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Stubborn and Dead-Zone Redesign
for Nonlinear Observers and Filters

Daniele Astolfi, Angelo Alessandri, and Luca Zaccarian

Abstract— We propose a redesign paradigm for stable estima-
tors by introducing a saturation or a dead-zone nonlinearity with
adaptive thresholds on the output injection term. Such nonlin-
earities allow improving the sensitivity to measurement noise in
different scenarios (impulsive disturbances or persistent noise
such as sensor bias), while preserving the asymptotic conver-
gence properties of the original observer. These redesigns apply
to a broad class of state estimators, including linear observers,
observers for input-affine systems, observers for Lipschitz sys-
tems, observers based on the circle criterion, high-gain observers,
standard and extended Kalman filters. Simulation results confirm
the effectiveness of both the stubborn and dead-zone redesigns.

Index Terms— Nonlinear observers, saturation, dead-zone,
input-to-state stability

I. INTRODUCTION

State observers are the basic instrument to detect abnormal oper-
ating conditions such as faults or malfunctions and feed controllers
when not all the state variables are accessible. While state estima-
tion for linear systems is a well studied topic, beginning with the
seminal papers by Kalman [31] and Luenberger [36], many different
approaches for nonlinear systems are still under development. See,
among others, [4], [11], [14], [15], [19], [28], [33], [39]. However,
most of these approaches focus on the convergence properties of
the estimation error in nominal conditions, that is, when the plant’s
model is known perfectly and when no measurement noise is affecting
the outputs. Indeed, at present, few tools are available to analyze
the effect of the measurement noise on the estimation error in a
nonlinear context. Most of the existing works follow a “worst-case
approach” such as H∞ gains, Lyapunov bounds or input-to-state
stability gains. An attempt to address high-frequency measurement
noise was recently investigated for high-gain observers [12].

Depending on the characteristics of the measurement noise, dif-
ferent approaches may be pursued to improve the observer perfor-
mances. For instance, in the case of output measurements affected
by outliers, that is, perturbations of impulsive nature affecting the
measurement for a very short time, the majority of the existing
methods focus on a discrete-time representation and mainly deal with
identification problems, see, e.g., [2], [25], [44] and the references
therein. When considering high-frequency measurement noise, a
number of high-gain approaches have been developed, see, e.g., [1],
[10], [11], [13], [18], [20], [42], [43]. These techniques, however,
strongly exploit the particular structure of the observer at hand and
can be difficult to extend to other approaches. To the best of the

D. Astolfi is with Univ Lyon, Université Claude Bernard Lyon 1, CNRS,
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authors’ knowledge, a general methodology to improve the sensitivity
to measurement noise applicable to a broad class of estimators is still
missing.

The objective of this work is that of proposing a systematic
procedure to redesign a given observer or filter in order to improve
its performances in noisy scenarios. We suppose that the estimator
has already been designed and it satisfies some mild, possibly local,
input-to-state stability (ISS) properties [39], [40]. For instance, any
of the techniques proposed in [3], [4], [7], [8], [10], [11], [13]–
[15], [17]–[19], [27]–[29], [33], [34], [36], [37], [39], [43] enjoy
these properties. Then, we propose two different methodologies to
redesign the output injection term, both of them preserving ISS.
The first one, called stubborn redesign, was first introduced in the
context of linear systems [5], [6], and high-gain observers [9], and
aftewards used in Kalman filters [26], neural networks [35] and
synchronization [21], [22]. It consists in adding an adaptive saturation
to the output injection error in the observer dynamics so as to reduce
the sensitivity to measurement outliers. The second one, called dead-
zone redesign, generalizes the works [23], [24] for Luenberger and
high-gain observers, where a “dead-zonated” output injection with
a dynamically-adapted dead band enables mitigating the effect of
bounded and persistent measurement noise. The two designs can
be also combined. The novelty of these approaches is that the
saturation/dead-zone levels are not fixed but they are dynamically
adjusted to obtain desirable properties. For instance, the stubborn re-
design well addresses the presence of sporadic measurement outliers.
The saturation threshold regulates the trimming action on the output
injection term by shrinking it to zero, thereby making the observer
increasingly “stubborn” about its current estimate [6], [9]. In this way,
possible outliers do not directly reach the error dynamics because they
are mitigated by the limiting effect of the saturation. On the other
hand, persistent estimation errors gradually cause an increase of the
saturation threshold and become increasingly important in the error
dynamics, so as to guarantee ISS for the estimation error dynamics.
The same analysis is accomplished for the dead-zone redesign, i.e.,
by considering estimators with a dead-zonated output injection, well
suited to improving the rejection of persistent bounded measurement
noise [24].

As compared to [5], [6], [9], [23], [24], this work extends our
previous results by taking into account a more general class of
nonlinear plants (which can also be multi-output) and a broader range
of nonlinear estimators including, among others, the extended Kalman
filter (EKF). Furthermore, the dynamics of the saturation/dead-zone
level scales linearly with the output error, instead of quadratically as
in [5], [6], [23], [24]. We also adopt a new setup by using separate
thresholds for the different output channels, which provides improved
responses.

The paper is organized as follows. In Section II, we describe the
system and estimator models we deal with. The main results under
general sufficient conditions for the stubborn and dead-zone redesigns
are presented in Sections III and IV, respectively. Estimators based on
combining the two redesign paradigms are given in Section V. Section
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VI illustrates our redesigns for a number of well-known observer
classes, i.e., linear Luenberger observers, observers for Lipschitz
nonlinear systems [37], [45], obsevers for input-affine systems [17],
[27], [29], EKFs [19], [34], [38], and low-power high-gain observers
[11], and is completed by a brief discussion on its application to
other nonlinear state-estimators (such as those in [4], [8], [14], [16],
[18], [28], [33], [40]). Finally, the results of the proposed redesigns
are applied in a simulation case study with the EKF in Section VII.
Conclusions are drawn in Section VIII.

Notation. We define R≥0 := [0,∞). Given x ∈ Rn and y ∈ Rm,

(x, y) denotes
[
x> y>

]>
. Given x ∈ Rn, |x| := |x|2 is its

Euclidean norm, |x|1 :=
∑
i |xi| is its Taxicab (or Manhattan) norm,

and |x|cw := (|x1|, . . . , |xn|), satisfying

|x|2 ≤ |x|1 ≤
√
n|x|2 ∀x ∈ Rn (1)

||x|cw − |y|cw| ≤
√
n|x− y| ∀x, y ∈ Rn. (2)

|A| denotes the standard induced matrix norm of the real matrix
A, I denotes the identity matrix, and diag(a1, . . . , an) is a diag-
onal matrix having diagonal entries a1, . . . , an. If A is symmet-
ric, λ̄A and λA denote its maximum and minimum eigenvalues,
respectively; in addition, A < 0 (A > 0) means that A is
negative (positive) definite and A ≤ 0 (A ≥ 0) means that A is
negative (positive) semidefinite. We denote with vec(A) ∈ Rnm
the vectorization of a matrix A ∈ Rn×m, namely vec(A) :=
(a11, . . . , a1m, a21, . . . , a2m, . . . , an1, . . . , anm), where aij is the
i, j entry of A. If A = A>, then vec(A) ∈ Rn(n+1)/2 lists symmet-
ric elements only once. Given δ > 0, we define Bδ := {x ∈ Rn :
|x| ≤ δ}. For a time-varying signal x : R≥0 → Rn, let ‖x‖∞ :=
supt∈[0,∞) |x(t)|. Given x ∈ R, σ ∈ R≥0, define satσ(x) :=
max{−σ,min{σ, x}}. Given x ∈ Rn, σ := (σ1, . . . , σn) ∈ Rn≥0,
define satσ(x) := (satσ1(x1), . . . , satσn(xn)) and dzσ(x) :=
x − satσ(x). We refer to [41] for standard definitions of class
K,K∞ and KL functions. For a locally Lipschitz function V (t),
we define the (upper) Dini derivative of V at t as D+V (t) :=
lim suph→0+(V (t+ h)− V (t))/h.

II. SYSTEM AND OBSERVER DESCRIPTION

A. Problem Statement
In this work we consider nonlinear systems of the form

ẋ = f(x, u) + w , y = h(x) + v , (3)

where x ∈ Rn is the state, u ∈ Rp is a known input, y ∈ Rm
is the measured output, w ∈ Rn is some external disturbance, and
v ∈ Rm represents the sensor measurement noise. For system (3)
we suppose to know an observer providing an asymptotic estimate
x̂ of state x. A fairly general expression including, among others,
Luenberger observers, Kalman filters, observers for input-affine sys-
tems, observers for Lipschitz systems, observer based on the circle
criterion, high-gain observers, and low-power high-gain observers,
[4], [8], [11], [14], [14], [17]–[19], [27]–[29], [33], [34], [37], [38],
[40], [45] (see the details in Section VI), corresponds to

ż = ϕ(z, u) +Gκ(z, y − h(x̂)) , x̂ = ψ(z) (4)

where z ∈ Z ⊆ R%, with % integer such that % ≥ n, is the state
of the observer, and x̂ ∈ Rn is the estimate of x. The functions
ϕ : R% × Rp → R%, κ : R% × Rm → Rρ , and ψ : R% → Rn are
locally Lipschitz and G is a matrix of dimension %× ρ. Function κ
denotes the output injection term and is such that κ(z, 0) = 0 for
all z ∈ R%, which ensures that the origin is an equilibrium point
for the error dynamics in the absence of disturbances. Without loss
of generality, we could consider functions κ that also depend on the

input u. This is not explicitly written in the following as it would
unnecessarily complicate the notation. Matrix G, satisfying |G| ≤ 1
without loss of generality, is a selection matrix encompassing the
fact that the output injection term κ might affect only part of the z
dynamics (as for the observers of Sections VI-C and VI-D).

We further suppose that observer (4) has already been designed
in order to satisfy certain input-to-state stability (ISS) properties.
Our objective is then to redesign (4) to improve its performances
in the presence of certain types of sensor measurement noise v. Two
redesign approaches are proposed in this paper. The first one, based
on the preliminary ideas of [6], [9], uses a saturation nonlinearity
and turns out to be effective when the noise v is of impulsive nature,
i.e., whenever outliers degrade the measurement y. The second one,
originally presented in [23], [24], is based on a dead-zone nonlinearity
and mitigates the effect of bounded persistent sensor noises such as
a sensor bias. With a unifying point of view, we will show that
an ISS property of observer (4) allows applying any of the two
approaches. Furthermore, for each redesign strategy, ISS also holds
for the redesigned observer, thus allowing for a mixed (combined)
redesign. A more detailed performance analysis will be given in
Sections III-B and IV-B for the case when both (3) and (4) are linear,
to further certify the usefulness of the two proposed techniques.

B. Main Assumptions

To characterize the properties of observer (4) in terms of domain of
attraction (local, semi-global or global) and ISS w.r.t. disturbances,
we first suppose that the state x of system (3) and signals u, v, w
evolve in some given sets, which may be compact or unbounded
according to the selected class of systems and observers. Specific
classes of observers are addressed in detail in Section VI.

Assumption 1 There exist X0 ⊆ X ⊆ Rn, U ⊆ Rp, and a compact
set W ⊂ Rn such that the trajectories of (3), with initial conditions
in X0, input u(t) ∈ U , and disturbances w(t) ∈ W for all t ≥ 0,
remain in X for all t ≥ 0.

