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Abstract— Using Internet of Things (IoT) in the health domain is 
one of the most promising approaches which offer a ubiquitous 
healthcare where sensors are used, in real time, for constant 
monitoring of patient’s symptoms and needs wherever he is. 
Wireless body area network (WBAN) is a highly suitable 
communication tool for the medical IoT devices. However, the 
conception of WBAN applications is still a challenging job that 
should take into consideration many technical requirements such 
as network lifetime, security level, network throughput and data 
criticality and prioritization. As a consequence, a trade-off 
between security effectiveness, energy efficiency, and QoS 
requirements can be perceived as a major performance objective. 
In this paper, we propose a stochastic game to balance the tradeoff 
between network performance and security level while taking into 
account the context dynamics. Simulation results show that the 
proposed approach can achieve an acceptable security level and is 
more efficient than benchmark algorithms in terms of network 
lifetime and throughput. 

Keywords- IoT, Health, WBAN, Game theory, Nash Equilibrium 
Adaptive security, QoS requirements. 

I. INTRODUCTION
The rapid technological advancements of wireless 

communication and sensing technologies have paved the way 
for the emergence of the Internet of Things (IoT). It is a 
megatrend in next-generation technologies that offers 
tremendous potential solutions for a wide range of applications 
and particularly e-healthcare which represents one of the most 
attractive application areas for the IoT [1]. Wireless body area 
network (WBAN) is a highly suitable communication tool for 
the medical IoT devices. However, the open nature of wireless 
communication makes the patient’s sensitive data prone to being 
eavesdropped, modified, injected, or replayed [2]. Therefore, 
security and privacy are growing concerns in WBAN that need 
a special attention while taking into account the body sensors’ 
limited resources and context changes. 

In WBANs, both security and system performance are 
primary requirements. Nevertheless, harsh environmental 
conditions and severe resource constraints of body sensors in 
terms of communication and computational capacity and buffer 
size make security costs become more tangible through energy 
depletion and performance degradation. Moreover, typical 
channel characteristics in WBANs such as high interference 
level and human body fading effects increase the risk of data 
drop and data error. Aside from that, failures in timely delivery 

of patient’s data can impact severely his condition. Therefore, 
traffic prioritization with QoS guarantee is primordial. 

In such stochastic environment, an effective way to handle 
problems cited above will be to provide an adaptive security 
based on the appropriate network and system information (the 
available resources in the specific context). Therefore, we 
propose a stochastic game for adaptive security to ensure a trade-
off between security effectiveness, energy efficiency, and QoS 
requirements. The context dynamics where smart things operate 
can be modeled using Markov Decision Process (MDP) to 
optimize the network’s desired objectives. Particularly, a body 
sensor node, as a decision maker, adopts an adequate policy and 
then transits from a state to another. The MDP model allows a 
balanced design to fit the environment conditions and 
dynamically optimize the network performance because the 
static decision may lead to inefficient resource utilization. 

The main contributions of this paper are threefold. First, we 
identify the dynamic context changes. Specifically, we consider 
the heterogeneous and dynamic traffic load, the channel 
characteristics and the threat model. Second, we study the 
tradeoff between adaptive security effectiveness and network 
performance via a stochastic game formulation. Finally, we 
prove the model efficacy and efficiency in terms of security 
level, energy consumption, and throughput. 

The remainder of this paper covers the following points: the 
proposed context-awareness modeling is described in Section 
III. In Section IV, we present the stochastic game formulation
for adaptive security under uncertain environment. Section V
describes the performance evaluations. The conclusion is drawn
in section VI.

