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Abstract 

There are still debates regarding the mechanisms that lead to hot cracking in parts build by 

additive manufacturing (AM) of non-weldable nickel-based superalloys. This lack of in-depth 

understanding of the root causes of hot cracking is an impediment to designing engineering 

parts for safety-critical applications. Here, we deploy a near-atomic-scale approach to 

investigate the details of the compositional decoration of grain boundaries in the coarse-grained, 

columnar microstructure in parts built from a non-weldable nickel-based superalloy by selective 

electron-beam melting. The progressive enrichment in Cr, Mo and B at grain boundaries over 

the course of the AM-typical successive solidification and remelting events, accompanied by 

solid-state diffusion, causes grain boundary segregation induced liquation. This observation is 

consistent with thermodynamic calculations. We demonstrate that by adjusting build 

parameters to obtain a fine-grained equiaxed or a columnar microstructure with grain width 

smaller than 100 μm enables to avoid cracking, despite strong grain boundary segregation. We 

find that the spread of critical solutes to a higher total interfacial area, combined with lower 

thermal stresses, helps to suppress interfacial liquation.  
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1 Introduction 

Additive manufacturing (AM) has a great potential for the production of novel engineering 

components for aerospace and power generation applications, where nickel-based superalloys 

are predominantly used [1]. However, it is very challenging to produce safety-critical 

components by AM with zero-crack tolerance, yet the digitalisation inherent to AM promises 

large gains in manufacturing and repair efficiency [2]. The AM community currently invests 

great efforts to 3D print well-known superalloys compositions considered as non-weldable such 

as IN738 [3–5], CMSX-4 [6], CM247LC [7] among others [8,9]. These alloy grades, which 

have been classified as non-weldable due to their Ti and Al contents [2] usually imply formation 

of large volume fractions of γ'-precipitates and were observed to undergo severe cracking when 

welded or AM built. 
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Amongst the possible technologies to fabricate parts highly susceptible to cracking, selective 

electron-beam melting (S-EBM) is one of the most promising. The main advantage is the pre-

heated powder bed (typically around 1000°C for nickel-based superalloys) resulting in the 

reduction of thermal stresses arising from cooling. This pre-heating however makes the thermal 

history of the sample more complex and sometimes difficult to control. In addition, S-EBM 

offers precise control over the melting strategy and hence enables tuning of the microstructure 

by modifying the thermal gradient and solidification velocity. Pragmatic approaches have been 

deployed, mainly on the weldable Inconel 718 grade, to adjust parameters to modify the 

direction of the main thermal gradient with respect to the building direction and the 

solidification velocity [10–17]. Successful attempts have been reported in the literature. Helmer 

et al. [10,11] showed that the grain size and grain morphology can be modified by appropriate 

changes of the melting parameters. Dehoff et al. [12,13] have demonstrated that a spatially 

controlled crystallographic texture within Inconel 718 components can be achieved. Such 

microstructure engineering approach was further investigated by Koepf et al. [14,15] and 

Rhagavan et al. [16,17].  

Cracks developing during S-EBM of non-weldable alloys are often qualified as hot cracks 

because cracking occurs in presence of liquid films, as is the case for the grade investigated in 

the present work [18]. The combination of liquid films and thermal stresses arising from 

shrinkage and cooling leads to the development of hot cracks. Hot cracks were found to 

systematically propagate along high angle grain boundaries (HAGBs) while low angle grain 

boundaries (LAGBs) were not susceptible to hot cracking, similarly to what was reported in the 

welding literature [19]. This difference of cracking sensitivity between HAGBs and LAGBs 

was rationalized using the theoretical model of Rappaz et al. [20] that describes the last stage 

of solidification. Relying on the concept of repulsive (stabilization of liquid films) and attractive 

boundaries (dendrite coalescence), it was explained that the coalescence undercooling was 

larger for HAGBs than for LAGBs, which leads to liquid films stable at lower temperatures 

along HAGBs. The latter observation suggests that producing samples without HAGBs can be 

considered as a possible route to achieve crack-free parts. Körner et al. [21] and Chauvet et al. 

[22] took advantage of the digital control of the melting strategy to grow single crystals of non-

weldable nickel-based superalloys by S-EBM. Interestingly, the single crystals grown by S-

EBM are free of cracks, in agreement with the observation that cracks propagate exclusively 

along HAGBs. However, in the work presented in ref. [18], the exact mechanism leading to 

cracking observed along HAGBs was still under debate, i.e. solidification cracking vs. liquation 

cracking. Identifying the root causes of cracking requires a detailed investigation of solutes 

segregating along HAGBs at the near-atomic scale. Understanding of the underlying interface 

decoration and decohesion mechanisms should thus help to guide strategies to avoid the 

development of those critical defects and allow to produce crack-free parts. 

