

           Actual  

Classified 
Not DR Mild DR Moderate DR Profound DR 

Not DR 994 6 0 0 

Mild DR 41 201 2 0 

Moderate DR 51 54 424 0 

Profound DR 10 2 58 88 

 
The second deep neural network was trained to classify Profound DR into two more stages: Severe DR and Proliferate 
DR. Randomly selected 90% of the images from each class, i.e. 786 images corresponding to Severe DR and 637 images 
corresponding to Proliferate DR, were used for training and the remaining 10% of the images, or a total of 158 images, 
were used for testing. The confusion matrix associated with the second network for the separation of Severe DR and 
Proliferate DR is shown in Table 2. As shown in this table, the overall accuracy for this second network was found to be 
84.8%.  

Table 2. Confusion matrix of the second deep neural network for the EyePACS dataset 

           Actual   

Classified 
Severe DR Proliferate DR 

Severe DR 78 9 

Proliferate DR 15 56 

To examine the overall response or accuracy, the output of the first network corresponding to Profound DR was passed 
to the second network. The confusion matrix for the combined response outputting the five stages of DR is shown in 
Table 3, indicating an overall accuracy of 87.4%.  

Table 3. Confusion matrix of the combined deep neural networks for the EyePACS dataset 

           Actual 

Classified 
Not DR Mild DR Moderate DR Severe DR Proliferate DR 

Not DR 994 6 0 0 0 

Mild DR 41 201 2 0 0 

Moderate DR 51 54 424 0 0 

Severe DR 7 6 29 41 4 

Proliferate DR 7 0 21 15 28 

 

APTOS Dataset - The first deep neural network for the APTOS dataset involved separating the presence or absence of 
diabetic retinopathy by placing no diabetic retinopathy (label 0) in one class, and all the diabetic retinopathy stages 
(labels 1, 2, 3, and 4) in another class. This model was trained using randomly selected 90% of the total 3,662 images, or 
1,624 images belonging to no DR and 1,671 images belonging to DR. This network was tested on the remaining 10% of 
the images or 367 images in the dataset. The confusion matrix associated with the first network to detect the presence or 
absence of diabetic retinopathy is shown in Table 4. The second network was trained to separate the DR images into four 
stages using randomly selected 90% of the total 1,857 DR images, which corresponded to 370 mild images, 999 
moderate images, 193 severe images and 295 proliferate images. The images classified as DR in the first network are 
passed to the second network to evaluate the overall performance. Table 5 shows the confusion matrix of the second 



 
 

 

 

network focusing on the classification of DR images into four stages. The overall confusion matrix for these two deep 
neural networks appears in Table 6, indicating an overall accuracy of 88.5%. 

Table 4. Confusion matrix of the first deep neural network for the APTOS dataset 

           Actual   

Classified 
Not DR DR 

Not DR 158 23 

DR 0 186 

 
Table 5. Confusion matrix of the second deep neural network for the APTOS dataset 

           Actual  

Classified 
Mild DR Moderate DR Severe DR Proliferate DR 

Mild DR 30 6 0 1 

Moderate DR 0 100 0 0 

Severe DR 0 4 12 3 

Proliferate DR 0 5 0 25 

 
Table 6. Confusion matrix of the combined deep neural networks for the APTOS dataset 

           Actual 

Classified 
Not DR Mild DR Moderate DR Severe DR Proliferate DR 

Not DR 158 8 15 0 0 

Mild DR 0 30 6 0 1 

Moderate DR 0 0 100 0 0 

Severe DR 0 0 4 12 3 

Proliferate DR 0 0 5 0 25 

4. REAL-TIME IMPLEMENTATION ON SMARTPHONES 

The implementation aspects of the deep learning models running in real-time on smartphones as apps are discussed in 
this section.  

4.1 Deep learning and smartphone software tools 

After designing the deep learning models, they are implemented on smartphones (Android and iOS) to run in real-time 
as per the guidelines developed by our research team in reference2. The steps to perform the real-time implementation of 
the deep learning model appear in Figure 6.  