Our redesign approach is based on conditioning the output injection
term in (4) by way of suitable nonlinearities comprising saturations
and deadzones. These redesign methods essentially perturb the output
injection term κ in (4) in ways that are well represented by the
following version of observer (4) with perturbed injection

ż = ϕ(z, u) +Gκ(z, y − h(x̂)) +Gd , x̂ = ψ(z) (5)

where d ∈ Rρ is a generic disturbance affecting the observer
dynamics in directions matching the input channel of κ (that is,
through the same matrix G). Due to the generality of our context,
where z may be more than a mere copy of the plant dynamics, we
emphasize that w in (3) and d in (5) may act differently on the
estimation error dynamics. As an example, this is true in the case
study of Section VI-E.

In the rest of this paper we will ask observer (4) to be ISS w.r.t. the
disturbances w, v affecting the plant (3) and w.r.t. the disturbance d
acting on the observer (5). The desired ISS characterization is given
in terms of an ISS-Lyapunov function, and we will say that observer
(4) is an ISS observer if Property 1 below is satisfied. It turns out
that, for most classes of observers, ISS w.r.t. d is obtained for free
once ISS w.r.t. w and v is guaranteed (although the ISS-gains may
be different). For further details, see Section VI.

Property 1 Observer (4) is an ISS observer for system (3) on Z ⊆
R% if there exist a locally Lipschitz function V : X × Z → R≥0

satisfying V (x, z) ≥ 0 for all (x, z) ∈ X ,Z , functions α, ᾱ ∈ K∞,
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a right inverse ψ−R of function ψ (namely a function satisfying
x = ψ(ψ−R(x)), for all x ∈ X ), compact sets V ⊂ Rm, D ⊂ Rρ,
and constants κ̄, c, cv, cw, cd > 0 such that the following inequalities
hold

|G| ≤ 1, |κ(z, y1)− κ(z, y2)| ≤ κ̄|y1 − y2| (6)

for all z ∈ Z and y1, y2 ∈ Rm,

α(|x− ψ(z)|) ≤ V (x, z) ≤ ᾱ(|ψ−R(x)− z|) (7)

for all (x, z) ∈ X × Z ,

D+V ≤ −cV (x, z) + cv|v|+ cw|w|+ cd|d| (8)

for all (x, z) ∈ X × Z , u ∈ U and all (v, w, d) ∈ V × W × D,
along the dynamics of system (3) interconnected with the perturbed-
injection observer (5).

Condition (6) of Property 1 states that function κ(z, ·) is globally
Lipschitz uniformly in z ∈ Z . Conditions (7) and (8) state that (5) is
an asymptotic observer for system (3) and that the estimation error
|x − x̂| is input-to-state stable1 w.r.t. the measurement noise v and
disturbances w, d, namely there exists β ∈ KL, ϑ ∈ K∞ such that
all solutions t 7→ (x(t), z(t)) belonging to X × Z for all t ≥ 0
satisfy

|x̂(t)− x(t)| ≤ β(|ψ−R(x(0))− z(0)|, t)
+ ϑ(‖v‖∞ + ‖w‖∞ + ‖d‖∞).

Motivated by [39], the above stated ISS property is coordinate-
dependent when X and U are unbounded (as in Section VI-B for
example). It is thus emphasized that guaranteeing Property 1 may
require selecting a clever set of coordinates. Next, we suppose that
the ISS-Lyapunov function V of Property 1 satisfies an output-growth
condition.

Property 2 There exist constants `0, `1, `v, `w, `d > 0 such that
the following holds for system (3), observer (5), and function V of
Property 1 with x̂ = ψ(z),

|h(x)− h(x̂)| ≤ `0V (x, z) (9a)

|D+(h(x)− h(x̂))| ≤ `1V (x, z) + `v|v|+ `w|w|+ `d|d| (9b)

for all (x, z) ∈ X × Z , u ∈ U and all (v, w, d) ∈ V ×W ×D.

Condition (9) requires that V , which is an ISS-Lyapunov function
for the estimation error |x − x̂|, has the same growth as the output
error function |h(x) − h(x̂)|. In the forthcoming Section VI, we
show that a number of existing observers enjoy Properties 1, 2
and discuss how to select functions V, α, ᾱ, ψ−R and constants
κ̄, c, cv, cw, cd, `0, `1, `v, `w, `d for such observers.

III. DYNAMIC SATURATION REDESIGN

A. Main Result on Stubborn Redesign

The first problem we deal with is the dynamic saturation, or
“stubborn”2 [6], redesign of observer (4) given by

ż = ϕ(z, u) +Gκ(z, satσ(y − h(x̂))) ,
σ̇ = −Λσ + Θ |y − h(x̂)|cw ,
x̂ = ψ(z) ,

(10)

1The reader is referred to [30], [41] and references therein for more details
about the notion of ISS and the existence of ISS-Lyapunov functions.

2With respect to [6], we use here separate saturation thresholds for the
different output channels in order to improve responses since, when an outlier
affects one channel, only the corresponding saturation level is influenced.

where (z, σ) ∈ R%×Rm≥0 is the state of the stubborn redesigned ob-
server and Λ := diag(λ1, . . . , λm) > 0, Θ := diag(θ1, . . . , θm) >
0 are design parameters. It can be noted that observer (10) is obtained
by saturating the output error y−h(x̂) in (4) with a variable saturation
level σ. This level is dynamically driven by the same output error
y−h(x̂). The motivation for such a construction is that of filtering, at
the steady state, sporadic perturbations that may affect the measured
output y. Since in nominal conditions both the output error y−h(x̂)
and the saturation level σ converge asymptotically to zero, when
an outlier occurs, the saturation limits its effect on the observer
state z, which is therefore less perturbed. A detailed analysis of this
phenomenon in the linear context is given below in Section III-B.

The next theorem shows that observer (10) preserves the ISS
of the original observer (4), according to the definitions given in
Properties 1, 2.

Theorem 1 Consider system (3) satisfying Assumption 1. Suppose
observer (4) is an ISS observer enjoying Properties 1 and 2. Let
λi > 0, i = 1, . . . ,m be fixed. Then, there exist θ∗i > 0, i =
1, . . . ,m, such that, for any θi > θ∗i , i = 1, . . . ,m, observer (10)
is an ISS observer for system (3) enjoying Properties 1 and 2.

Proof: In order to establish the result, we need to show the
existence of an ISS-Lyapunov function for the perturbed-injection
version of observer (10), which can be written in the compact form

że = ϕe(ze, u) +Geκe(ze, y − h(x̂)) +Gede ,
x̂ = ψe(ze) ,

(11)

with augmented state ze := (z, σ) ∈ R% × Rm≥0, disturbance
de := (d, dσ) ∈ Rρ+m, and functions ϕe(ze, u) := (ϕ(z, u),−Λσ),
ψe(ze) := ψ(z), Ge :=

[
G 0
0 I

]
,

κe(ze, y − h(x̂)) :=

(
κ(z, satσ(y − h(x̂)))

Θ|y − h(x̂)|cw

)
.

First, we see that functions Ge, κe verify (6). In particular, to prove
the second bound, recall that, by using the properties of κ, (2) and
the global Lipschitz property of satσ , we have

|κe(ze, y1)− κe(ze, y2)|
≤ |κ(z, satσ(y1))− κ(z, satσ(y2))|+ |Θ(|y1|cw − |y2|cw)|
≤ κ̄e|y1 − y2|

(12)
where κ̄e := κ̄ +

√
m|Θ|, with κ̄ given in Property 1. In order to

define an ISS-Lyapunov function Ve for (11) according to Property 2,
we first rewrite the ze-dynamics in (11) as

ż = ϕ(z, u) +Gκ(z, γ) +G(δ + d)
σ̇ = −Λσ + Θ |γ|cw + Θ γ̃ + dσ

(13)

where we have defined the following compact notation

γ := h(x)− h(ψ(z)), γ̄ := γ + v, γ̃ := |γ̄|cw − |γ|cw,
q := κ(z, satσ(γ))− κ(z, γ),
q̃ := κ(z, satσ(γ̄))− κ(z, satσ(γ)), δ := q + q̃ .

(14)
Using (1), the sector properties and global Lipschitz properties of the
saturation and absolute value functions, the properties of κ, and the
quantities in (14), it follows that

|q| ≤ κ̄|satσ(γ)− γ| ≤ κ̄|γ|,

|q̃| ≤ κ̄|v|, |γ̃i| ≤ |vi| ≤ |v| .
(15)

According to the statement of the theorem, let λi, i = 1, . . . ,m be
fixed and select θ∗i , η > 0 as

θ∗i := λi +
cdκ̄

η
, η :=

c

2m(`1 + `dκ̄`0)
, (16)
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with c, cd given in Property 1 and `0, `1, `d given in Property 2. Then,
fix any θi > θ∗i for i = 1, . . . ,m, and let ζi > 0, i = 1, . . . ,m, be
chosen such that

m∑
i=1

ζi(θi`0 + `1 + `dκ̄`0) <
c

2
. (17)

Note that condition (17) may always be satisfied by choosing ζi
small enough. Bounds (16) and (17) will be then used below in the
Lyapunov analysis. We define the ISS-Lyapunov function for (11) as

Ve(x, z, σ) :=

V (x, z) +

m∑
i=1

(
ζiσi + (ζi + η) max{|γi| − σi, 0}

)
, (18)

where V comes from the ISS properties of (4) and satisfies Prop-
erties 1, 2, and the parameters ζi > 0, i = 1, . . . ,m, and η > 0
have been defined above. Note that, in view of the dynamics of σi
in (10), we have σ(t) ∈ Rm≥0 for all t ≥ 0 for any σ(0) ∈ Rm≥0.
As a consequence, we can use indifferently σi = |σi|. Due to the
properties of V , Ve in (18) can be lower bounded as follows

Ve(x, z, σ) ≥ V (x, z) ≥ α(|x− ψ(z)|). (19)

This shows that the lower bound in (7) is satisfied with αe(s) = α(s)
for any s ∈ R≥0. To prove the upper bound of (7), define ψ−Re (x) =

(ψ−R(x), 0), which satisfies

|ψ−Re (x)− ze| =
√
|ψ−R(x)− z|2 + |σ|2. (20)

Then, by using (1) and the output-growth condition on V from
Property 1, we can upper bound Ve as follows

Ve(x, z, σ)
≤ V (x, z) +

∑m
i=1(ζ̄ + η)(σi + |γi|)

≤ V (x, z) + (ζ̄ + η)
√
m(|σ|+ `0V (x, z))

≤ (ζ̄ + η)
√
m|σ|+ (1 + (ζ̄ + η)

√
m`0)ᾱ(|ψ−R(x)− z|)),

(21)
where ζ̄ := maxi{ζi}. Now, for any s1 ∈ Rn, s2 ∈ Rm, a, b > 0,
and ᾱ ∈ K∞, there always exists ᾱ1 ∈ K∞ such that

a|s1|+ bᾱ(|s2|) ≤ ᾱ1(|s1|+ |s2|) ≤ ᾱ1(
√

2
√
|s1|2 + |s2|2)

≤ ᾱ1(
√

2|(s1, s2)|).

Therefore, by combining the last inequality with (20), (21), we
conclude that there exists ᾱe ∈ K∞ such that

Ve(x, z, σ) ≤ ᾱe(|ψ−Re (x)− ze|). (22)

By combining (19) and (22), we verify that (7) is satisfied and
therefore the function Ve defined in (18) is a candidate ISS-Lyapunov
function.