Here, we perform a detailed microstructural characterization by scanning electron microscopy 

(SEM) and atom probe tomography (APT) of cuboidal samples fabricated by S-EBM from non-

weldable crack sensitive superalloy powders [8], which we use to guide thermodynamic 

calculations. Our new insights enable us to identify the atomic-scale cause of cracking along 

HAGBs in the columnar microstructure formed by S-EBM. We show that cracks are caused by 

segregation-induced liquation at HAGBs decorated by segregated films enriched in Cr, Mo and 

B. Interestingly, B is originally added to enhance grain boundary cohesion. The flexibility in 

processing offered by S-EBM allows us to demonstrate that by controlling the interface area, 



in particular the grain boundary density, we can limit solute enrichment in the intergranular 

region and prevent critical liquation, alleviating cracking susceptibility. Increasing drastically 

the interface area not only helps to limit solute enrichment at HAGBs but also to contribute to 

better distribute thermal stresses that act as the mechanical driving force for hot cracking. This 

grain boundary engineering strategy is demonstrated in two new crack-free builds, respectively 

exhibiting an equiaxed and a fine-columnar microstructure (grain width < 100 μm). Shedding 

light on fundamental aspects of cracking allows us to derive atomic-scale inspired digital 

metallurgy design pathways to enable application of these alloys in safety-critical applications, 

such as blades in aero-engines. 

2 Experimental procedures 

2.1 Powder characteristics 

The material investigated is a non-weldable nickel-based superalloy. The pre-alloyed powder 

was produced by gas atomization and provided by ERASTEEL. The powder composition was 

measured by thermal-conductivity-infrared for the C and O, and by inductively-coupled 

plasma- atomic emission spectroscopy (ICP-AES) for the other elements. The chemical 

composition is reported in at.% in Table 1, listing the most relevant key elements.   

It is known that in some cases the bulk composition can be altered after the deposition, such as 

in the case of Al which is sensitive to evaporation when processing Ti-6Al-4V alloy by S-EBM 

[23]. However, chemical analysis performed on the produced bulk samples revealed no 

substantial alteration of the bulk composition after S-EBM processing. The as-received powder 

batch exhibits mostly a spherical morphology with some satellites. The powder characteristics 

are summarized as follows:  D50 = 75 μm, a powder bed density of 53.6% and a flow time of 

16.0 ± 0.1 s for 50 g of powders going through a 2.54 mm diameter orifice (Hall flowmeter).  

 

Table 1: Chemical composition of the powders used in the present investigation in at.%. 

Ni Cr Mo Co Ti Al Zr Hf B C Si 

Bal. 12.20 3.80 14.85 5.30 8.70 0.02-0.025 0.18-0.21 0.083 0.06-0.07 0.04 

 

2.2 Selective electron beam melting 

Samples with dimensions 23 x 23 x 30 mm (width x length x height) were built in an ARCAM 

A1 Electron Beam Melting machine operating at 60 kV accelerating voltage under a controlled 

pressure of He set to 2.10-3 mbar, with the layer thickness set to 50 μm. Two different versions 

of the same composition were built. The first one was produced using the automatic mode while 

the second one was melted using the manual mode. The automatic mode resulted in a sample 

with relatively coarse columnar-shaped grains and it will be denoted from now as cracked 

columnar sample. The second sample was built with a higher scanning speed and a reduced 

hatch spacing resulting in a reduced linear energy (0.119 J/m²) when compared to the one 

employed in the automated mode (0.5-0.65 J/mm²). The significant overlap of the beam scanned 

multiple times over adjacent locations leads to an elongated melt pool perpendicularly to the 

hatching [10,11]. This hinders epitaxial growth of new grains on the grains from the layer 



underneath and leads to an equiaxed microstructure [11,24]. This sample is denoted as crack-

free with equiaxed grains. All the used processing conditions were preliminary optimized to 

achieve dense samples (density >99.8%) with no lack-of-fusion defects. Table 2 summarizes 

the main parameters used to build the two samples. The building direction is denoted as Z. 

A build plate made of a polycrystalline hot-rolled 10 mm thick stainless steel plate, grade EN 

1.4307 was used during the production of all the samples. Although, its mechanical resistance 

i.e. creep, is sufficient to allow us to run stable builds, after depositing the samples it was 

slightly deformed. Diffusion between the substrate and the deposited material likely occurs over 

limited distance, however in this study only the upper parts of the samples were investigated 

which are not affected by this diffusion.  

In each case, the build plate was heated at 1050°C and the preheating temperature was 

maintained at 1050°C throughout the build and the focus offset set to 20 mA during the melting 

steps. When operated in automatic mode, the melting parameters, such as caused by the beam 

power and the scanning speed, were adjusted as a function of the geometry through the use of 

automated functions such as the speed function or turning point function into the software EBM 

Control 3.2, see Table 2 for more details. In the case of the manual mode, the power and scan 

speed were imposed and do not depend on the geometry. In both cases, the melting strategy 

consisted in scanning the area defined by the CAD in a snake-like manner with a line order set 

to 1 and the scanning direction was also rotated by 90° after every layer.  

 

Table 2: Summary of the main processing parameters used for building the three samples. 