The networks or the deep learning models are developed here by using TensorFlow and Keras in Python. TensorFlow is 
a dataflow programming library developed by Google24. TensorFlow models can be easily integrated with the Android 
software environment. Keras25 is a higher level library written in Python which allows TensorFlow to be used as its 
backend and can be extracted to implement Android apps. The use of TensorFlow Lite enables the deployment of deep 
learning models on mobile devices24.  CoreML is a software framework which was developed by Apple. It allows 
converting trained Keras models into CoreML models26, which can then be deployed on iOS devices.  



 
 

 

 

The integrated software development environment (IDE) for Android app development is Andriod Studio which uses the 
Java programming language27. Xcode is the integrated development environment (IDE) for iOS app development which 
uses the Objective-C or Swift programming language28. All the software tools mentioned above are publicly available 
and are regularly updated by their respective organizations. 
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Figure 6. Steps for real-time implementation on smartphone platforms 

4.2 Deployment on iOS smartphones  

The deep neural network model trained in Keras is saved as an HDF (Hierarchical Data Format .h5) file format. The 
architecture and the connection weights of the model are saved together in the HDF file as numerical arrays. After 
loading the .h5 keras model into Python, the CoreML framework converts the Keras model into CoreML model using 
the tools provided by CoreML. This converted CoreML model is saved as an ".mlmodel" file. The conversion provides 
an option to define the input as an image or as a multidimensional array. If an image is specified as the input option, then 
another option is provided to define the pre-processing parameters used for that model. Because of the variation of pre-
processing through different models, this is a useful option as it allows a model to be used on raw images without 
explicitly applying pre-processing for every different model. Finally, the CoreML model is deployed on an iOS device 
through the Xcode IDE using Swift.   

4.3 Deployment on Android smartphones   

At first, the deep neural network model is trained in Keras with TensorFlow backend and the TensorFlow model is 
extracted from the Keras model. After extracting the TensorFlow model, it is saved as a Protocol Buffer (.pb) file by 
using the input/output utility graph. Similar to a HDF file, the architecture and the connection weights of the model are 
stored in the .pb file. Then, the TensorFlow Lite interpreter is used to convert the .pb model to a .tflite model. This .tflite 
model is implemented on Android smartphones using Java trough the Android Studio IDE. TensorFlow Lite is used to 



 
 

 

 

create a session to handle the model computations, thus making it easier for users to focus on deploying and testing the 
model.  

The steps for the deployment of deep learning models on Android and iOS smartphones are described in more details in 
reference2.  

5. REAL-TIME PROCESSING RATES  

iPhone 7 and Google Pixel 2 Android phones were used to run the trained deep learning models developed in this work. 
Screenshots of the implemented app on iPhone 7 are shown in Figure 7 for the four stages of DR and the screenshots of 
the implemented app on Google Pixel 2 Android phone are shown in Figure 8 for the four stages of DR. If no DR gets 
detected (stage 0), the app screen displays “No DR detected”. When DR gets detected, it displays one of the four DR 
stages with the highest probability: “Mild DR” for stage 1, “Moderate DR” for stage 2, “Severe DR” for stage 3, or 
“Proliferate DR” for stage 4. 

On iPhone 7, the app size is 132 MB. The app makes a decision at the rate of 3 frames per second, or one classification 
takes about 250ms. On Google Pixel 2, the app size is 73 MB. The app makes a decision at the rate of 4 frames per 
second, or one classification takes about 200ms.  

    
Figure 7. Sample screenshots of the app running in real-time on iPhone 7  

 

    

Figure 8. Sample screenshots of the app running in real-time on Google Pixel 2  

 



 
 

 

 

6. CONCLUSION  

Towards achieving a cost-effective and widely accessible first-pass diabetic retinopathy eye examination, a smartphone 
app has been developed in this work by capturing and processing its camera images in real-time. The app uses two 
trained deep neural networks, one to classify the absence of diabetic retinopathy and three stages, and the other to further 
classify the last stage into two stages for a total of five stages with zero stage indicating the absence of diabetic 
retinopathy. It has been shown how these trained networks are turned into a smartphone app running in real-time on both 
Android and iOS smartphones. The real-time app developed in this work enables conducting first-pass eye exams in 
clinics or remote areas whose access to fundus cameras and ophthalmologists are limited as well as in many third-world 
countries with no or limited access to fundus cameras and ophthalmologists.   
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