Before computing the Dini derivative of Ve along the solutions to
(13), we first verify that Ve satisfies the output growth condition of
Property 2, since such bounds will be used to show (8). First note that
the output function h(x̂) of observer (13) is the same as that of (4)
since the redesign involves only the output injection term. Therefore,
according to (14) and by using inequality (9a) and (19), we obtain,
for system (3) and observer (10),

|γ| = |h(x)− h(x̂)| ≤ `0V (x, z) ≤ `0Ve(x, z, σ). (23)

Then, using the definition of δ in (14) together with the bounds in
(15) and (23), we have

|δ| ≤ |q|+ |q̃| ≤ κ̄|γ|+ κ̄|v| ≤ κ̄`0V (x, z) + κ̄|v|. (24)

We may then bound |D+γ|, with γ defined in (14), along the
solutions to (13). In particular, using (9b), (19), and (24), we obtain

|D+γ| ≤ `1V (x, z) + `v|v|+ `w|w|+ `d|δ + d|
≤ (`1 + `d`0κ̄)Ve(x, z, σ)

+(`v + `dκ̄)|v|+ `w|w|+ `d|de|,
(25)

where the last step follows from |d| ≤ |de|. In view of (23) and
(25), we conclude that the Lyapunov function Ve satisfies the output
growth condition in Property 2.

Now, we need to show that inequality (8) holds for Ve, namely we
need to analyze its Dini derivative along the solutions of (13). To this
end, let us denote with I ⊆ {1, . . . ,m} the subset of indexes i for
which σi ≥ |γi|, and with J = {1, . . . ,m} \ I the set of indexes j
for which σj < |γj |. The derivative of Ve, computed from (8) and
(13), and the first inequality in (25), satisfies

D+Ve ≤ −cV (x, z) + cd|δ + d|+ cv|v|+ cw|w|
+
∑
i∈I

ζi

(
− λiσi + θi|γi|+ θi|γ̃i|+ |dσi |

)
+
∑
j∈J

η
(
λjσj − θj |γj |+ θj |γ̃j |+ |dσj |

)
+
∑
j∈J

(ζj + η)
(
`1V (x, z) + `v|v|+ `w|w|+ `d|δ + d|

)
,

(26)
where we used the second bound in (9) and relation D+|γi| ≤
|D+γi| ≤ |D+γ|. By using the property of δ in (14), (15) and
the properties of κ, I and J , from (24) it follows that

|δ| ≤ |q|+ |q̃|
≤ κ̄

∑
i∈I |γi|+ κ̄

∑
j∈J |γj |+ |q̃|

≤ κ̄
∑
j∈J |γj |+ κ̄|v| .

Using the previous bound and (15), together with (9) and (24),
inequality (26) implies

D+Ve

≤ −
( εV︷ ︸︸ ︷
c−

∑
i∈I

ζiθi`0 −
∑
j∈J

(ζj + η)(`1 + `dκ̄`0)
)
V (x, z)

πσ︷ ︸︸ ︷
−
∑
i∈I

ζiλiσi −
∑
j∈J

(
ηθj |γj | − ηλjσj − cdκ̄|γj |

)
+
(
cv + cdκ̄+

∑
i∈I

ζiθi

+
∑
j∈J

(ζj + η)(`v + `dκ̄) + ηθj

)
|v|

+
(
cw +

∑
j∈J

(ζj + η)`w
)
|w|

+
(
cd +

∑
j∈J

(ζj + η)`d

)
|d|+

∑
i∈I

ζi|dσi |+
∑
j∈J

η|dσj | .

(27)
Note that, in light of the selection of ζi, i = 1, . . . , p and η according
to (16) and (17), the following inequality holds

εV = c−
∑
i∈I

ζiθi`0 −
∑
j∈J

(ζj + η)(`1 + `dκ̄`0) > 0

for any possible (finite) combination of sets I, J . Moreover, since
θi > θ∗i and by the choice of θ∗i in (16), we also get η(θj − λj) >
cdκ̄. This provides, for some εσ > 0,

πσ ≤ −
∑
i∈I

ζiλiσi +
∑
j∈J
−ηθj |γj |+ ηλjσj + cdκ̄|γj |

≤ −εσ
∑
i∈I

σi − εσ
∑
j∈J

σj = −εσ
m∑
k=1

σk = −εσ|σ|1,
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where we have used both σj < |γj | and −|γj | < −σj for all j ∈ J ,
and the fact that σi ≥ 0 for all i = 1, . . . ,m. As a consequence,
combining the above bounds with (27), there exists δ̄ > 0 such that

D+Ve ≤ −εV V (x, z)− εσ|σ|1 + δ̄|v|+ δ̄|w|+ δ̄|de| ,

for all (x, z, σ) ∈ X ×Z×Rm≥0. Moreover, using the last inequality
with (1) and (19), we obtain, for some ε0 > 0,

D+Ve ≤ −ε0 Ve(x, z, σ) + δ̄(|v|+ |w|+ |d|) (28)

for all (x, z, σ) ∈ X ×Z ×Rm≥0. With this, it follows that observer
(10) is ISS and function Ve is an ISS-Lypaunov function satisfying
Property 1.

B. Performance Analysis of the Saturation Redesign

The effect of the dynamic saturation in (10) is that of mitigating
the effect of impulsive disturbances (outliers) of v on the estimation
error x̂ − x, thus improving the transient behavior, at the cost of
slowing down the convergence rate, yet still preserving the asymptotic
estimation. Although a complete noise analysis is hard to carry out in
the nonlinear framework (see, among others, the discussions in [12]),
some results can be proven if (3), (4) are linear and y ∈ R as in
[6], where no performance characterization was given. In particular,
consider the linear system

ẋ = Ax+Bu, y = Cx+ v (29)

where x ∈ Rn is the state, y ∈ R is the measured output, v is the
measurement noise, and (A,C) is an observable pair. The observer
for (29) is selected as

˙̂x = Ax̂+Bu+ L(y − Cx̂) (30)

where x̂ ∈ Rn is the estimate and L is such that A−LC is Hurwitz.
We denote the estimation error provided by observer (30) as x̃0 :=
x̂− x, thus obtaining

˙̃x0 = (A− LC)x̃0 + Lv . (31)

By following the design proposed in Theorem 1, we consider also
the stubborn redesigned observer

˙̂x = Ax̂+Bu+ Lsatσ(y − Cx̂),
σ̇ = −λσ + θ|y − Cx̂|, (32)

with σ ∈ R≥0, λ, θ > 0. Similarly, we denote the estimation error
of observer (32) as x̃sat := x̂ − x. In these coordinates, we obtain
the following error dynamics

˙̃xsat = Ax̃sat + Lsatσ(v − Cx̃sat)
σ̇ = −λσ + θ|v − Cx̃sat| .

(33)

To comparatively characterize the effect of impulsive disturbances
v on the two observers (30) and (32), we model v as a piecewise
constant perturbation of the form

v = δτ (t) =

{
1
τ 0 ≤ t ≤ τ,
0 t > τ.

(34)

where δτ (t) converges to the Dirac delta function as τ → 0+.
The following result establishes extreme improvements of the error
response x̃sat over x̃0 as τ → 0+ by focusing on |x̃sat(τ)| and
|x̃0(τ)|. This is relevant because for t > τ we have δτ (t) = 0 and
both observers evolve with v = 0.

Proposition 1 Consider (29) with A ∈ Rn×n nonsingular and
denote by x̃0 and x̃sat the solutions, respectively, to (31) and (33)

with x̃0(0) = x̃sat(0) = 0, σ(0) = 0, and v given by (34). As τ
tends to 0+, the following holds

|x̃sat(τ)|
|x̃0(τ)| ≤ τ θ

1 + o(τ)

1− o(τ)
(35)

where o(τ) denotes small terms in τr , r ≥ 1. Furthermore, for each
τ ≥ 0, |x̃sat(t)| converges to zero as τ → 0+.

Proof: First compute

x̃0(τ) =

∫ τ

0
e(A−LC)(τ−s)Lδτ (s)ds

= (e(A−LC)τ − I)(A− LC)−1L 1
τ .

As a first approximation, for τ → 0+, we use the Taylor expansion
to compute e(A−LC)τ = I+(A−LC)τ +o(τ2), where, with some
abuse of notation, we denote with o(τ) higher-order infinitesimal
terms in τ and these terms may be a scalar or a matrix. Therefore,
we obtain

|x̃0(τ)| = 1
τ |L|(τ + o(τ2)) ≥ |L|(1− o(τ)). (36)

Similarly, we compute x̃sat(τ). We have

x̃sat(τ) =

∫ τ

0
eA(τ−s)Lσ(s)ds, (37)

with σ(s), s ∈ [0, τ ], given by

σ(s) =

∫ s

0
e−λ(s−r)θ|δτ (r)− Cx̃sat(r)|dr. (38)

By integrating (38) from σ(0) = 0 and using (34), we obtain

σ(s) ≤ θ
λ (1− e−λs)

(
1
τ + c

)
≤ θ(s+ o(s2))

(
1
τ + c

)
≤ θ(1 + o(τ))(1 + τc) ≤ θ(1 + τc+ o(τ)) ,

which holds for all s ∈ [0, τ ], where we have approximated e−λτ

by 1−λτ +o(τ2) for small τ and where c = sups∈[0,τ ] |Cx̃sat(s)|.
By using (37), we further get

|x̃sat(τ)| ≤
∣∣∣∣∫ τ

0
eA(τ−s)L|σ(s)|ds

∣∣∣∣
≤
∣∣∣(eAτ − I)A−1Lθ(1 + τc+ o(τ))

∣∣∣
≤
∣∣∣(Aτ + o(τ2))A−1Lθ(1 + τc+ o(τ))

∣∣∣
≤τθ|L|(1 + o(τ)). (39)

for τ → 0+. In light of (36) and (39), we conclude that inequality
(35) holds. Finally, when τ → 0+, namely when δτ tends to a Dirac
impulse, by using (39), it follows that |x̃sat(τ)| → 0 and in particular
x̃sat(t)→ 0 for all t ≥ 0.

While Proposition 1 illustrates the advantages of (33) versus (31) in
terms of dynamic response, we prove below that the static response,
as measured by the disturbance-to-error DC gain, is not worse in (33)
when θ ≥ λ (which always holds under (16)).

Proposition 2 Assume that A−LC is Hurwitz. For any θ ≥ λ, the
disturbance-to-error DC gains of observers (30) and (32) associated
to a constant v coincide.

Proof: The equilibrium x̃◦0 of (31) for any constant v(t) = v̄ for
all t ≥ 0 is given by x̃◦0 = −(A−LC)−1Lv̄. Concerning dynamics
(33), the equilibrium σ◦ of the σ-dynamics is given by σ◦ = θ

λ |v̄−
Cx̃◦sat|, where x̃◦sat denotes the equilibrium of the x̃sat-dynamics. For
θ ≥ λ, it follows that σ ≥ |v̄−Cx̃◦sat|, therefore satσ(v̄−Cx̃◦sat) =
v̄−Cx̃◦sat. As a consequence, in the x̃sat dynamics we obtain again
x̃◦sat = −(A− LC)−1Lv̄, namely x̃◦sat = x̃◦0.



6

Fig. 1: Effect of the dynamic saturation redesign in the presence of
outliers: |x̃0(t)| (in dotted blue) of error dynamics (31), |x̃sat(t)|
of error dynamics (33) with λ = θ = 10 (in dashed green) and
with λ = θ = 1 (in red).