 Cracked columnar  Crack-free  with 

equiaxed grains 

Mode Automatic* Manual 

Cracks Yes (upper part Z >12-15mm) No 

Preheating Temperature, Tp (°C) 1050 1050 

Linear Energy = P/v (J/mm²) Auto* (0.5-0.65) 0.119 

Line Order 1 1 

Focus Offset, FO (mA) 20 20 

*Power and scanning speed automatically determined by the thermal model used in the EBM Control 3.2 software which depends on the 

geometry of the parts to be built. When running the automatic mode of the EBM control 3.2 software, the scanning speed changes spatially (x, 

y, z) through the use of automated functions: 

- Speed function: a function that changes automatically the scan speed as a function of the beam power. The higher the speed 

function, the higher the scan speed. For cuboidal samples, the scan length is constant, hence the beam power is constant. 

- Turning point function: a function that further changes the beam speed to account for edge effects. To reduce the applied energy 

near the edge, this function is used to increase the beam speed as it comes to an edge. 

- Thickness function: a function that modifies the beam speed to compensate for the lower amount of energy required in overhangs 

based on the distance down to powder. This function was not operating for cuboidal geometries. 

 



2.3 Mechanical testing  

Micro-specimens with a gauge length of 3 mm, a width of 1 mm, and a thickness of 0.8 mm 

were machined by Electron Discharge Machining (EDM) from the as-built S-EBM samples, 

with the load axis normal to the building direction Z. Tensile tests were performed at room 

temperature using an ADAMEL DY35 universal testing machine equipped with a 2kN load cell 

at a strain rate of 5.10-4 s-1. The strain was measured by digital image correlation (GOM-

ARAMIS software). One side of the gauge length of the micro-tensile samples was preliminary 

covered with a speckle made of black and white paintings. Images were recorded during the 

tensile tests at a frequency of 1 Hz.  

2.4 Scanning electron microscopy 

The as-build samples were cut along the build direction Z and they were mechanically polished 

with abrasive media to a 0.04 μm colloidal silica finish for microstructural characterization. 

Optical microscopy was used for observations at large scale whereas a Zeiss Merlin field 

emission gun scanning electron microscope (FEG-SEM) was used in backscattered mode for 

fine microstructural observations. Electron backscattered (EBSD) analysis was performed in a 

Zeiss Ultra FEG-SEM operated at 20kV acceleration voltage with a step size of 2 μm.  Data for 

maps of 1mm2 size were collected using the TSL-OIM software. A grain was defined as a group 

of pixels containing at least 10 pixels, including multiple rows, and having a tolerance angle of 

5°.  

2.5 Atom probe tomography 

In order to study the segregation of solutes at grain boundaries, specimens for atom probe 

tomography (APT) were prepared by following a site specific lift-out protocol outlined in Ref. 

[25], using a FEI Dual Beam FIB Helios 600i. The APT specimens were extracted from random 

high angle grain boundaries from both samples, following the procedures described in Ref. [26]. 

APT specimens were analyzed using a Cameca LEAP 5000 XR instrument operating in a laser 

mode with pulse rate at 125 kHz, pulse energy 0.4 pJ and temperature 60 K. The commercial 

package IVAS 3.8.2 was used for data reconstruction and analyses. In addition, the segregation 

at grain boundaries as observed by APT was further analyzed by making use of the method 

described in Ref. [27].  

Finally, in the case of the sample with equiaxed grains, correlative Transmission Kikuchi 

diffraction (TKD) and APT analysis was performed on the APT specimens to confirm the 

presence of a grain boundary prior to APT experiments. TKD data were obtained with a Zeiss 

Merlin FEG-SEM equipped with a Bruker Optimus detector. For the measurement acceleration 

voltage of 30kV and probe current of 1.5nA was used with a step size of 5nm at 70 fps. 

2.6 Thermodynamic calculations 

To evaluate the effect of the content of B, Cr and Mo on the solidification path, thermodynamic 

calculations were performed using the Thermo-Calc software making use of the TTNI8 

database dedicated to nickel-based superalloys [28]. Calculations of the solidification path 

assuming constitutive segregation based on the Scheil-Gulliver model were performed 

including the liquid,  and ' phases considering both, excluding and including the formation of 

M2B borides. No diffusion in the solid state and infinite diffusion in the liquid was assumed for 

the Scheil-Gulliver model. 



3 Results 

3.1 Microstructural characterization: cracked columnar sample 

The first build, achieved by operating in automatic mode, is shown in Figure 1(a). A columnar 

microstructure develops with numerous thin grains, which progressively becoming coarser 

from approximately the building height of 5 mm, as evidenced by the EBSD maps in Figure 

1(b-d). The sample exhibits a strong <001>-fiber texture typical of directionally solidified 

superalloys and FCC alloys. Cracked HAGBs are often observed (Figure 1(e))in the upper part 

of the build (height > 10 mm), (Figure 1(f)). The opened fracture surface in Figure 1(f) reveals 

a dendritic morphology typical of hot cracking [20], which implies that a continuous liquid film 

had covered almost the sample’s entire cross section. 