II. RELATED WORK

Recently, combining security and quality of service (QoS) 
in the design and management of the IoT has attracted particular 
attention from researchers. Many studies were mainly based on 
game theory for performance optimization and it has been 
widely applied to avoid conflicts and make decisions [3]. By 
making an assessment of all possible situations, players will 
receive payoff according to their choices which can evaluate the 
efficacy of adopted strategy and then help the system to reach 
the optimization. In [4], authors proposed a Stackelberg game 
where defender plays the role of leader and the attacker acts as 
a follower in order to protect sensor nodes from external attacks 
based on energy defense budget against the corresponding 
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energy attack budget.  In [5], a bargaining game was presented 
through the cooperating nodes which results in the system 
Pareto optimality (Nash Bargaining solution) in order to 
optimize the network reliability in multi-hop Wireless Body 
Sensor Networks (WBSNs). The utility function determines the 
allocated bandwidths of cooperated nodes while taking into 
account dynamic environment, QoS, and fairness of resource 
allocation. In [6], authors proposed a decision support approach 
based on game theory in order to minimize security risks caused 
by sharing user’s data with IoT prosumer. A zero-sum game has 
been formulated between users who select a set of prosumers 
that optimize their payoffs and an adversary who menaces their 
private data. In [7], an evolutionary game has been applied to 
analyze the dynamics of the trust decision in Wireless Sensor 
Networks (WSNs). The authors studied the evolution of trust 
strategy where players select the cooperative strategy based on 
the payoff model expressed by node's trust degree. In [8], the 
authors proposed a repeated game-theoretic approach to detect 
and prevent the selfish decision of nodes which go to sleep 
without permission. The utility function concentrates on the 
power consumption where the node with higher transmission 
cost has more chance to enter on sleeping state. 

All the aforementioned works focus only on the security at 
the expense of other aspects such as energy efficiency and 
reliability and vice versa. For this purpose, it seems essential to 
guarantee a trade-off between different requirements based on 
adaptive security. In [9], authors presented a scenario-based 
approach to recognize and evaluate typical security trade-off 
situations in the IoT. Based on Event Driven Adaptive Security 
(EDAS) which aims to monitor and analyze thing-generated 
security events, their model provided a utility-based assessment 
method to ensure an optimum tradeoff between various 
contextual requirements (memory, energy, and security) 
involved in a decision. In [10], authors analyzed security 
metrics effects from the self-adaptive security perspective. The 
model closed the adaptive control loop of management of 
security risks, dynamically taking into account the requirements 
derived from the security metrics quality criteria to ensure 
efficiency over time applying the MAPE (Monitor-Analyze-
Plan and Execute) reference model. A game-based adaptive 
security model for IoT-eHealth application has been proposed 
in [11]. The authors used the Markov game theory to assess the 
battery life, the memory capacity, the channel bandwidth and 
the intruder model in order to determine whether or not 
messages' authentication should be enabled. They emphasize 
only a limited set of dynamic context parameters in the IoT-
eHealth and don’t consider user preferences in terms of traffic 
prioritization and QoS satisfaction. 

III. CONTEXT-AWARENESS MODELING

Different QoS requirements, flexibility, and security are 
important goals to be achieved for healthcare and medical 
applications in WBANs while considering limited resources of 
sensor body nodes. These requirements may vary over time 
according to the application scenario and also due to network 
dynamics. In this context, we define the WBAN challenging 
environment concerning traffic generation, communication 
channel, battery lifetime, and threat model to design the context 
dynamics of smart things. 

A. Traffic Generation
Traffic arrival and prioritization based on the QoS

requirements and current scenario must be considered to make 
a decision. Therefore, the following properties are required in 
designing the context: 

1. Traffic prioritization: it is essential to satisfy strict delay
requirements through QoS provisioning. For this purpose, the 
traffic generated by biomedical sensors can be categorized into 
on-demand, emergency, and normal traffic where the highest 
priority is assigned to emergency traffic, second highest priority 
is assigned to on-demand traffic and the lowest priority is 
assigned to normal traffic [12]. The equation to calculate the 
priority is presented by:  

ܲ = ்ீ∗ௌ (1) 
Where ܲ  is the traffic priority, ܶ  represents the traffic class 
value,  ܩ is the data generation rate and ܵ size in bytes of the 
particular packet. 

2. Traffic load: its status is categorized as low load,
moderate load, high load, and overload. It is given by [13]: ܮ =  ಲ்ವುொ     (2) 

Where ܮ is the load index, ܶis the total amount of data 
packets, and ܳ represents the queue capacity. 

3. Memory capacity: We assume that the communication
within the WBAN is such that the queuing process at a smart 
thing and it is modeled as a Batch Markov Arrival Process 
(BMAP), which enables more realistic and more accurate traffic 
modeling [11]. In emergency situations, data packets are 
scheduled in the high priority queue with arrival rate ߣு. The 
arrival rate of low priority traffic is ߣ. 