As a simple illustration of Propositions 1 and 2, we have analyzed
the case in which system (29) is selected as A =

[
0 1
−1 0

]
, B =

[
0
0

]
,

C = [ 1 0 ] and observer (30) has gain L =
[

1
1

]
. In order to show the

effect of the saturation redesign, we consider two different choices
of the parameters: λ = θ = 1 and λ = θ = 10. The initial
conditions are selected as x(0) = (0, 1) and x̂(0) = (1,−1) for all
the observers. An impulse of the form (34) with τ = 0.1 is applied
at time t = 20. A constant disturbance of unitary amplitude is then
applied at time t = 40. Fig. 1 shows the evolution of the norm
|x̃0(t)| of the error dynamics (31) and the norms |x̃sat(t)| of the
error dynamics (33) for the two different choices of the parameters.
When t ∈ [0, 20] we can see that the presence of the saturation
slightly deteriorates the transient response when λ is selected small
(red curve). Then, between t ∈ [20, 40] we can observe the effect
of the outlier. The maximum value is reached at t = 20 + τ , where
we obtained |x̃0(τ)| = 1.343, |x̃sat(τ)| = 0.516 for θ = 10 and
|x̃sat(τ)| = 0.068 for θ = 1. These values confirm bound (35)
since |x̃sat(τ)|/|x̃0(τ)| = 0.384 ≤ θτ = 1 for θ = 10 and
|x̃sat(τ)|/|x̃0(τ)| = 0.051 ≤ θτ = 0.1 for θ = 1. Finally, in
t ∈ [40, 60] a constant disturbance of unitary amplitude is applied,
namely v(t) = 1 for all t ≥ 40. The three observers asymptotically
converge to the same value, confirming that their DC gain is the
same, as stated in Proposition 2.

We finally remark that, although the bounds and the simulations
of this section refer to the case of linear systems and observers,
similar results can be numerically appreciated with nonlinear sys-
tems/estimators, as shown in [9].

C. User Guidelines for Saturation Parameter Tuning

Theorem 1 provides a sufficient result for a suitable choice of
parameters Λ, Θ in (10). Such a result is in general conservative
as it imposes a large lower-bound for the value of Θ, see (16).
The simulation in Fig. 1 shows the influence of the two parameters
highlighting that a small Λ potentially deteriorates the transient
responses, while a small Θ improves the rejection of impulsive
disturbances. As a consequence, from a practical point of view, the
tuning of Λ, Θ based on the simulation outcomes is much more
effective for the achieved performances.

We conclude that, to optimize the tuning of the parameters, one
should select values of Λ of the same order of magnitude as the decay
rate of the estimation error of the original observer, in order not to
deteriorate too much the transient response, and, at the same time,
choose Θ to minimize the ratio Λ/Θ so as to improve the sensitivity
to measurement noise.

IV. DYNAMIC DEAD-ZONE REDESIGN

A. Main Result on Dead-Zone Redesign

In line with [24], we discuss here the use of a dynamic dead-zone
redesign of observer (4) given by

ż = ϕ(z, u) +Gκ(z, dzσ(y − h(x̂))) ,
σ̇ = −Λσ + Θ |y − h(x̂)|cw ,
x̂ = ψ(z) ,

(40)

where (z, σ) ∈ R%×Rm≥0 is the state of the dead-zone redesigned ob-
server and Λ := diag(λ1, . . . , λm) > 0, Θ := diag(θ1, . . . , θm) ≥
0 are design parameters. Paralleling the stubborn redesign in (10),
observer (40) is obtained by “dead-zonating” the output error y−h(x̂)
in (4) with a variable dead-zone level σ. The level σ is driven by
the same output error |y − h(x̂)|cw. From the peculiar shape of
the dead-zone function, the motivation for this redesign is that of
“trimming” the effect of persistent bounded sensor noises. A more
precise analysis of the effect of the dead-zone in the linear context
is given below in Section IV-B.

Note that, despite the presence of the dead-zone, the use of a
variable threshold allows retaining the asymptotic convergence to zero
of the estimation error in nominal conditions. This is formally stated
in the next theorem, where we show that, similar to the stubborn
redesign of the previous section, also the dead-zone redesigned
observer (40) preserves the ISS of the original observer (4), according
to the definitions given in Properties 1, 2.

Theorem 2 Consider system (3) satisfying Assumption 1. Suppose
observer (4) is an ISS observer enjoying Properties 1 and 2. Let
θi ≥ 0, i = 1, . . . ,m be fixed. Then, there exist λ∗i > 0, i =
1, . . . ,m, such that, for any λi > λ∗i , i = 1, . . . ,m, observer (40)
is an ISS observer for system (3) enjoying Properties 1 and 2.

Proof: First, let us rewrite the perturbed-injection ver-
sion of observer (40) as in (11) and use the subscript e for
ϕe, Ge, ψe, κe, de, Ve as in Section III. Function κe is now given
by

κe(ze, y − h(x̂)) :=

(
κ(z, dzσ(y − h(x̂)))

Θ|y − h(x̂)|cw

)
whereas ze, de, ϕe, Ge, and ψe are defined after (11). First, we see
that functions Ge, κe verify (6). In particular, to prove the right
bound, recall that, by using (2) and the properties of κ and of the
dead-zone function, we have

|κe(ze, y1)− κe(ze, y2)|
≤ |κ(z, dzσ(y1))− κ(z, dzσ(y2))|+ |Θ(|y1|cw − |y2|cw)|
≤ κ̄e|y1 − y2| (41)

where κ̄e = κ̄ +
√
m|Θ|, with κ̄ given in Property 1. In order to

define an ISS-Lyapunov function Ve for (11) satisfying Property 2,
note that dynamics (40) can be rewritten by expressing (11) as in
(13) with the new definitions

γ := h(x)− h(ψ(z)), γ̃ := |γ̄|cw − |γ|cw, γ̄ := γ + v,
q := κ(z, dzσ(γ))− κ(z, γ),
q̃ := κ(z, dzσ(γ̄))− κ(z, dzσ(γ)), δ := q + q̃ .

(42)
The quantities in (42) satisfy the following inequalities from the
sector and global Lipschitz properties of the saturation, the absolute
value, and κ:

|q| ≤ κ̄|dzσ(γ)− γ| ≤ κ̄|σ|,
|q̃| ≤ κ̄|v|, |γ̃i| ≤ |vi| ≤ |v| .

(43)



7

According to the statement of the theorem, let θi, i = 1, . . . ,m be
fixed, and first select some ζi > 0 satisfying

`0

m∑
i=1

ζiθi < c (44)

with c given in Property 1 and `0 given in Property 2. Then, select
λ∗i > 0 such that

λ∗i ζi > cdκ̄, ∀ i = 1, . . . ,m. (45)

We define the ISS-Lyapunov function for (40) as

Ve(x, z, σ) := V (x, z) +

m∑
i=1

ζiσi ≤ V (x, z) + ζ̄|σ|1 (46)

where ζi > 0, i = 1, . . . ,m, have been defined above and ζ̄ :=
max{ζi}. Note that, in light of the property of the dynamics of σ in
(40), we have σ(t) ∈ Rm≥0 for all t ≥ 0 for any σ(0) ∈ Rm≥0. Thus,
we can write indifferently σi = |σi|. As in the proof of Theorem 1,
we define ψ−Re (x) := (ψ−R(x), 0). Therefore, we obtain

αe(|x− ψ(z)|) ≤ Ve(x, z, σ) ≤ ᾱe(|ψ−Re (x)− ze|) (47)

where αe(s) = α(s) for any s ∈ R≥0, with α given by Property 1,
and ᾱe ∈ K∞ satisfying

ᾱ(s1) +
√
mmax{ζi}s2 ≤ ᾱe(

√
2|(s1, s2)|) .

This shows that (7) holds and therefore function Ve defined in (46)
is a candidate ISS-Lyapunov function. Furthermore, it satisfies the
output growth condition of Property 2. To see this, note that (23)
applies also to this case. Concerning its Dini derivative, we may use
the bounds in (43) to prove (24) and (25), thus showing the conditions
of Property 2. We now focus on proving (8). In order to compute the
Dini derivative of Ve along the solutions to (13), (40), we use (9a)
and (43) as follows

|δ| ≤ |q|+ |q̃| ≤ κ̄|satσ(γ)|+ κ̄|v| ≤ κ̄|σ|+ κ̄|v|,
|γi| ≤ |γ| ≤ `0V (x, z).

Then, we obtain

D+Ve = D+V +
∑m
i=1 ζiD

+σi
≤ −cV (x, z) + cd|δ + d|+ cv|v|+ cw|w|

+

m∑
i=1

ζi(−λiσi + θi|γi|+ θi|γ̃i|+ |dσi |)

≤ −cV (x, z) + cdκ̄|σ|1

+

m∑
i=1

ζi(−λiσi + θi`0V (x, z) + θi|v|+ |dσi |)

+cd|d|+ (cv + cdκ̄)|v|+ cw|w|
≤ −ε(V (x, z) + |σ|1) + δ̄|v|+ δ̄|w|+ δ̄|de|

(48)

for some ε, δ̄ > 0, and for all (x, z, σ) ∈ X ×Z×Rm≥0, where (43),
(44), and (45) are used to derive the last inequality. From (48) and the
right bound in (46), it follows that observer (40) is an ISS observer
and function Ve is an ISS-Lyapunov function satisfying Properties 1
and 2.

B. Performance Analysis of the Dead-Zone Redesign
As in Section III-B, we analyze here the effect of a constant

perturbation v(t) = v̄ for all t ≥ 0 on the redesigned observer (40)
for the single-output linear case. In particular, we consider once again
the single-output linear system (29) where (A,C) is an observable
pair, interconnected to the linear observer (30), where L is such that
A−LC is Hurwitz. Denoting the esimation error as x̃0 := x̂−x, we
obtain the linear error dynamics (31), repeated here for convenience:

˙̃x0 = (A− LC)x̃0 + Lv. (49)

By following the design proposed in Theorem 2, we consider then
the dead-zone redesigned observer

˙̂x = Ax̂+Bu+ Ldzσ(y − Cx̂)
σ̇ = −λσ + θ|y − Cx̂| (50)

with σ ∈ R≥0, λ > 0, θ ≥ 0. Similarly, we denote the estimation
error of observer (50) as x̃dz := x̂ − x. In these coordinates, we
obtain the error dynamics

˙̃xdz = Ax̃dz + Ldzσ(v − Cx̃dz)
σ̇ = −λσ + θ|v − Cx̃dz| .

(51)

By following the analysis in Section III-B, we compare the static
responses, as measured by the disturbance-to-error DC gain, of the
error dynamics (49) and (51). For this, we focus on the class of
triplets A,C,L such that A is nonsingular and the gain CA−1L < 1.
This condition is not overly restrictive and is enjoyed by all triplets
A,C,L such that both A and A−LC are Hurwitz, as illustrated by
the next lemma.

Lemma 1 All the triplets (A,C,L) such that det(A −
LC) det(A) > 0, satisfy CA−1L < 1, in particular this
condition holds if A and A− LC are both Hurwitz.

Proof: The condition det(A − LC) det(A) > 0 implies
det(A) 6= 0, hence A is invertible. By applying the matrix determi-
nant lemma3 we compute det(A−LC) = det(A(I −A−1LC)) =
det(A)(1−CA−1L). As a consequence, if det(A−LC) det(A) >
0, then 1− CA−1L > 0, which concludes the proof.

We may now state our main DC-gain result by establishing a
desirable strict decrease of the DC gain of (50) as θ is increased
from 0 (in this case the dead-zone is inactive and the DC gains are
the same) to its maximum value.