 

Figure 1: Overview of the cracked columnar sample. a) Optical micrograph of the entire height showing 

a graded microstructure along the building direction. b)-d) EBSD IPF-Z (building direction) maps 

illustrating the columnar grain width evolution along the building direction and the strong 

crystallographic fiber texture. e) Enlarged view of a HAGB (misorientation 26°) affected by hot cracking 

in the upper region of the specimen. f) Fracture surface after tensile testing giving evidence of the 

presence of liquid films. 



Cracking only takes place at high-angle grain boundaries [21] and building height greater than 

10 mm in the build, where the columnar grains are wider than 100 μm. LAGBs, consisting of 

dislocation arrays, are systematically found to be crack-free. Importantly, cracks do not form 

or propagate through the final melted layer. This means that the final melted layer is the only 

region where the microstructure inherited from solidification is unaffected by subsequent layers 

or preheating at the top of the build, as revealed by Figure 2. 

 

Figure 2: Optical micrograph towards the top of the cracked columnar sample highlighting that cracks 

do not propagate through the last melted layer. Note that the dendritic microstructure can only be seen 

in the final melted region while it is erased in the underlying layer because the complex thermal history 

acts as a homogenization treatment. 

 

Particles with bright contrast are often observed at cracked HAGBs in backscattered electron 

micrographs. Figure 3(a-c) shows a decorated HAGB between grains containing the typical 

/' microstructure. Atom probe tomography (APT) reveals that these particles are M2B borides, 

containing almost 40 at.% Mo and 20 at.% Cr as reported in Table 3, consistent with previous 

reports [18,29]. Not all HAGBs appear cracked, but most HAGBs bearing coarse borides are 

cracked. By contrast, LAGBs were not found to be cracked and were not decorated by M2B-

borides. Figure 3(a) shows for instance cracks on either side of the region along the boundary 

where the boride formed and coarsened. Figure 3(d) shows that recrystallized regions exist 

near the borides, which are the sign of either high thermal stresses causing local plastic 

deformation, thereby storing dislocations that subsequently induce recrystallization, or of the 

coarsening of the borides [30,31]. The local grain boundary composition affects the stability of 

the liquid film and subsequently the hot crack formation, resulting in some cases in non-

continuous cracks where isolated sections of solid bound the two grains as illustrated by Figure 

3(a) and Figure 3(b). 



 

Figure 3: a) Borides forming solid bridges across a high-angle grain boundary in the cracked columnar 

sample. b) Higher magnification backscattered electron micrograph from a cracked grain boundary of 

the columnar grain shape sample containing borides. c) Backscattered electron micrograph from a grain 

boundary of the cracked columnar grain shape sample containing borides and d) EBSD IPF-Z (building 

direction) map corresponding to the region denoted by the red dashed box in Figure 2c showing 

recrystallization in the vicinity of intergranular borides. 

Table 3: Chemical composition of M2B boride in the columnar grain shape sample as measured by APT 

(at.%). 

 B Mo Cr Ti Co Ni 

M2B 33.86±0.030 38.16±0.030 21.90±0.026 2.11±0.009 2.0±0.009 1.80±0.008 

 

The presence of borides at cracked HAGB is a strong indication that the segregated films 

contained a higher level of B and boride-formers such as Mo and Cr prior to boride formation. 

This is confirmed by the APT results in Figure 4 obtained close to a cracked HAGB 

(misorientation of 26°) containing several relatively coarse borides. B, C, Mo, and Cr segregate 

to the grain boundary up to 2.5, 0.5, 10.0 and 30.0 at.%, respectively while Ni, Al and Co are 

depleted as readily visible in the composition profiles plotted in Figure 4(b) and (c) 

respectively. Besides, C and Si were found to segregate to the grain boundary up to 0.5 and 0.2 

at.%, respectively, but no specific role on the hot cracking was observed from their presence at 

the grain boundary.   The segregation behavior observed here is in agreement with previous 

reports [26,32,33]. Segregation of Zr and Hf at the grain boundary was not observed, instead 

they were found to partition within the γ', as shown in Supplementary Figure 1(a).  



 

Figure 4: a) Atom probe reconstruction from a random high angle grain boundary in the cracked 

columnar region. The γ/γ' interfaces are shown by an iso-composition surface encompassing regions in 

the data containing over 7.0 at.% Cr. The grain boundary is highlighted by an iso-composition surface 

with a threshold of 1.0 at.%. B and c) One-dimensional composition profiles across the γ'/GB/γ interface 

as denoted by arrow #1 in Figure 4a are plotted for the minor additions and main alloying elements. 

Error bars are shown as lines filled with color and correspond to the 2σ counting error. 

3.2 Microstructural characterization: crack-free sample with equiaxed grains 

Figure 5(a) shows the sample produced by adjusting the building parameters manually, with 

full control over the input power, scanning speed and hence melting strategy. The EBSD maps 

in Figure 5(b-d) were obtained approximately at the same height as in Figure 1, and they reveal 

a homogeneous microstructure with equiaxed grains exhibiting a random crystallographic 

texture with a maximum orientation density of only 1.8 times the random orientation 

distribution in the {001}-pole figure. Figure 6(a) reveals only gas porosity [20] and no lack-

of-fusion-like defects, while Figure 6(b) is a close-up of the typical /' microstructure within 

grains where no borides, no cracks or micro-voids at grain boundaries were found. However, a 

brightly imaging, discontinuous segregated film appears at HAGBs, shown in Figure 6(b). That 

film was further investigated by APT. 