B. Communication Channel
The wireless channel is susceptible to interference, signal

attenuation, and human body fading effects. Hence, security 
policies should take into account these random channel 
fluctuations and unreliability issues. 

1. Link capacity: The link capacity represents the amount of
information (in bits/s/Hz) which can be transmitted over a noisy
channel [14]. It is defined as:ܥ = log (1 + หೕหమேబ )  (3) 

Where ܰ is the noise density of the link, ℎ is the narrowband 
channel between transmitter j and receiver i. Since the WBAN 
under consideration is a multi-hop network, it is possible to use 
multiple hops to go from a transmitter to a receiver. The 
capacity is then given by the minimum data rate across the two 
hops: ܥ = ଵଶ min (ܥௌ, (ܥ (4) 

Where ܥௌthe link capacity from the smart thing to aggregator 
and ܥ the link capacity from the aggregator to the destination. 

2. Interference model: Interference is generally related to
QoS issue but it has great potential to pose serious security 
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problems in WBAN. The interference level between a smart 
thing i and the aggregator is given as follows [15]: ܴܵܰܫ௧ = ು(ௗ)ேା∑ ఈೖೖು(ௗೖ)ೖಯ (5) 

Where ்ܲ   is the transmission power of the transmitter node i; ܰ is the power of the noise at the aggregator; ߙis the rejection 
factor between the channels associated with the nodes i and k; ்ܲ is the transmission power of the interfering node k. 

3. Mobility model: Mobility increases the probability of
packet loss in WBAN. In such context, attackers may harm the 
system by injecting a low level of noise into the channel and 
causing a considerable packet loss. Consequently, the lost 
packet should be retransmitted which cause a waste of 
bandwidth, energy depletion, and long delays. For this purpose, 
the challenge of mobility is that it might induce channel fading 
and increased BER (Bit Error Rate) caused by body movements 
and the interference with other nodes from different WBAN. It 
can be modeled by the path loss which is dependent on the 
distance d between transmitter and receiver, the body 
shadowing and the environment [16]. ܮ(݀) = (݀)തതതതതതതതܮ + ܤ∆ +  (6) ܨ∆

Where ܮ(݀)  is the mean path loss, ∆ܤ is a log normal 
distribution presenting the body shadowing: ∆ߤ)ࣨ~ܤ , (ߪ  is a Nakagami-m distribution modeling the multi-path  ܨ∆ (7)
fading channel: ∆ܨ~ܰܽ݇ܽ݃ܽ݉݅ − ݉(݉, Ω) (8) 

C. Energy Consumption

We consider three main energy consumption operations in
modeling the energy consumption of each node: data 
communication, sensing, and data processing. The battery 
depletion process is represented as follows [17]: ܧ(ݐ) = ܧ − ∑ (݇)௧ୀଵܧ) (݇)ௌܧ+ + ((݇)ܧ (9) 

Where ܧ is the initial battery energy at time 0 and ܧ(ݐ) is the 
remaining energy at time t for smart thing i. ܧ  is the 
communication energy, which represents the number of packets 
forwarded by the smart thing. ܧௌ, ܧpresent the energy 
consumed for sensing and data processing respectively. During 
periods with low energy consumption the battery can recover 
some of its lost capacity and its lifetime will be extended. The 
probability of recovering the battery capacity in one time slot 
determines the state of the charge of the battery and it is 
represented as a decreasing exponential function equal to ݁ିఈ൫ିா(௧)൯ିఉ(ா(௧))  ܧ(ݐ)<B and 0 otherwise, where B is the 
battery capacity, α is the decay of the discharge process, and β 
 .is a staircase function [11] ((ݐ)ܧ )

D. Threat Model

WBAN is vulnerable to internal and external attacks which
may include: hello flood, Sybil attack, and DoS. To represent 
the intruder model and its propagation within the BAN, we use 
an epidemiological model to represent the different states of a 

sensor node which can be healthy H, compromised C, recovered 
R or faulty F [18] [11]. Let H(t), C(t), and R(t) be the number 
of healthy nodes, compromised nodes and repaired nodes, 
respectively. These random variables are given by the following 
differential equations: ݀ݐ݀(ݐ)ܪ = (ݐ)ܥ(ݐ)ܪுߣ− + (ݐ)ோுܴߣ − ௗ(௧)ௗ௧ (ݐ)ܪுிߣ = (ݐ)ܥ(ݐ)ܪுߣ − (ݐ)ܥ(ݐ)ܦ − ݐ݀(ݐ)ܴ݀ (10)  (ݐ)ܥிߣ = (ݐ)ܥ(ݐ)ܦ − (ݐ)ோுܴߣ −  (ݐ)ோிܴߣ