Proposition 3 Suppose that A − LC is Hurwitz. If A is invertible
and CA−1L < 1, then there exists a class K function k̃ such that,
for any λ > θ ≥ 0, the disturbance-to-error DC gains k0, kdz of
dynamics (49), respectively (51), satisfy

kdz

k0
= 1− k̃

(
θ

λ

)
. (52)

Proof: The equilibrium x̃◦0 of error dynamics (49) for a constant
v(t) = v̄ for all t ≥ 0 is given by

x̃◦0 = −(A− LC)−1Lv̄. (53)

To compute the equilibrium (x̃◦dz, σ
◦) of error dynamics (51) for

the same v = v̄ constant, we first get σ◦ = θ
λ |v̄ − Cx̃

◦
dz|. For any

θ ≤ λ, we have σ◦ ≤ |v̄−Cx̃◦dz|, and hence, by the properties of the
dead-zone function and the error dynamics (51) at the equilibrium,
it follows that Ax̃dz + L(v̄ − Cx̃dz)ε = 0 with ε := 1 − θ/λ.
Rearranging, we get x̃◦dz = −ε(A − LCε)−1Lv̄ with ε ∈ [0, 1].
Now, by using the Woodbury matrix identity4 we obtain

x̃◦dz = −ε(A− LCε)−1Lv̄

= −
(
A−1 +

ε

1− εCA−1L
A−1LCA−1

)
Lεv̄

=
−εv̄

1− εCA−1L

(
A−1L− εA−1LCA−1L+ εA−1LCA−1L

)
= − ε

1− εCA−1L
A−1Lv̄ = −α(ε)A−1Lv̄,

3For A invertible and u, v column vectors, the matrix determinant lemma
states that det(A+ uv>) = det(A) det(1 + v>A−1u).

4Also known as matrix inversion lemma, the Woodbury matrix identity
states that for A invertible and u, v column vectors, the following holds:
(A+ uv>)−1 = A−1 − 1

1+v>A−1u
A−1uv>A−1.
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Fig. 2: Effect of the dynamic dead-zone redesign in the presence of
outliers: |x̃0(t)| (in dotted blue) of error dynamics (49), |x̃dz(t)|
of error dynamics (51) with λ = 4, θ = 1 (in dashed green) and
with λ = 2, θ = 1 (in red).

where α(ε) := ε/(1 − aε), with a := CA−1L < 1 from the
statement of the proposition. From the previous equation and (53)
it follows that |x̃◦0| = α(1)|A−1Lv̄| and |x̃◦dz| = α(ε)|A−1Lv̄|,
which provides

kdz

k0
=
|x̃◦dz|
|x̃◦0|

=
α(ε)

α(1)
= 1− k̃(θ̃),

where we denote θ̃ := θ/λ. It is then immediate to determine the
function k̃ in (52) as k̃(θ̃) = 1−α(1−θ̃)/α(1) = θ̃/(1+a(θ̃−1)). To
show that k̃ ∈ K whenever a < 1 and θ ∈ [0, 1], note that k̃(0) = 0
and the sign of its derivative, i.e., k̃(θ̃)′ = (1−a)/(1+a(θ̃−1))2 > 0.

We finally remark that, although the bounds derived in this section
refer to the case of linear systems and observers, similar results can be
observed in numerical simulations with nonlinear systems/observers,
as shown in [23], [24].

As in Section III-B, simple simulation results are provided to
illustrate Proposition 3. We select the matrices in (29), as A =[

0 1
−1 0

]
, B =

[
0
0

]
, C = [ 1 0 ], and the output injection gain

L =
[

1
1

]
for observer (30). In order to show the effect of the

saturation redesign we consider two different parameters choices,
namely λ = 4, θ = 1 and λ = 2, θ = 1. The initial conditions
are selected as x(0) = (0, 1) and x̂(0) = (1,−1) for all the
observers. Fig. 2, for t ∈ [0, 20], shows that the convergence of the
estimation error in the absence of noise is guaranteed for all of the
considered observers. The simulations illustrate that the dead-zone
may deteriorate the transient response of the estimation error when
the ratio θ/λ is too large. Then, a constant unitary measurement
noise is applied at time t = 20. The asymptotic value of the observer
dynamics (49) is 0.707, while those of the dead-zonated observers
are 0.606 and 0.471 for λ = 4 and λ = 2, respectively. This result
confirms the bounds of Proposition 3, as the DC gain is reduced
by augmenting the ratio θ/λ. Finally, from time t = 40, we apply
a high-frequency measurement noise of unitary magnitude modeled
as v(t) = sin(50t). From the simulations we compute the bounds
lim supt→∞ |x̃0(t)| ≤ 0.028, lim supt→∞ |x̃dz(t)| ≤ 0.022 for
λ = 4, and lim supt→∞ |x̃dz(t)| ≤ 0.016 for λ = 2, showing an
improvement of the steady-state performances also in the presence of
high-frequency measurement noise, as originally pointed out in [23],
[24].

C. User Guidelines for Dead-Zone Parameter Tuning

As in Section III, the bounds derived in the proof of Theorem 2 for
the design of parameters Λ, Θ may result to be very conservative, and
their tuning based on experimental simulations can be more effective,
as also illustrated in the previous example.

For the tuning of the parameters, one should first select values of
Λ of the same order of magnitude as the decay rate of the estimation

error of the original observer in order not the deteriorate too much
the transient response. Once Λ is fixed, it is suggested to increase as
much as possible the ratio Θ/Λ to reduce the DC gain, and therefore
improve the sensitivity to measurement noise.

V. MIXED REDESIGN

An appealing feature of the parallel developments of Sections III
and IV is that the corresponding redesigns preserve Properties 1
and 2. Due to this fact, it is immediate to apply a mixed stubborn
dead-zone redesign by nesting the two approaches as follows5

ż = ϕ(z, u) +Gκ(z, satσS (dzσD (y − h(x̂)))) ,
σ̇S = −ΛSσS + ΘS |y − h(x̂)|cw ,
σ̇D = −ΛDσD + ΘD |y − h(x̂)|cw ,
x̂ = ψ(z) ,

(54)

where (z, σS , σD) ∈ R% × Rm≥0 × Rm≥0 is the redesigned ob-
server state and ΛS := diag(λS1, . . . , λSm) > 0, ΘS :=
diag(θS1, . . . , θSm) > 0, ΛD := diag(λD1, . . . , λDm) > 0,
ΘD := diag(θD1, . . . , θDm) ≥ 0, are design parameters. The mixed
redesign allows achieving both the desirable features of the saturation
and dead-zone redesigns, discussed in the previous sections, while
preserving the ISS-properties of the original observer (4), as stated
by the following theorem, whose proof is omitted because it is an
immediate consequence of Theorems 1 and 2.

Theorem 3 Consider system (3) and suppose Assumption 1 holds.
Suppose observer (4) is an ISS observer enjoying Properties 1 and
2. Then, there exist choices of ΛS ,ΛD,ΘS ,ΘD such that observer
(54) is an ISS observer for system (3) enjoying Properties 1 and 2.

VI. REDESIGN OF RELEVANT CLASSES OF ESTIMATORS

In this section we show that a number of observer architectures
satisfy Properties 1, 2, namely it is possible to apply the stubborn and
dead-zone redesigns of Sections III–V to these classes of estimators.

A. Linear Luenberger Observers
Consider a linear system of the form

ẋ = Ax+Bu+ w, y = Cx+ v (55)

with x ∈ Rn, u ∈ Rp, y ∈ Rm, and a detectable pair (A,C). Under
Assumption 1, consider the Luenberger observer [36]:

˙̂x = Ax̂+Bu+ L(y − Cx̂) (56)

where x̂ ∈ Rn is the state and L ∈ Rn×m is a matrix to be selected.
With respect to (4), we have z = x̂, % = ρ = n, κ(x̂, y − h(x̂)) =
L(y − Cx̂), G = I , ψ(x̂) = x̂. Following Section II and owing to
the specific selection of κ, the perturbed-injection version of observer
(56) corresponds to

˙̂x = Ax̂+Bu+ L(y − Cx̂) + d. (57)

We have the following result.

Proposition 4 Let Assumption 1 hold with X0 = X = Rn, U ∈ Rp,
and W being any arbitrarily large compact subset of Rn. Let L
be chosen such that A − LC is Hurwitz. Then, Properties 1-2 are
satisfied by system (55) and observer (56) with the choices in Table I,
Z = Rn for any arbitrarily large compact sets D ⊂ Rρ,V ⊂ Rm.

Proof: First of all, inequality (6) is automatically satisfied since
κ is linear in y−h(x̂) and L is constant. Then, consider the function

5Evidently, we can also select κ(z, dzσS (satσD (y − h(x̂)))) in (54).
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V (x, x̂) =
√

(x− x̂)>P (x− x̂) ψ−R(x) = x
P (A− LC) + (A− LC)>P = −2I α(|s|) =

√
λP |s|

κ̄ = |L| c = 1/λ̄P ᾱ(|s|) =
√
λ̄P |s|

cw = λ̄P /
√
λP cd = λ̄P /

√
λP cv = |L|λ̄P /

√
λP

`0 = |C|/
√
λP `1 = |C(A− LC)|/

√
λP

`v = |CL| `w = |C| `d = |C|

TABLE I: System and design parameters for the linear system (55) and
the Luenberger observer (56).

V defined in Table I with P ∈ Rn×n and P > 0. Since λP I ≤
P ≤ λ̄P I , we have√

λP |x− x̂| ≤ V (x, x̂) ≤
√
λ̄P |x− x̂|. (58)

From (58), we get the property of α and ᾱ satisfying (7), as in Table I.
Define e := x− x̂. By differentiating along (55) and (57), we obtain

ė = (A− LC)e+ w − Lv − d. (59)

Therefore, by differentiating V along (59), and proceeding as in [32,
p. 203], the Dini derivative of V is such that

D+V ≤ − |e|2√
e>Pe

+
1√
e>Pe

e>P
(
w − Lv − d

)
≤ −cV + cw|w|+ cv|v|+ cd|d|, (60)

where c, cw, cd, cv are selected as in Table I. Note that, by linearity,
the sets V,D can be selected arbitrarily large. This shows that (8) in
Property 1 holds. To show (9), we have from (58), |C(x − x̂)| ≤
|C||x− x̂| ≤ `0V (x, x̂), with `0 defined in Table I, which proves
(9a) in Property 2. Finally, from (58) and (59) we obtain

|D+C(x− x̂)| = |D+Ce|
= |C(A− LC)e+ Cw − CLv + Cd|
≤ `1V (x, x̂) + `v|v|+ `w|w|+ `d|d|,

with `1, `v, `w, `d defined in Table I. This shows that (9b) holds and
concludes the proof.

In view of Proposition 4, we can apply the stubborn redesign (10)
or the dead-zone redesign (40) to filter (56) as follows

˙̂x = Ax̂+Bu+ LΦσ(y − Cx̂)
σ̇ = −Λσ + Θ |y − Cx̂|cw

(61)

where Φσ = satσ or Φσ = dzσ , according to the desired design,
and for some diagonal Λ,Θ > 0.

Remark 1 The redesign (61) can be seen as an alternative to the
designs proposed in [6], [24] having a few desirable enhancements.
First, in [6] a single saturation threshold is used for all the input
channels, whereas here we adopt different values σi of the saturation
levels. This anticipates improved transients in multi-output systems,
especially when outliers affect only some of the outputs at hand.
Secondly, the dynamics of the saturation threshold σ used in [6],
[24] is quadratic in the output error, whereas we use here a linear
injection depending on the norm of the output error. y

B. Observers for Lipschitz Systems

Consider a system of the form

ẋ = Ax+ φ(x, u) + w, y = Cx+ v (62)

where the pair (C,A) is detectable and φ(·, u) is a globally Lipschitz
function uniformly in u, i.e.,

|φ(x, u)− φ(x̂, u)| ≤ kφ|x− x̂|, ∀x, x̂ ∈ X , u ∈ U , (63)

for some scalar kφ > 0. We suppose that Assumption 1 holds and
we consider an observer of the form

˙̂x = Ax̂+ φ(x̂, u) + L(y − Cx̂), (64)

where x̂ ∈ Rn is the state and L ∈ Rn×m is a matrix to be selected.
With respect to (4), we have z = x̂, ρ = % = n, κ(x̂, y − h(x̂)) =
L(y − Cx̂), G = I , ψ(x̂) = x̂ for any x̂ ∈ Rn. As in Section VI-
A, we can derive the perturbed-injection version of observer (64),
which is omitted, here and in the following, for space reasons. In
the next proposition we follow the design proposed in [37], [45] and
establish the applicability of the saturation and dead-zone redesigns
to this class of systems.