 



 

Figure 5: Overview of the crack-free equiaxed sample. a) Optical micrograph of the entire height 

showing a homogeneous microstructure. b)-d) EBSD IPF-Z (building direction) maps illustrating grains 

with equiaxed structure. A1 and A2 are the X and Y scanning direction of the electron beam during the 

deposition.  

 



 

Figure 6: Backscattered electron micrographs from the crack-free with equiaxed grain sample: a) 

showing only gas pores in the microstructure and absence of intergranular cracks, b) showing a 

discontinuous segregated film at GBs. 

Figure 7a shows an APT reconstruction from a HAGB from the crack-free sample with 

equiaxed grains. TKD was performed on the APT specimen prior to the analysis, shown in 

Figure 7(a), and confirms the high-angle nature of the grain boundary (53° misorientation). 

One-dimensional composition profiles across the grain boundary show clear segregation of B, 

C, Mo, and Cr segregate 7.0, 0.5, 25.0 and 30.0 at.%, respectively. In this case, the amount of 

B, Mo and Cr at the grain boundary is higher than in the cracked columnar sample (B, Mo, and 

Cr segregate to the grain boundary up to 2.5, 10.0 and 30.0 at.%) and in samples of a similar 

grade produced through a powder metallurgical route [29,34].  

Figure 8a shows a second APT analysis approximately 2 μm farther along the same grain 

boundary. This is also confirmed by the TKD analysis conducted prior to APT analysis. One-

dimensional composition profiles across the grain boundary, as indicated by arrow #1 in Figure 

8a, reveal segregation of B, C, Mo and Cr up to 4.5, 0.5, 15.0 and 26.0 at.%, respectively. It 

can be seen that the amount of solutes segregating to the same grain boundary changes over a 

distance lower than a few micrometers. In particular, in the grain boundary segment shown in 

Figure 8, the presence of the segregated thin film consumes grain boundary solutes resulting 

in lower amounts of solutes compared to the grain boundary segment being approximately 2 

μm farther and that is shown in Figure 7. Similar to the columnar cracked sample Zr and Hf 

were found to partition to γ' and did not segregate at the grain boundary, as shown in 

Supplementary Figure 1(b). 

The segregated film shown in Figure 8(a) contains regions with a B content higher than 20.0 

at.%, and  Cr and Mo at 25–35 at.%, as revealed in Figure 9(a). These are akin to off-



stoichiometric boride precursors. Figures 9(b-d) are two-dimensional composition maps 

calculated using the protocol outlined in Ref. [35] for Mo, Cr and B, showing that, away from 

these precursors, Mo, Cr and B, are only enriched up to 6.0, 11.0 and 2.0 at.% respectively, 3–

4 times lower than in Figure 7(b) and Figure 7(c). These results evidence how the consumption 

of solutes by the growth of the borides affects the grain boundary’s composition.  

 

 

Figure 7: Atom probe reconstruction from a random high angle grain boundary from the crack-free 

equiaxed grain shape sample alongside an IPF map from TKD. The γ/γ' interfaces are shown with an 

isosurface with a threshold of 18 at.% Cr and the grain boundary is shown with an isosurface delineating 

regions containing more than 2.0 at.% B. b)-c) One-dimensional composition profiles across the γ/GB/γ' 

interface as denoted by arrow #1 in Figure 7a are plotted for the minor additions and main alloying 

elements. Error bars are shown as lines filled with colour and correspond to the 2σ counting error. 

 



 

Figure 8: a) Atom probe reconstruction from the cracked-free equiaxed grain shape sample and the same 

random high angle grain boundary as in Figure 7 and IPF map from the TKD analysis. The γ/γ' interfaces 

are shown with an isosurface with a threshold of 7 at.% Cr and the segregated film is shown with an 

isosurface at 10.0 at.% B. b)-c) One-dimensional composition profiles across the γ/GB/γ' interface as 

denoted by arrow #1 in Figure 8a are plotted for the minor additions and main alloying elements.  Error 

bars are shown as lines filled with colour and correspond to the 2σ counting error.  

 



 

Figure 9: a) 1D composition profiles across the GB along arrow #2 across the boride precursor in Figure 

8a. Error bars are shown as lines filled with colour and correspond to the 2σ counting error. b)-d) 2D 

compositional maps calculated inside the grain boundary plane for Mo, Cr and B. Note that the color-

bar scale gives the solute content in at.%. 