Where  ߣ, ݅, ݆ ∈ ,ܪ} ,ܥ ܴ,  defines the transition rate from {ܨ
state i to state j when the node is under attack. D(t) is the 
detection rate which indicates the transition from compromised 
to repaired state. 

Based on these factors, we define the context as χ = {T, Q, 
E, C, M, I, A}, where T is the traffic state, Q is the memory state, 
E is the current energy state, C represents the state of the link 
capacity, M is the mobility level, and I is the interference level, 
A is the state of the attack process. By construction, this context 
is dynamic and reveals the interplay between the conflicting 
objectives that should be considered when designing security 
strategies. 

IV. STOCHASTIC GAME FORMULATION
In this section, we present the game-theoretic formulation to 

ensure a tradeoff between security, energy consumption and 
QoS in WBAN. It is represented as <S, A, r1, r2, r3, P >. S is the 
discrete state space. A is the action space. rk is the stage payoff 
function for player k=1,2,3. The players in our game are: the 
security policy, the energy decay process and the QoS 
requirement. P: S×A ↦Δ(S) is the transition probability map, 
where Δ(S) is the set of probability distributions over S. 

 

A. Adaptive security strategies
In order to prevent and reduce the impact of attacks on the

weak radio links and heterogeneous traffic, we propose an 
adaptive security policy based on environment changing 
through a set of transition probabilities. The important features 
of the proposed scheme are: i) to provide an acceptable security 
level, ii) ability to maintain energy efficiency as high as 
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possible and iii) a well-balanced network performance between 
different requirements. 

The main idea of our proposed approach is that a thing 
acting as a relay should authenticate the source of the traffic it 
forwards (presented in Figure 1). Obviously, this considerably 
reduces the probability of attacks like DoS, Hello flood, Sybil 
attack, etc. Nonetheless, it also reduces the lifetime of the relay 
nodes and increases the delay of sensitive traffic transmission. 
In the following, we present different adaptive strategies to 
define adaptive security policies based on these simple rules. 
These strategies adapt individually to the components of the 
dynamic context defined in the previous section. We suppose 
that a smart thing state depends on its observation of the current 
context, it can be in the secure mode or in the passive mode. In 
the secure mode, it systematically authenticates the forwarded 
packets while no security check is performed in the passive 
mode. An adaptive security policy is modeled by the transition 
probabilities between these two states. Specifically, when the 
traffic state is tn, the queue state is q, the current energy state is ܧ(ݐ) , the link capacity state is c, the mobility level is m, the 
interference level is snr, and the security level is s, the transition 
probabilities are given by: 
Pπ→σ(tn,p,Ei(t), c,m,snr,s)=P(P(t)=passive|P(t-1)=secure) 
Pσ→π(tn,p,Ei(t), c,m,snr,s)= P(P(t)=secure|P(t-1)=passive) 

In the following, we define different adaptive strategies that 
should be considered for making a decision based on the context 
model presented in the previous section. 

1. Adapting to traffic Nature: in emergency situations, the
smart thing switches to the passive mode because it is 
primordial to send the high-priority traffic on time and it turns 
to secure mode if the traffic priority is low. 

గܲ→ఙ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ൜1    ݂݅ ߣ = ுܦ ݀݊ܽ ுߣ < ݁ݏ݅ݓݎℎ݁ݐ  ொௌ0ݐ
(11) 

ఙܲ→గ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ൜ߝଵ    ݂݅ ߣ = ܦ ݀݊ܽ ߣ < ொௌ1ݐ − ݁ݏ݅ݓݎℎ݁ݐ ଵߝ
Where n ∈ {L, M}, ߣ the arrival rate of packets and ܦ  is the 
end-to-end delay, i ∈ {H, M, L}, ݐொௌ is a predefined delay 
threshold. 