Proposition 5 Let Assumption 1 hold for some sets X0 ⊆ X ⊆ Rn,
U ∈ Rp for which (63) holds, and for any arbitrarily large compact
set W ⊂ Rn. Suppose that there exist P = P> > 0, ν > 0, ε > 0,
and Y ∈ Rn×m satisfying the LMI(

A>P + PA− Y C − C>Y > + (νk2
φ + 2ε)I P

P −νI

)
≤ 0,

(65)
and select L := P−1Y . Then, Properties 1-2 are satisfied for system
(62) and observer (64) with the choices in Table II and Z = Rn for
any arbitrarily large compact sets D ⊂ Rρ,V ⊂ Rm.

Proof: As in the proof of Proposition 4, the function V defined
in Table II satisfies (58). Let us consider the Dini derivative of
V 2(x, x̂) as in Section VI-A, i.e.,

D+
(
e>Pe

)
= e>

(
(A− LC)>P + P (A− LC)

)
e

+ 2e>P (φ(x, u)− φ(x̂, u))

and use Young’s inequality and bound (63) to get

2e>P (φ(x, u)− φ(x̂, u))

≤ 1
ν e
>PPe+ ν|φ(x, u)− φ(x̂, u)|2 ≤ 1

ν e
>PPe+ νk2

φe
>Ie.

Applying a Schur complement to inequality (65), we obtain

(A− LC)>P + P (A− LC) +
1

ν
PP + νk2

φI ≤ −2εI,

for some ε > 0. Using (63) and following the proof of Proposition 4,
we get

D+V ≤ − ε|e|2√
e>Pe

+
1√
e>Pe

e>P
(
w − Lv − d

)
,

showing (8) with c, cv, cw, cd defined in Table II. The rest of
the proof follows the same arguments as those of the proof of
Proposition 4.

In view of Proposition 5, we can apply the stubborn redesign (10)
or the dead-zone redesign (40) to filter (64) as follows

˙̂x = Ax̂+ φ(x̂, u) + LΦσ(y − Cx̂)
σ̇ = −Λσ + Θ |y − Cx̂|cw

(66)

for some diagonal Λ,Θ > 0 and Φσ = satσ or Φσ = dzσ .

Remark 2 For nonlinear systems of the form

ẋ = Ax+ Γg(Hx) + r(y, u) + w, y = Cx+ v,

the following observer, based on the circle-criterion, is proposed in
[8]

˙̂x = Ax̂+ L(y − Cx̂) + Γg(Hx̂+K(y − Cx̂)) + r(y, u).

This observer can be expressed as in (3) as follows

˙̂x = Ax̂+ Γg(Hx̂) + r(y, u) + κ(x̂, y − h(x̂))
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V (x, x̂) =
√

(x− x̂)>P (x− x̂) ψ−R(x) = x

α(|s|) =
√
λP |s| ᾱ(|s|) =

√
λ̄P |s| κ̄ = |L|

c = ε/λ̄P cw = cd = λ̄P /
√
λP cv = |L|λ̄P /

√
λP

`0 = |C|/
√
λP `1 = |C(A− LC)|/

√
λP

`v = |CL| `w = |C| `d = |C|

TABLE II: System and design parameters for the Lipschitz nonlinear
system (62) and the nonlinear observer (64).

with κ(x̂, y − h(x̂)) := L(y − Cx̂) + Γ[g(Hx̂ + K(y − Cx̂)) −
g(Hx̂)]. In [8], it is shown that the gains L,K can be selected to
ensure the ISS of the estimation error. Therefore, as in Proposition 5,
Properties 1-2 follow from using the square root of the quadratic
Lyapunov function presented in [8]. y

C. Observers for Input-affine Systems

Consider a system of the form

ẋ = A(u)x+B(u) + w, y = Cx+ v (67)

where u 7→ A(u) ∈ Rn×n and u 7→ B(u) ∈ Rn are continuous.
We suppose that Assumption 1 holds. For this class of systems, an
observer was originally proposed in [29]. We consider the design
approach presented in [17] for estimators of the form

˙̂x = A(u) x̂+B(u) + P−1C>(y − Cx̂), (68a)

where x̂ ∈ Rn is the state, u is a known input function, and t 7→
P (t) = P (t)> ∈ Rn×n is the solution of

Ṗ = −2µP −A(u)>P − PA(u) + 2C>C, (68b)

with P (0) > 0 and µ > 0. With respect to (4), we have ρ = n and

z = (x̂, vec(P )), κ(z, y − h(x̂)) = P−1C>(y − Cx̂),

% = n+ n(n+ 1)/2 ψ(z) = x̂, G = [ I 0 ]> .

First, we recall the following in [17, Lemma 2.1, p. 177].

Lemma 2 Suppose that the input t 7→ u(t) is regularly persistent
(see [17, Definition 2.1]). Then there exists µ? > 0 such that, for any
µ ≥ µ?, the solution t 7→ P (t) to (68b) satisfies pI ≤ P (t) ≤ p̄I
for all t ≥ 0 and for some p, p̄ ∈ R such that 0 < p < p̄.

Based on the results in [17], we establish below the applicability
of the proposed redesigns to observer (68).

Proposition 6 If input t 7→ u(t) is regularly persistent (see [17,
Definition 2.1]), then Properties 1-2 are satisfied for system (67) and
observer (68) with the choices in Table III.

Proof: First of all, note that, in view of the property of ψ−R in
Table III, we have |x−x̂| ≤ |(x, 0)−(x̂, vec(P )))| = |ψ−R(x)−z|.
Therefore, by using the previous inequality and Lemma 2, it follows
that √p |x − x̂| ≤ V (x, z) ≤

√
p̄ |ψ−R(x) − z|, by which we

obtain bound (58) with α, ᾱ given in Table III. Now, let us write
the perturbed-injection dynamics of the estimation error according to
(5), which, using Table III, is

ė = (A(u)− P−1C>C) e+ w − P−1C>v − d.

Let us now consider the Dini derivative of V 2(x, x̂). It reads

D+
(
e>Pe

)
= −2µe>Pe+ 2e>P (w − d) + 2e>C>v

V (x, z) =
√

(x− x̂)>P (x− x̂) ψ−R(x) = (x, 0),
α(|s|) =

√
p|s| ᾱ(|s|) =

√
p̄|s| κ̄ = |C|/p

c = µ cw = cd = p̄/
√
p cv = |C|/√p

`0 = |C|/
√
λ `1 = |C|

(
|A|+ |C|2/p

)
/
√
p

`v = |C|2/p `w = |C| `d = |C|

TABLE III: System and design parameters for the input-affine system
(67) and observer (68).

and, by means of
∣∣∣e>/√e>Pe∣∣∣ ≤ 1/

√
p holding for all e ∈ Rn\{0}

and P satisfying Lemma 2, we obtain

D+V = −µV +
1√
e>Pe

e>(P (w − d) + C>v)

from which we obtain (8) with cw, cd, cv defined in Table III. The
rest of the proof follows the same arguments as those of the proof
of Proposition 4.

In view of Proposition 6, we can apply the stubborn (10) or dead-
zone (40) redesigns to filter (68) as follows

˙̂x = A(u)x̂+B(u) + P−1C>Φσ(y − Cx̂)

Ṗ = −2µP −A(u)>P − PA(u) + 2C>C
σ̇ = −Λσ + Θ |y − Cx̂|cw,

(69)

for some diagonal Λ,Θ > 0 and Φσ = satσ or Φσ = dzσ .

D. Extended Kalman Filters

Consider a system of the form

ẋ = f(x, u) + w, y = h(x) + v (70)

where x ∈ Rn is the state, u ∈ Rp is a known input, and y ∈ Rm
is the measured output. Suppose that Assumption 1 holds for some
given compact sets X ⊂ Rn, U ⊂ Rp and for some (small enough)
compact set W ⊂ Rn. Also suppose that functions f, h are C1.
Given some ε > 0, assume that there exist kh, kf , khf > 0 such
that the following inequalities hold

|h(x)− h(x̂)| ≤ kh|x− x̂| (71a)

|f(x, u)− f(x̂, u)| ≤ kf |x− x̂| (71b)∣∣∣(∂h∂x (x)− ∂h
∂x (x̂)

)
f(x, u)

∣∣∣ ≤ khf |x− x̂| (71c)

for all x ∈ X , all x̂ ∈ Rn such that |x− x̂| ≤ ε, and all u ∈ U .
We consider the EKF with prescribed degree of stability proposed

in [38], i.e.,

˙̂x = f(x̂, u) +K(x̂)(y − h(x̂)) (72a)

K(x̂) = PC(x̂)>R−1, (72b)

with t 7→ P (t) solution to the Riccati differential equation

Ṗ = (A(x̂, u) + µI)P + P (A(x̂, u)> + µI)

−PC(x̂)>R−1C(x̂)P +Q, (72c)

A(x̂, u) :=
∂f

∂x
(x̂, u), C(x̂) :=

∂h

∂x
(x̂), (72d)

µ ≥ 0, R = R> > 0, and Q = Q> > 0. Note that we recover the
form of a standard EKF (see, e.g., [19], [34]) by selecting µ = 0 in
(72c). With respect to the compact notation (4), we have ρ = n,

z = (x̂, vec(P )), κ(z, y − h(x̂)) = K(x̂)(y − h(x̂)),

% = n+ n(n+ 1)/2 ψ(z) = x̂, G = [ I 0 ]> .
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W ⊂ Bδ V ⊂ Bδ D ⊂ Bε

V (x, z) =
√
W (x, z) ψ−R(x) = (x, 0)

α(|s|) = |s|/
√
p̄ ᾱ(|s|) = |s|/√p κ̄ = p̄ c̄|R−1|

c = µ+ λQp/(4p̄
2) cw = cd =

√
p̄/p cv = κ̄

√
p̄/p

`0 = kh/
√
p `1 = (khf + c̄kf + c̄κ̄kh)/

√
p

`v = c̄κ̄ `w = c̄ `d = c̄

TABLE IV: System and design parameters for system (70) and the EKF
(72).

and ϕ defined according to dynamics (72a), (72c). Likewise in [38],
we define the functions (obtained via expansions of f, h into power
series)

φ(x, x̂, u) := f(x, u)− f(x̂, u)−A(x̂, u)(x− x̂),
χ(x, x̂) := h(x)− h(x̂)− C(x̂)(x− x̂).

Following [38], the next assumption is stated.

Assumption 2 (Assumptions 1-3 in [38]) There exist εφ, εχ,
kφ, kχ, c̄, p̄, p > 0 such that

1) |φ(x, x̂, u)| ≤ kφ|x− x̂|2 for all u ∈ Rp and for all x, x̂ ∈ Rn
such that |x− x̂| ≤ εφ;

2) |χ(x, x̂)| ≤ kχ|x− x̂|2 for all x, x̂ ∈ Rn such that |x− x̂| ≤
εχ;

3) |C(x(t))| ≤ c̄ and |C(x̂(t))| ≤ c̄ for any solution to (70),
(72);

4) the solution t 7→ P (t) to (72c) satisfies pI ≤ P (t) ≤ p̄I for
any solution to (70), (72).