However, these thin discontinuous grain boundaries segregated films are not as detrimental as 

the hot cracks observed in the cracked columnar sample, as revealed by small-scale tensile tests 

performed on specimens machined from the as-produced samples. Figure 10 shows the 

engineering stress vs. engineering strain curves resulting from 3 tensile tests for the cracked 

columnar and crack-free equiaxed microstructures. The coarse-grained columnar samples show 

a very brittle behavior, indicative of samples that already contain critical defects. The tensile 

tests performed on the crack-free samples with equiaxed grain structure show a vastly improved 

behavior from approximately 5.0 % in the cracked columnar sample up to between 20.0 and 

27.0 % engineering strain, with no tendency for early fracture, due to the absence of hot cracks. 

 

 

 

 

 

 

 

 



 

Figure 10: Engineering strain vs. engineering stress curves. Three micro-specimens with a 

gauge length of 3 mm, a width of 1 mm, and a thickness of 0.8 mm were tested for the cracked 

columnar microstructure and three others for the crack-free equiaxed microstructure. The load 

axis was normal to the building direction Z. 

 

3.3 Thermodynamic calculations 

To evaluate the influence of the content of B, Cr and Mo on the solidification path, 

thermodynamics calculations were performed using Thermo-Calc software making use of the 

TTNI8 database dedicated to nickel-based superalloys [28]. Calculations of the solidification 

path based on the Scheil-Gulliver model were performed including the liquid,  and ' phases 

and excluding or including the formation of M2B borides, as reported in Figure 11(a) and (b), 

respectively. No diffusion in the solid state and infinite diffusion in the liquid were assumed in 

the Scheil-calculations. The calculations allow to simulate sequential steps from the liquidus 

temperature to an approximate solidus temperature, giving the fraction of solid and composition 

of the new liquid at each temperature. The comparison between Figure 11(a) and (b) shows 

that liquid films remain stables at lower temperatures when considering that borides are not a 

solidification product but rather form in the solid state. The solidus is 60°C lower when 

excluding borides from the calculations. The composition of the liquid as a function of the 

temperature of the investigated alloy is plotted in Figure 11(c) as a function of the mole fraction 

of B, Cr and Mo respectively in orange, pink and red when assuming that borides are not a 

solidification product (boride not considered in the calculation).  The three solutes, namely B, 

Cr and Mo strongly partition to the liquid, and the liquid is hence enriched in those solutes as 

the solidification proceeds, reaching approximately 6.0, 19.0 and 24. at.% respectively during 

the last stage of solidification.  

 



 

Figure 11: Solidification paths relying on the Scheil-Gulliver assumptions (a) without and (b) with the 

precipitation of M2B borides as a solidification product.  Calculations performed using Thermo-Calc 

and relying on TTNI8 database. c) Evolution of the B-, Cr- and Mo-content as a function of the 

temperature in the liquid phase when considering only , ′ and liquid (excluding borides). 

4 Discussion 

4.1 Grain boundary segregation and boride formation 

Segregation to grain boundaries may originate in AM first from solidification by sweeping of 

solutes during grain growth as new layers are deposited, and second by solid-state diffusion as 

the sample is maintained at high temperature (in S-EBM a heated powder bed is used). The 

intergranular films get enriched in solutes, such as Cr, Mo and B, during the building process, 

because of remelting and most likely solid-state diffusion, particularly of fast diffusers such as 



B [26]. HAGBs accommodate larger amounts of solutes than LAGBs [35], partly due to lower 

their relatively higher interfacial energy [36].  

Figure 4, Figure 7 and Figure 8 show clear segregation of B, Mo, and Cr to the grain 

boundaries. Under non-equilibrium conditions, such as experienced during S-EBM, 

thermodynamic calculations of the first solidification event predict a substantial enrichment of 

B, Mo and Cr in the liquid as the temperature decreases, as reported in Figure 11(c). The 

enrichment predicted by the Scheil-Gulliver calculations is however likely insufficient to form 

borides during the first solidification event, which is supported by the absence of borides in the 

last deposited layer. Upon several remelting events, as B gets more enriched and thus 

concentrated, a critical composition of boride-formers is finally reached and borides can 

nucleate. They can likely form in the liquid or heterogeneously in the solid state, and coarsen 

quickly as HAGBs are fast diffusing paths. 

The small off-stoichiometric borides observed in the sample with equiaxed grains are an 

indication that the borides form and grow progressively during the build, and those observed 

here, albeit small, resulted from multiple reheating/remelting events. These small borides can 

thus be interpreted as early-stage variants of the larger borides observed in the coarse-grained 

columnar sample. The composition profile shows an enrichment of Co up to 18.0 at.% at the 

interface between' and the boride-precursor compared to 10.0 at.% within the ' precipitate 

and 5.0-10.0 at.% within the off-stoichiometric borides. This indicates outward Co diffusion 

from the boride towards the ' precipitate. Fully developed borides analyzed in the coarse-

grained columnar sample contain only approx. 2 at.% Co, while these precursors still contain 

approximately 5.0 to 10.0 at.%. Also these findings support the assumption that we observed 

here a transient state. In cases where borides do not deplete the film in B, Mo and Cr, the high 

content in these boride-forming solutes in the last solidified liquid films lowers the alloy’s 

solidus potentially significantly, as indicated by the results reported in Figure 11(a) and 11(c).  