2. Adapting to Memory: given that the energy depletion is
highly related to the number of packets p transmitted, the node 
decides whether to enforce packet authentication or not based 
on the number of packets in the queue. When this number 
exceeds the queue capacity ݍത, authentication is deactivated with 
probability ߝଶ because the risk of blocking legitimate packets 
increases. Whereas, when the queue capacity is greater than a 
minimum threshold ݍ, the smart thing switches from passive 
mode to secure mode with probability ߝଷ . 

గܲ→ఙ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ൜   ݂݅     ଶߝ ≥ ത1ݍ −  ݁ݏ݅ݓݎℎ݁ݐ ଶߝ

(12) 

ఙܲ→గ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ቊ   ݂݅    ଷߝ ≤ 1ݍ − ݁ݏ݅ݓݎℎ݁ݐ ଷߝ
3. Adapting to link capacity: when the channel state is

degraded, the link capacity decreases below a given threshold ܿ 
and transmission becomes more expensive. Consequently, 
energy efficiency is prioritized. 

గܲ→ఙ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ൜ 1   ݂݅  ܿ ≤ ݁ݏ݅ݓݎℎ݁ݐ 0ܿ
(13) 

ఙܲ→గ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ൜ 0   ݂݅ ܿ ≤ ݁ݏ݅ݓݎℎ݁ݐ 0.5ܿ
4. Adapting to interference: As the interference affects

energy consumption and the throughput. The smart thing 
privileges saving power when SINR is below a threshold ߛ. On 
the other hand, SINR is a prevailing security threat in WBAN. 
Furthermore, the node switches on secure mode if its level 
exceeds a threshold ̅ߛ. 

గܲ→ఙ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ቊ ߛ ݂݅     ସߝ ≤ 1ߛ  − ݁ݏ݅ݓݎℎ݁ݐ ସߝ (14) 

ఙܲ→గ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ൜ ߛ  ݂݅    ହߝ ≥ 1ߛ̅ −  ݁ݏ݅ݓݎℎ݁ݐ ହߝ

5. Adapting to mobility: considering that patient’s mobility
and posture can have a significant effect on efficient packet 
delivery, it seems more efficient that smart thing goes to passive 
mode if the path loss is greater than ܲܮതതതത and it switches to secure 
mode if the path loss is minimal ܲܮ. 

గܲ→ఙ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ൜1   ݂݅  ܲܮ ≥ ݁ݏ݅ݓݎℎ݁ݐ തതതത0ܮܲ
(15) ఙܲ→గ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ =  ൜1   ݂݅ ܲܮ ≤ ݁ݏ݅ݓݎℎ݁ݐ 0.5ܮܲ

6. Adapting to energy: the smart thing state turns to
passive mode if the energy state is below a threshold ܧ and it 
switches to the secure mode if the energy state is greater than ܧതതത. 

గܲ→ఙ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ൜1   ݂݅  ܧ(ݐ)/ܤ ≤ ݁ݏ݅ݓݎℎ݁ݐ 0ܧ   

(16) 

ఙܲ→గ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ൜1    ݂݅ ܧ(ݐ)/ܤ ≥ ݁ݏ݅ݓݎℎ݁ݐ തതത0ܧ
7. Adapting to threat model: based on the probability of

detection, the smart things can evaluate the probability of attack 
and make the decision to switch to secure mode according to 
the security state (compromised state, vulnerable state, 
recovered state…). We define a high threshold of detection ݀തതതത 
and a low threshold ݀ such that. 

గܲ→ఙ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ൜ ݀ ݂݅    ߝ ≥ തതതത1݀ − ݁ݏ݅ݓݎℎ݁ݐ ߝ
(17) 

ఙܲ→గ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ (ݏ = ቊ ݀  ݂݅    ߝ ≤ 1݀ − ݁ݏ݅ݓݎℎ݁ݐ ߝ
8. Hybrid adaptation: This strategy relies on combining

different criteria to decide whether to prioritize security or 
privilege network utility. The mixture of these policies is 
strongly related to application’s requirements. For instance, we 
can define a strategy where security activation is triggered by 
the link capacity, the traffic nature, and the current energy state. 