Under the previous conditions, the following result ensuring the
(local) stability of the estimation error can be proved.

Proposition 7 (Main Theorem in [38]) There exist ε0, β0 > 0 and
µ̄ > µ ≥ 0 such that solutions to system (70) and estimator (72),
with w = 0, satisfy

|x(t)− x̂(t)| ≤ β0 exp(−µ̄t)|x(0)− x̂(0)| (73)

for any initial condition x, x̂ ∈ Rn satisfying |x−x̂| ≤ ε0. Moreover,
this can be established with the Lyapunov function

W (x, z) := (x− x̂)>P−1(x− x̂). (74)

Based on the above setup, mostly inspired by [38], we have the
following result.

Proposition 8 Under Assumption 2, there exists ε1, δ > 0 such that
Properties 1-2 are satisfied for system (70) and estimator (72) with
the choices in Table IV and for any initial condition x, x̂ ∈ Rn
satisfying |x− x̂| ≤ ε1 and disturbances v ∈ Rm, w ∈ Rn such that
|v| ≤ δ and |w| ≤ δ.

Proof: First of all, consider system (70) and observer (72) when
w = 0, v = 0, and d = 0, and suppose that the inequalities
in Assumption 2 are verified, namely |x − x̂| ≤ min{εφ, εχ}.
By following the computations in [38], we have that the Lyapunov
function W defined in (74), satisfies Ẇ ≤ −

(
2µ+

λQp

2p̄2

)
W . As a

consequence, when considering the time derivative of V defined in
Table IV, we easily obtain

V̇ ≤ −
(
µ+

λQp

4p̄2

)
V = −cV (75)

with c defined in Table IV. Since t 7→ P (t) is uniformly bounded
by item 4) of Assumption 2, (75) proves local exponential stability

of the estimation error to zero. Recall that local exponential stability
implies local ISS, see [32]. As a consequence, in order to show (8),
we first recall the following inequalities

1√
p̄
|x− x̂| ≤ V (x, z) ≤ 1√

p |x− x̂|, ∀x, x̂ ∈ Rn,∣∣∣(x− x̂)>P−1
∣∣∣√

(x− x̂)>P−1(x− x̂)
≤
√
p̄

p
, ∀x 6= x̂,

(76)

where t 7→ P (t) satisfies item 4) of Assumption 2. From inequalities
(75) and (76), we can derive (8) with cw, cd, cv selected as in
Table IV. Finlly, since (75) holds only for |x − x̂| ≤ ε0, for any
ε1 ∈ (0, ε0], then there exists δ ∈ [0,∞) such that (8) holds for all
|x− x̂| ≤ ε1, |w| ≤ δ, |d| ≤ δ and |v| ≤ δ, thus proving Property 1.

Now, by combining (71) and (76), inequality (9a) is verified with
`0 in Table IV. Finally, to verify (9b), compute

|D+(h(x)− h(x̂))| ≤

≤
∣∣∣∂h
∂x

(x)(f(x̂, u) + w)

−∂h
∂x

(x̂)(f(x, u) +K(x̂)(h(x) + v − h(x̂)) + d)
∣∣∣

≤
∣∣∣∣(∂h∂x (x)− ∂h

∂x
(x̂)

)
f(x, u)

∣∣∣∣
+

∣∣∣∣∂h∂x (x̂)(f(x, u)− f(x̂, u))

∣∣∣∣
+

∣∣∣∣∂h∂x (x̂)K(x̂)(h(x)− h(x̂))

∣∣∣∣
+

∣∣∣∣∂h∂x (x)w

∣∣∣∣+

∣∣∣∣∂h∂x (x̂)d

∣∣∣∣+

∣∣∣∣∂h∂x (x̂)K(x̂)v

∣∣∣∣
≤ (khf + c̄kf + c̄κ̄kh)|x− x̂|+ c̄|w|+ c̄|d|+ c̄κ̄|v|,

which holds for all x ∈ X and all x̂ ∈ Rn such that |x − x̂| ≤ ε1
and for all u ∈ U . The proof is completed by selecting `1, `w , `v ,
`d as in Table IV.

Based on the results above, the stubborn redesign (10) or the dead-
zone redesign (40) of the EKF correspond to

˙̂x = f(x̂, u) +K(x̂) Φσ(y − h(x̂))
σ̇ = −Λσ + Θ |y − h(x̂)|cw

(77)

for some diagonal Λ,Θ > 0 together with the corresponding
selections (72b) and (72c), and Φσ = satσ or Φσ = dzσ .

Remark 3 Similar conditions can be derived for a linear systems and
a Kalman observer by combining the results of this section and those
of linear observers. Indeed, this section generalizes [26], where the
authors, inspired by [6], propose a stubborn redesign for the Kalman
filter. y

E. Observers for Systems in Canonical Observability Form

Consider the class of single-output nonlinear systems

ẋ = Anx+Bnφ(x, u) + w, y = Cnx+ v (78)

where (An, Bn, Cn) is a triplet in prime form6 of dimension n and
φ is a locally Lipschitz function. Also suppose that Assumption 1
holds, with X ,W,U being some given compact sets. For system (3),
a typical approach is that of high-gain observers [33]. For this class of
estimators, the use of dynamic saturations and dead-zones has been
already studied in [9], [24]. Therefore, in this section, we focus on

6A triplet of matrices (A,B,C) is said to be in prime form when A is
a shift matrix (all 1’s on the upper diagonal and all 0’s elsewhere), B> =
(0 · · · 0 1) and C = (1 0 · · · 0).
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the low-power high-gain observer introduced in [11], for which the
analysis is more involved. In particular, consider

ż1 = A2 z1 +N z2 +D2(g)K1 (y − C2z1),

żi = A2 zi +N zi+1 +D2(g)Ki(B
>
2 zi−1 − C2zi),

i = 2, . . . , n−2 (79)

żn−1 = A2 zn−1 +B2 φs(x̂, u)

+D2(g)Kn−1 (B>2 zn−2 − C2zn−1),

where z = (z1, . . . , zn−1) ∈ R2n−2 is the state, x̂ = Γz ∈ Rn is
the estimate, with Γ := blkdiag (C2, . . . , C2, I2) ∈ Rn×(2n−2),
(A2, B2, C2) is a triplet in prime form of dimension 2, N := B2B

>
2 ,

Ki := (ki1 ki2)>, i = 1, . . . , n − 1, are matrices to be chosen,
D2(g) := diag(g, g2), where g is the so-called high-gain parameter
(to be chosen large enough) and φs is a globally bounded function
designed by saturating φ in such a way that φs(x, u) = φ(x, u) for
all (x, u) ∈ X × U . Note that, with respect to (4), we have ρ = n,
% = 2n−2, κ(z, y−h(x̂)) = K1(y−C2z1), G = [ I 0 ··· 0 ]>, and
ψ(z) = Γz. Finally, in order to state the main result of this section,
let the matrices Mi ∈ R2i×2i, i = 1, . . . , n−1 be recursively defined
as M1 := A2 −K1C2,

Mi :=

(
Mi−1 B2(i−1)B

>
2

KiB
>
2(i−1) A2 −KiC2

)
, M := Mn−1, (80)

for i = 2, . . . , n − 1, where Bi is in prime form, Ψg :=
blkdiag(Ψ1

g, . . . ,Ψ
n−1
g ), Ψig := g2−iD2(g)−1, and

Υ := (b1, b2, b2, . . . , bi, bi, . . . , bn−1, bn) ∈ R(2n−2)×n

where bi is a row vector of dimension n with a 1 at the i-th entry
and all the other elements being zero. Note that Υ is a right-inverse
of Γ, namely ΓΥ = I .

Proposition 9 Let Ki, i = 1, . . . , n − 1 be such that matrix M in
(80) is Hurwitz.7 There exists g? ≥ 1 such that, for any g > g?,
Properties 1-2 are satisfied for system (78) and observer (79) with
the choices in Table V.

Proof: By following [11], consider the change of coordinates
e := Ψg(z − Υx), by which observer (79) with the perturbed-
injection dynamics, as in (5), reads

ė = gMe+B2n−2∆φ(e, x, u)+ΨgΥw+gGκ(z)v−ΨgGd (81)

where ∆φ(e, x, u) := g−(n−1)(φs(ΓΨ−1
g e+x, u)−φ(x, u)). From

the Lipschitz properties of φ and the boundedness of φs, X , and
U , there exists Lφ > 0 such that |∆φ(e, x, u)| ≤ Lφ|e| for all
e ∈ R2n−2, x ∈ X , u ∈ U , and g ≥ 1. In these coordinates,
the function V defined in Table V, reads V (e) =

√
e>Pe, with P

defined in Table V. By property of e, and using g ≥ 1, it follows
that V satisfies√

λP
gn−1

|z −Υx| ≤
√
λP |e| ≤ V (e) ≤

√
λ̄P |e| ≤

√
λ̄P |z −Υx|.

(82)
Moreover, by using the properties of Γ and Υ, we also have |x̂−x| =
|Γz − ΓΥx| ≤ |z −Υx|, and therefore

g−(n−1)√λP |x̂− x| ≤ V (e) . (83)

7This is always possible in view of Lemma 1 in [11].

V (x, z) =
√

(Υx− z)>ΨgPΨg(Υx− z) ψ−R(x) = Υx
PM +M>P = −2I c = g/λ̄P − Lφλ̄P /

√
λP

α(|s|) =
√
λP g

−(n−1)|s| cw = 2λ̄P /
√
λP κ̄ = |K1|

ᾱ(|s|) =
√
λ̄P |s| cv = |K1|λ̄P /

√
λP cd = λ̄P /

√
λP

`0 = gn−1/
√
λP `1 = gn|Mn−1|/

√
λP

`v = g|K1| `w = 2 `d = 1

TABLE V: System and design parameters for the nonlinear system (78)
and the low-power high-gain observer (79).

The last inequality and bounds (82) prove (7) with α, ᾱ, ψ−R defined
as in Table V. The Dini derivative of V is such that

D+V ≤ − g|e|2√
e>Pe

+
e>P√
e>Pe

(
B2n−2∆φ(e, x, u)

+ΨgΥw + gGκ(z)v −ΨgGd
)

showing (8) with c, cw, cv, cd defined in Table V. Then, using (83),
it follows that |C(x − x̂)| ≤ |x − x̂| ≤ `0V (e) corresponding
the first inequality in (9), with `0 selected as in Table V. Finally, the
second inequality in (9) is satisfied by using (81) as follows

|D+C(x− x̂)| = |D+CΓΨ−1
g e|

= |CΓΨ−1
g gMn−1e+ CΓΨ−1

g B2n−2∆φ(e, x, u)

+CΓΥw + gCΓΨ−1
g Gκ(z)v − CΓGd|

≤ `1V (e) + `v|v|+ `w|w|+ `d|d|

and by selecting `1, `v, `w, `d as in Table V. This proves that
Property 2 is satisfied and completes the proof.

In view of Proposition 9, we can apply the stubborn redesign (10)
or the dead-zone redesign (40) by modifying (79) as follows

ż1 = A2 z1 +N z2 +D2(g)K1Φσ(y − C2z1),

żi = A2 zi +N zi+1 +D2(g)Ki(B
>
2 zi−1 − C2zi),
i = 2, . . . , n−2

żn−1 = A2 zn−1 +B2 φs(x̂, u)

+D2(g)Kn−1 (B>2 zn−2 − C2zn−1),
σ̇ = −λσ + θ|y − C2z1|

for some λ, θ > 0 and Φσ = satσ or Φσ = dzσ .