The growth of borides consumes solutes, which, as indicated by thermodynamic calculations, 

increases the local solidus near the boride by locally decreasing the content of solutes such as 

B and Mo, as proven in Figure 9. In such a case, isolated sections of solid binding between two 

adjacent grains appear within the liquid film, as revealed in Figure 3(a). This finding illustrates 

the direct influence of the local partition effects and hence of the local solute composition 

content on the solidification, and hence on the cracking susceptibility.  

 

4.2 Hot cracking caused by grain boundary-segregation induced liquation 

Figure 1(f) gives strong indication that cracks are caused by interfacial liquation along some 

of the grain boundaries and Figure 2 demonstrates that the cracks do not originate directly from 

the first solidification event since no cracks propagate through the last melted layer. 

Thermodynamic calculations demonstrate a progressive enrichment in critical solutes within 

the liquid film during the last stage of the first solidification event. The characterization by APT 

of the films observed along HAGBs confirms a significant enrichment in these same critical 

solutes, namely Cr, Mo and B, which can be further accentuated by both successive remelting 

and solid-state diffusion. This is particularly true for fast diffusing elements, such as B.  

Regarding the cracking mechanism evolving during the building process, over the course of the 

deposition of the subsequent layers, a segregated film at a HAGB can turn into a liquid film. 

The drop in the solidus caused by the progressive enrichment in solute is referred to as 



“segregation induced liquation” [37]. The difference in volume between the liquid and solid 

phase associated with the solidification, i.e. the shrinkage effect, as well as thermal stresses 

caused by rapid cooling provide the mechanical driving forces for the development of hot cracks 

[38]. These local thermal stresses combined with segregation-driven grain boundary liquation 

cause hot cracking [39,40]. The building history of the cracked columnar sample that leads to 

cracking is summarised in the schematic in Figure 12. Ultimately, hot cracking requires a 

condition setting where concentration in the liquid reaches a critical value, which appears close 

to the critical composition to form borides, in combination with the solidification stresses. 

B is usually added to superalloys to increase GB cohesion [41] and limit damage at GBs under 

creep conditions. However, here it acts detrimental and promotes hot cracking as it depresses 

the solidus temperature, hence stabilize liquid films to lower temperatures. The limited number 

of grain boundaries in columnar samples will tend to have a more highly concentrated and 

continuous films extending over several grains, which appears to be highly detrimental to the 

structural integrity of the build. The typical criterion for non-weldability, namely the content of 

(Ti+Al) [2], does not seem to apply here. In the alloy that we investigated, this criterion is 

superseded by the content of B, Cr and Mo found at HAGBs. Ultimately, HAGBs crack because 

(i) the films are continuous and extend over several mm and (ii) the local composition of the 

segregated films allows the liquid to remain stable to relatively lower temperatures, hence 

causing grain boundary liquation during the deposition of the subsequent layers. Our 

observations imply that a bulk-criterion may not allow to appropriately depict near-atomic-scale 

processes. 

 



 

Figure 12: Schematic summary of the microstructural and compositional evolution during the build of 

the sample with hot cracks. 

It is also known that Zr promotes hot cracking in nickel-based superalloys produced by casting 

[42–45] and AM processes [5]. Although Zr is added in the bulk composition of the investigated 

alloy (0.02 – 0.025 at.%), APT revealed no segregation of Zr at the grain boundary. Our 

observation on Zr is consistent with other studies performed by Cadel et al. [29] and 

Lemarchand et al. [34]. By contrast, Zr was found to partition to the γ' phase for both columnar 

cracked and equiax crack-free samples, as shown in Supplementary Figure 1. However, in a 

different nickel-based superalloy, Zr was found to segregate at the grain boundary [5]. Besides, 

significant interactions between Zr and B were recently reported during casting [44]. In order 

to rationalize the interactions between the different alloying elements in such chemically 

complex metallic systems, further detailed investigations are required which are outside the 

scope of this present work.  

4.3 Strategies for additive manufacturing of crack-free superalloys components 

Better understanding and quantitative mapping of solute segregation to grain boundaries allows 

us to derive strategies to avoid cracking in additively manufactured superalloy parts. 

Modulating solute segregation at grain boundaries allows to better control liquation and better 

distribute the thermal stresses associated to solidification and rapid cooling. This can be 

achieved by controlling the total interfacial area. This means that, depending on the bulk 

concentration of critical solutes, one has to adjust the overall interfacial area to gain control 

over their segregation to HAGBs in order to avoid liquation.  