గܲ→ఙ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ =(ݏ ൝1   ݂݅ ܧ(ݐ)ܤ ≤ ,ܧ  ܿ = ܿ, ߣ = ுܦ ݀݊ܽ ுߣ < ݁ݏ݅ݓݎℎ݁ݐ ொௌ0ݐ  

(18) 
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ఙܲ→గ(݊ݐ, , ,(ݐ)ܧ ܿ, ݉, ,ݎ݊ݏ =(ݏ ൝0.5    ݂݅ ܤ(ݐ)ܧ ≥ ,തതതܧ ܿ ≤ ܿ , ߣ = ெܦ ݀݊ܽ ெߣ < ݁ݏ݅ݓݎℎ݁ݐ ொௌ0ݐ  

In Figure 2, we introduce our proposed model where a 
sensor node chooses to authenticate or not its forwarded 
packets based on its observation and the context changes. 

B. Payoff functions

Based on the analytical models mentioned in the previous
sections, we propose a stochastic game formulation where the 
decision-making of players is always dominated by 
environmental conditions to set up the parameters of the 
adaptive security policy. The multidimensional utility function 
indicates the conditional authentication of the forwarded traffic 
and its impact on security policy violation, packet blocking, and 
packet dropping. We consider a damage function, denoted by 
Δ, which returns the efficiency of the security policy in 
mitigating the intrusion, and network utility functions, which 
represent the impact of the security mechanisms on the lifetime 
of the network and the QoS requirements in terms of 
throughput. We adopt the sigmoid function to express the utility 
functions because different QoS requirements are well 
characterized in the sigmoid form, where it is known that there 
are different parameters involved, thus leading to the adjustable 
utilities according to the different requirements [19]. The utility 
functions are defined as follows: ∆൫ ܲ௩൯ = (1 + ݁ିೡ.൫ೡିೡ൯)ିଵ ߉൫ ܲௗ൯ = 1 − (1 + ݁ିೝ.൫ೝିೝ൯)ିଵ (19) ߔ൫ ܲ൯ = 1 − (1 + ݁ି್.൫್ି್൯)ିଵ 

Where ܲ௩, ܲௗ, and ܲ are the probabilities of security 
policy violation, packet dropping, and packet blocking, 
respectively, ݃௩, ݃ௗ and ݃ determine the sensitivity of 
the utility functions, and ℎ௩, ℎௗ, and ℎ represent the 
inflection points. 

A security policy violation occurs when the security queue 
is full and then the incoming packets checks are disabled. 

Packet dropping is related to energy depletion when the smart 
thing switches to the sleep mode for recharging and bad channel 
state which increases the transmission delay. Packet blocking 
occurs when the traffic load is heavy and the number of packets 
in the queue exceeds its capacity. The utility function presented 
above express a trade-off between prioritizing the security 
policy (at the risk of depleting the battery, increasing delays, 
and decreasing throughput) and forwarding unchecked packets 
(at the risk of violating the security policy). Based on this trade-
off, we formulate a multilateral Nash Bargaining model where 
Nash equilibrium can be determined so that utilities are 
maximized. The players of the game are the adaptive security 
policy, the energy decay process, and the QoS requirement in 
terms of throughput presented by the number of successfully 
received packets during the network lifetime T. They execute 
random strategies to reach equilibrium and release a trade-off 
between security-effectiveness, energy-efficiency and QoS 
satisfaction. In this game, the decision-making is based on 
transition probabilities defined by the vector ε = (ε1, ε2, ε3, ε4, 
ε5, ε6, ε7). Adjusting different probabilities grants an efficient 
controlling of the policy violation, packet dropping and packet 
blocking, thereby impacting the damage, lifetime and 
throughput functions. In addition, the disagreement outcome in 
our case is found at the point (0, 0, 0). This point represents the 
damage, lifetime and throughput values when no agreement can 
be achieved between the players. 

C.  Nash equilibrium 
Solving the following multi-objective optimization problem 

defines the Nash equilibrium which is denoted by (∆∗, ,∗߉ maxఌ :(∗ߔ ቀ1 − ∆൫ ܲ௩൯ቁ . ൫߉ ܲௗ൯. ൫ߔ ܲ൯  (20) 

The existence of the Nash equilibrium for the proposed 
game is easily justified by the fact that the optimization problem 
mentioned above is defined on a compact. The equilibrium 
solution requires the computation of the probabilities ܲ௩, ܲௗ,  and ܲ . For this purpose, we define the state transition 
matrix for the security policy. Firstly, we define the transition 
processes related to the energy state, the channel, and memory. 