Remark 4 The results of this section can be extended to the high-
gain observer variants in [10], [43]. For such variants, the definition
of the right inverse ψ−R in Property 1 can be directly inherited from
the Lyapunov function establishing the convergence of the observe
derived in [10], [43]. Similarly, its square root can be used to establish
Properties 1, 2. y

Remark 5 For systems ẋ = f(x, u), y = h(x), which are dif-
feomorphic to (78) via a change of coordinates z = Φ(x, u), it is
possible to design an observer in the original coordinates

˙̂x = f(x̂, u) +

(
∂Φ

∂x
(x̂, u)

)−1

L(y − h(x̂)) ,

for some choice of L, see, e.g., [14], [16] and references therein.
Based on the ISS properties of the observer, similar arguments to
those of Proposition 9 can be used to show that such observers satisfy
Properties 1-2. Note however that, in this context, the invariance of
a prescribed compact set Z may be required to prove condition (6).
In this case, the redesign proposed in [14] may be a viable approach
to constrain the observer state in a desired compact set. y
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Fig. 3: EKF vs DSEKF and SDEKF in a simulation run with r0 = 0.01, rout = 100 and a turn at half of the simulation time.

VII. SIMULATION RESULTS

In this section, we report on the simulation results obtained by
applying the stubborn and dead-zone redesigns to a case study with
the EKF according to Section VI-D. More specifically, we compare
the standard EKF to the corresponding stubborn and dead-zone
redesigns, which will be denoted by SEKF and DEKF, respectively.

Consider a fourth-order system describing the motion of a mass
point with two Euclidean distance measurements and one angular
distance measurement w.r.t. the points p′ = (10, 0), p′′ = (0, 10),
and p′′′ = (100, 100), respectively:

ẋ1 = x2 , ẋ2 = 0 , ẋ3 = x4 , ẋ4 = 0

y1 = |(x1 − p′1, x3 − p′2)|2, y2 = |(x1 − p′′1 , x3 − p′′2 )|2,
y3 = atan2 (x3 − p′′′2 , x1 − p′′′1 )

where atan2 (·, ·) denotes the four-quadrant inverse tangent function.
For all the EKF-based estimators considered here, the corresponding
Riccati differential equations have been solved by using a simple
Euler approximation with sampling time equal to 0.01. Specifically,
we have chosen µ = 0.1 and the initial P , Q, and R all equal to
identity matrices I of appropriate dimensions. Moreover, we have
selected Λ = 10I , Θ = I , and σ(0) = (1, 1, 1) for the DEKF
and Λ = 0.1I , Θ = 10I , σ(0) = (1, 1, 1) for the SEKF. The
initial state of all the filters have been fixed equal to (0, 1, 0, 1).
Different simulation setups depending on the parameters r0 and

rout have been analyzed: the random initialization of the plant
state follows a Gaussian distribution with covariance r0I around
(0, 1, 0, 1), while the system and measurement disturbances are taken
as zero-mean Gaussian noises with covariance matrices all equal to
r0I . Measurement outliers may affect the distance measurements
(i.e., y1 and y2) after a random time generated according to a uniform
distribution between 0 and 1/3 of the simulation time. Each outlier
is obtained by amplifying the random noise of one measurement by
a factor equal to rout. Thus, a small r0 refers to simulation runs
with low levels of noises, whereas rout = 1 means that outliers
do not occur in the simulations. Instead, large outliers affect the
measurements with a high rout > 1. The root mean square errors
(RMSEs) are reported in Tables VI and VII. The combinations of
dead-zone and saturation dynamics in the stubborn dead-zone EKF
(SDEKF with the saturation of the dead-zonated output error) and
dead-zone stubborn EKF (DSEKF with dead-zone trimming to the
saturated output error) perform quite well as compared to the EKF,
as shown in Fig. 3 with the plot of a simulation run. Fig. 3 allows
illustrating pictorially the excellent performances that can be achieved
with the stubborn and dead-zone redesigns of Kalman filters in
accordance with [5], [6], [9], where the interested reader is referred
to for simulation results obtained with the redesign of Luenberger
and high-gain observers.
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r0, rout x1 x2 x3 x4
EKF 0.001 , 1 0.83589 0.15872 0.86909 0.15784

DEKF 0.001 , 1 0.66282 0.11169 0.69023 0.11082
EKF 0.01 , 1 1.2919 0.26095 1.3281 0.27735

DEKF 0.01 , 1 1.0887 0.22504 1.1240 0.24110
EKF 0.1 , 1 3.2327 0.40013 3.2396 0.40974

DEKF 0.1 , 1 2.8427 0.35844 2.8466 0.36285
EKF 1 , 1 8.7003 0.63317 8.4298 0.61264

DEKF 1 , 1 7.5973 0.58075 7.3755 0.56188
EKF 10 , 1 24.5259 1.20421 23.2213 1.33571

DEKF 10 , 1 18.1457 1.12691 17.5172 1.28463

TABLE VI: RMSE medians over 1000 simulation runs for EKF and
DEKF.

r0, rout x1 x2 x3 x4
EKF 0.1 , 1 3.2327 0.40013 3.2396 0.40974

SEKF 0.1 , 1 3.2327 0.40013 3.2396 0.40974
EKF 0.1 , 10 3.6342 0.42489 3.6262 0.43263

SEKF 0.1 , 10 3.6342 0.42489 3.6262 0.43263
EKF 0.1 , 100 4.2929 0.47033 4.2659 0.47325

SEKF 0.1 , 100 4.0146 0.44724 3.9947 0.44972
EKF 0.1 , 1000 6.2936 0.77165 6.2272 0.72439

SEKF 0.1 , 1000 4.0969 0.45805 4.0748 0.45723
EKF 0.1 , 10000 16.9276 4.12612 16.0941 3.84125

SEKF 0.1 , 10000 4.5945 0.53379 4.5782 0.52979

TABLE VII: RMSE medians over 1000 simulation runs for EKF and
SEKF.

VIII. CONCLUSION

In this paper, two redesign approaches based on adaptive saturated
and dead-zonated output error injections are investigated for a wide
range of estimators with different architectures for both linear and
nonlinear continuous-time systems, providing sufficient conditions
that ensure preservation of a desirable ISS property from disturbances
to the estimation error. The generality of the proposed redesigns is
illustrated by their successful application to a large number of popular
state estimators. Two new tools have been also introduced for the
analysis of the effect of measurement noise of impulsive nature and
constant bias. The theoretical findings are confirmed by simulation
results, showing the advantages provided by our redesigns. This work
opens a number of interesting future developments: the extension
of the proposed approach to observers and filters for discrete-time
nonlinear systems, following the preliminary directions of [6]; the
development of the tools introduced in Sections III-B, IV-B to
analyze the effect of measurement noise in a pure nonlinear setting
by providing tighter bounds w.r.t. the classical H∞, L2 ones; the use
of redesigned observers in output feedback stabilization problems; a
thinner analysis of the case studies addressed in Section VI in order
to obtain less restrictive ISS-gains as compared to the ones given
in Tables I-V and hence more precise parameter design bounds
for the dynamics governing the saturation or the dead-zone functions.
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[17] G. Besançon, G. Bornard, and H. Hammouri, “Observer synthesis for a
class of nonlinear control systems,” European Journal of Control, vol. 2,
no. 3, pp. 176–192, 1996.

[18] N. Boizot, E. Busvelle, and J.-P. Gauthier, “An adaptive high-gain
observer for nonlinear systems,” Automatica, vol. 46, no. 9, pp. 1483–
1488, 2010.

[19] S. Bonnabel and J.-J. Slotine, “A contraction theory-based analysis of the
stability of the deterministic extended Kalman filter,” IEEE Transactions
on Automatic Control, vol. 60, no. 2, pp. 565–569, 2015.

[20] K. K. Busawon and P. Kabore, “Disturbance attenuation using propor-
tional integral observers,” International Journal of control, vol. 74, no. 6,
pp. 618–627, 2001.

[21] G. Casadei, D. Astolfi, A. Alessandri, and L. Zaccarian, “Synchroniza-
tion in networks of identical nonlinear systems via dynamic dead zones,”
IEEE Control Systems Letters, vol. 3, no. 3, pp. 667–672, 2019.

[22] ——, “Synchronization of interconnected linear systems via dynamic
saturation redesign,” IFAC-PapersOnLine, vol. 52, no. 16, pp. 622–627,
2019.

[23] M. Cocetti, S. Tarbouriech, and L. Zaccarian, “On dead-zone observers
for linear plants,” in Proc. American Control Conf., 2018, pp. 5138–
5143.

[24] ——, “High-gain dead-zone observers for linear and nonlinear plants,”
IEEE Control Systems Letters, vol. 3, no. 2, pp. 1–6, 2019.

[25] D. De Palma and G. Indiveri, “Output outlier robust state estimation,”
Int. J. of Adaptive Control and Signal Processing, vol. 31, no. 4, pp.
581–607, 2016.

[26] H. Fang, M. Haile, and Y. Wang, “Robustifying the Kalman filter against
measurement outliers: An innovation saturation mechanism,” in 57th
IEEE Conference on Decision and Control, 2018, pp. 6390–6395.

[27] J. Gauthier and I. Kupka, Deterministic Observation Theory and Appli-
cations. Cambridge University Press, 2001.

[28] M. Hamid, R. Postoyan, and J. Daafouz, “Local observers design for a
class of neural mass models,” in Proc. European Control Conf., 2015,
pp. 1830–1835.

[29] H. Hammouri and J. de Leon Morales, “Observer synthesis for state-
affine systems,” in 29th IEEE Conference on Decision and Control, 1990,
pp. 784–785.

[30] A. Isidori, Nonlinear control systems II. Springer Verlag, London, 1999.
[31] R. Kalman, “A new approach to linear filtering and prediction problems,”

Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.
[32] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.



15

[33] H. Khalil and L. Praly, “High-gain observers in nonlinear feedback
control,” Int. J. of Robust and Nonlinear Control, vol. 24, no. 6, pp.
993–1015, 2014.

[34] A. Krener, “The convergence of the extended Kalman filter,” in Direc-
tions in mathematical systems theory and optimization. Springer, 2003,
pp. 173–182.

[35] C. Lu, M. Wu, and Y. He, “Stubborn state estimation for delayed neural
networks using saturating output errors,” IEEE Transactions on Neural
Networks and Learning Systems, 2019.

[36] D. Luenberger, “An introduction to observers,” IEEE Transactions on
Automatic Control, vol. 16, no. 6, pp. 596–602, March 1971.

[37] R. Rajamani, “Observers for Lipschitz nonlinear systems,” IEEE Trans-
actions on Automatic Control, vol. 43, no. 3, pp. 397–401, March 1998.

[38] K. Reif, F. Sonnemann, and R. Unbehauen, “An EKF-based nonlinear
observer with a prescribed degree of stability,” Automatica, vol. 34, no. 9,
pp. 1119–1123, 1998.

[39] H. Shim and D. Liberzon, “Nonlinear observers robust to measurement
disturbances in an ISS sense,” IEEE Transactions on Automatic Control,
vol. 61, no. 1, pp. 48–61, 2016.

[40] H. Shim, J. H. Seo, and A. Teel, “Nonlinear observer design via
passivation of error dynamics,” Automatica, vol. 39, no. 5, pp. 885–892,
2003.

[41] E. Sontag, “Input to state stability: Basic concepts and results,” in
Nonlinear and optimal control theory. Springer, 2008, pp. 163–220.

[42] A. Teel, “Further variants of the Astolfi/Marconi high-gain observer,” in
Proc. American Control Conf., 2016, pp. 993–998.
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