Interestingly, our APT results show higher solute enrichment along HAGBs in the crack-free 

sample with equiaxed grains compared to the ones in the cracked columnar sample. At first 

sight, it could be considered as not consistent with our argument stating that increasing the 

interfacial area should result in a less concentrated thin segregated films in critical solutes, i.e. 

the ones reducing the solidus temperature. The distribution of solutes at larger interfacial are 

would then allow to limit critical grain boundary segregation that can lead to liquation in 

presence of thermal stresses. However, those results have to be considered in light of the 

presence of coarse micron-sized borides that consume large quantities of critical solutes such 

as B, Mo and Cr. In the cracked sample with columnar grains we have extracted APT specimens 

in the immediate vicinity of coarse borides. We show how the precipitation of borides along 

HAGB and the associated partitioning of grain boundary solutes into these particles can affect 

locally the grain boundary segregation. Our results suggest that prior to boride formation, 

HAGBs were likely decorated by a continuous and highly segregated film, which increases the 

liquation susceptibility. However, this contradicts our observations at HAGBs in the sample 

with equiaxed grains, where no borides and no cracks were observed, only discontinuous 

segregated films. In the equiaxed sample, the grain boundary enrichment in B, Cr and Mo had 

also slowed down as solutes are spread over a wider area and must diffuse over longer distances 

to reach a high local composition. Conversely to the cracked columnar sample, the grain 

boundary area in the equiaxed samples translates into discontinuous segregated films as 

evidenced in Figure 6(b). In addition, the presence of more interfaces in the equiaxed version 

helps to better accommodate solidification shrinkage and thermal stresses, hence the likelihood 

of crack initiation is significantly reduced in comparison with a microstructure made of coarse 

columnar grains.  

It becomes apparent that a strategy for AM produced crack-free superalloys should have good 

control of the total interfacial area of the produced component. This will prevent from reaching 

the critical composition for the formation of detrimental continuous liquid films and undesirable 

local thermal stresses over very few interfaces.  

Based on this strategy aiming at controlling carefully the interfacial area, it would be possible 

to produce a crack-free columnar sample, by once again taking advantage of the digital control 

of the melting strategy offered by S-EBM, to achieve a critical grain width that leads to crack-

free samples. Figure 13 shows the evolution of grain width as a function of building height for 

the cracked columnar and crack-free equiaxed sample. It can be seen that for a grain width of 

approximately 20 μm, the equiaxed sample is crack free. Interestingly, the cracked columnar is 

also free of cracks over the first roughly 10 millimetres of the build which corresponds to a 

grain width lower than 100 microns. In other words, by producing a finer columnar 

microstructure with grain width < 100 μm, one should get samples free of cracks.  

We have produced a third sample which was built by using a relatively low power and slow 

scan speed (linear energy of 0.3 J/mm²) while maintaining a line offset of 0.1 mm. The low 

power maintains a relatively small melt pool that hinders grain coarsening and limits grain 

selection. As a result, the grain width remains small, approximately 45 μm as shown in Figure 

13 along the entire height of the build. An overview of this fine columnar microstructure shows 

no hot cracks, as revealed in Figure 14.   

A possible alternative route would consist in adjusting the composition to achieve lower level 

of solutes along HAGBs that decrease the solidus for instance or to form a continuous layer of 

e.g. borides to strengthen the grain boundaries [26,46].  



 

Figure 13: Quantification of grain width along the building direction for cracked and crack-free 

samples. Results from two different cracked columnar samples were included to highlight that 

the grain width is reproducible from one build to another. Blue and green dashed lines represent 

the average grain width for the sample with equiaxed and columnar grains, respectively. Red 

dashed line corresponds to the critical grain width, beyond that hot cracks occur. 

 

Figure 14: Overview of the crack-free fine-grained columnar sample: optical micrograph along with 

detailed EBSD IPF-Z (building direction) maps and pole figure illustrating the fine columnar grains 

along the building direction. A1 and A2 are the X and Y scanning direction of the electron beam during 

the deposition.  



5. Conclusions 

To conclude, we combined microstructural observations by optical and electron microscopy 

with near-atomic scale compositional investigation of critical microstructural features by atom 

probe tomography, and thermodynamic calculations to study additively manufactured builds 

from a non-weldable nickel-based superalloy produced by S-EBM. Our approach allowed us to 

provide fundamental insights into the dynamic interplay, at the nano-scale, of the local 

composition in critical regions, such as HAGBs, that leads to segregation-induced liquation 

cracking.  

The new fundamental understanding of the root cause of cracking set us on the path to tune the 

atomic-scale distribution of critical solutes, such as B, Cr and Mo, in particular along HAGBs.  

This was made possible by the high level of control over the melting strategy offered by the S-

EBM process. Through modifications in the melting strategy, we adjusted the geometry of the 

melt pool which turned the coarse-grained columnar microstructure sensitive to liquation 

cracking into either small grained equiaxed (grain width approximately 20 μm) or fine columnar 

microstructures (grain width approximately 50 μm). Increasing the interfacial area not only 

prevents high concentration of boride-forming elements that cause liquation, and hence avoids 

cracking but also helps to distribute thermal stresses over more interfaces. 
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Supplementary Figure 

 

Supplementary Figure 1: a) One-dimensional composition profiles across the γ'/GB/γ interface as 

denoted by arrow #1 in Figure 4a from the cracked columnar sample are plotted for Zr and Hf. b) One-

dimensional composition profiles across the γ/GB/γ' interface as denoted by arrow #1 in Figure 8a from 

the crack-free equiaxed sample are plotted for Zr and Hf. Error bars are shown as lines filled with colour 

and correspond to the 2σ counting error. 