()ܧ =     
⎝⎜
⎜⎜⎜
,()ܧ⎛ ଵ,()ܧ,ଵ()ܧ ଵ,ଵ()ܧ ⋰ଵ,ଶ()ܧ ⋱ ,ିଵ()ܧ⋰ ⋰,()ܧ ⋱ ,ିଵ()ܧ⋰,ାଵ()ܧ ⎟⎠,()ܧ

⎟⎟⎟
⎞

(21) 

Where ܧ() is a (B + 1) × (B + 1) matrix representing the 
transition probabilities between energy states b and b’ when the 
p packets are in the memory and B is the battery capacity. ܥ(௦,) =

⎝⎜
⎜⎜⎜
,(௦,)ܥ⎛ ଵ,(௦,)ܥ,ଵ(௦,)ܥ ଵ,ଵ(௦,)ܥ ⋰ଵ,ଶ(௦,)ܥ ⋱ ,ିଵ(௦,)ܥ⋰ ⋰,(௦,)ܥ ⋱ ,ିଵ(௦,)ܥ⋰,ାଵ(௦,)ܥ ⎟⎠,(௦,)ܥ

⎟⎟⎟
⎞  (22) 
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Where ܥ(௦,) is a (K + 1) × (K + 1) matrix representing the 
transition probabilities between link capacity states k and k’ for 
a given snr and mobility levels. 

ܳ(௧,) =    
⎝⎜
⎜⎜⎛

,(௧)ݍ … ⋮,(௧)ݍ ⋮ ோ,(௧)ݍ⋰ … ோ,ோ(௧)ݍ ⋱… ⋰ோ,ோା(௧)ݍ ⋱ ,ିோ(௧)ݍ⋰ …⋱ ⋱
⋱ ⋱ ,(௧)ݍ⋰ … ⋰,ାோ(௧)ݍ ⋱ ⋱ ⎠⎟

⎟⎟⎞       (23) 

Matrices ܳ (௧,)  represent the changes in the number of packets 
with different priorities in the queue from p to p’. R indicates 
the maximum number of packets that can be transmitted; P is 
the maximum number of packets that can arrive. 

We denote by A = (ܽ,) the transition probabilities matrix 
between the previous state where k packets have been 
authenticated and the current state where l packets have been 
authenticated. Therefore, the probabilities ܲ௩, ܲௗ, and ܲ 
are given by: 

ܲ௩ = ∑ ∑ గ(∑ ඌೖඐ,ඌೖశඐసభ )ುసషశభೖసభ ா()ܲௗ = ∑ ,tn)ߨ p, ,(ݐ)ܧ c, m, snr, k)ா,,, (24)                                  

ܲ = ∑ ∑ (∑ ொ,శ(,)).൫ି(ି)൯.గ(୲୬,୮,ா(௧),ୡ,୫,ୱ୬୰,୩)ೖುೕసషశభ,ೖ ∑ఒ  
where X is the size of the queue; p is the number of packets in 
the current state; P is the maximum number of packets that can 
be transmitted in the current state; (∑ ܽቔೖቕ,ቔೖାቕୀଵ  ) indicates 

the total probability that the number of authenticated packets in 
the queue increases by l; π is the steady state probability matrix, 
obtained through the resolution of the equations π. A = π and 
π.1 = 1, where 1 is a matrix of ones. 

To reduce the complexity of the computation of the Nash 
equilibrium (20), we adopt the Pareto efficiency which is 
defined by the state where it is impossible to make any player 
better off without making at least one individual worse off.  

V. PERFORMANCE EVALUATION
In this section, we evaluate the adaptive security policies 

under the dynamic context through simulation using Matlab. 
Our main purpose is to find the optimal policy that maximizes 
the objective function. 

A. Simulation environment and Setup

The simulation environment is based on the IEEE 802.15.4
specifications, where the packet size is 1024 bits. We assume a 
communication model with different link quality, where a bit 
error rate (BER) is assigned to indicate excellent (PRR: 0.99) 
and bad (PRR: 0.5) link quality. The channel model involves 
the node transmission power (- 10dBm), receiver sensitivity (-
84.7dBm), noise floor (-102dBm), an additive white Gaussian 
noise (AWGN) of mean zero and σ=6.81dBm as well as the 
path loss exponent (3.6) [20]. The path loss model is defined by 
a path loss at reference distance PL (dref) =23.49dB, an average 
deviation σdB=2.93 and reference distance dref=0.5cm [21]. The 
battery capacity is initiated at 1.35Wh for the Shimmer nodes 
used to collect patient’s data [11]. We consider a set of 20 

Shimmer nodes where 20% of the total nodes generate 
emergency traffic, the on-demand traffic presents 30% of the 
total nodes and the normal traffic constitutes 50% of the total 
traffic generated during each time slot. The game-theoretic 
approach is implemented based on Multilevel-μ-Tesl 
(MμTesla) authentication scheme and compared with Node 
Capture Game (NCG) [11]. 

In this work, we focus on three performance metrics: 
sensor’s lifetime, security level and throughput, which have the 
direct impact on the WBAN performance.  

 WBAN lifetime is defined as the residual energies of 
WBAN nodes at each time slot, 

 Probability of security violation is defined as the 
probability of attack detection being below a given 
threshold, 

 Throughput is defined as the sum of the number of 
successful packets forwarded to a particular node in a given 
period of time. 
B. Comparison of different strategies

First, we study how the lifetime, damage and QoS functions
are affected when a smart thing adopts different strategies 
according to dynamic context changes for the case where 
ε1=ε2= ε3=ε4 =ε5=ε6=ε7=0.5. Then we demonstrate the 
effectiveness of the proposed adaptive security stochastic 
game by comparing proposed adaptive security policies to the 
MμTesla technique and Node Capture Game (NCG) [11]. The 
lifetime, damage and QoS functions are depicted in blue, red 
and green respectively. Figure 3 compares the different 
strategies where adapting to mobility, interference level, 
memory, energy and traffic nature strategies achieve a higher 
sum of successful packet transmission than adapting to 
intruder given that the throughput is highly dependent on 
traffic priority, channel characteristics and residual energy. 
We can ensure a great satisfaction level for a long period and 
up to 1000 time slots. For the adapting to intruder strategy, 
when all packets are authenticated the queue will be full faster 
and then the blocking probability will increase leading to a 
limited satisfaction level. 
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Now another comparison between MμTesla, NCG, and 
different strategies is presented: the adaptive strategies 
according to traffic nature, memory and channel characteristics 
provide up to 40% throughput improvement compared to NCG 
and MμTesla. The results of this comparison are shown in Fig. 
4. From security and lifetime perspective, we can see that the
payoff achieved by adapting to energy and intruder strategies
are unfair because they consider only one aspect. For adapting
to intruder strategy, we can guarantee a high-security level near
to this ensured by MμTesla protocol. In such situations, more
conservative measures lead to a lower performance where the
energy is depleted after around 500 time slots. For adapting to
energy strategy, the energy is depleted after 1000 time slots but
the security violation rises rapidly. On the other side, from
security and energy consumption perspectives, making a
decision based on the communication channel, traffic nature
and memory provide more convenient results for both security
and network lifetime which can be extended up to 40% and 48%
for adapting to mobility and memory strategies respectively.
Therefore, smart things should consider different requirements
in order to dynamically changing their strategies and achieving
the desired payoff. The best choice is to adopt the strategy that
ensures a well-balanced trade-off between security level,
WBAN lifetime and QoS requirements.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the adaptive security methodology 
while considering distinct context features and sensor nodes 
capabilities in order to provide a trade-off between security and 
WBAN performances. In our model, a smart thing makes a 
decision to authenticate forwarded packets or not after 
environment observation. For this purpose, we developed a 
game theoretic approach between the different requirements in 
terms of security, energy consumption and throughput. Then, we 
evaluated different adaptive strategies and found the optimal 
policy that should be adopted. We demonstrated the efficiency 
of our proposed approach as compared to security game (NCG) 
and MμTesla authentication protocol where the throughput 
improvement can reach 40% and the WBAN lifetime is 
extended to 48%. In the future, we will consider security and 

privacy threats and implement an intrusion detection system 
based on the trust level of different actors in WBAN. 
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