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Abstract Pressures in the hydrospheres of large ocean worlds extend to ranges
exceeding those in Earth deepest oceans. In this regime, dense water ices and
other high-pressure phases become thermodynamically stable and can influence
planetary processes at a global scale. The presence of high-pressure ices sets large
icy worlds apart from other smaller water-rich worlds and complicates their study.
Here we provide an overview of the unique physical states, thermodynamics, dy-
namic regimes, and evolution scenarios specific to large ocean worlds where high-
pressure ice polymorphs form. We start by (i) describing the current state of knowl-
edge for the interior states of large icy worlds in our solar system (i.e. Ganymede,
Titan and Callisto). Then we (ii) discuss the thermodynamic and physical specifics
of the relevant high–pressure materials, including ices, aqueous fluids and hydrates.
While doing this we (iii) describe the current state of the art in modeling and un-
derstanding the dynamic regimes of high-pressure ice mantles. Based on these
considerations we (iv) explore the different evolution scenarios for large icy worlds
in our solar system. We (v) conclude by discussing the implications of what we
know on chemical transport from the silicate core, extrapolation to exoplanetary
candidate ocean worlds, limitations to habitability, differentiation diversity, and
perspectives for future space exploration missions and experimental measurements.

Keywords High pressure ices · Titan · Ganymede · Callisto · Exoplanets ·
Habitability

Introduction

A unique and intriguing aspect of large ocean worlds is the influence of pressure
on the physical state of their hydrospheres. Pressure-induced phase transitions are
well established as key features inside Earth and other planetary bodies. On larger
bodies like Ganymede, Callisto, and Titan, pressures in the hydrosphere can far
exceed the pressures corresponding to the bottom of Earth’s deepest oceans and
into the ranges of pressure encountered in Earth’s lower crust and upper mantle.
In this range new phases and physical properties of water appear.

High-pressure ices in Ganymede, Callisto, and Titan offer the prospect of geo-
physical phenomena not occurring on Earth, at least not in water. From what
has been revealed by spacecraft missions—Voyager, Galileo, and Cassini-Huygens,
mainly—these similarly sized worlds differ in composition and have likely followed
drastically different thermal histories. The occurrence and geodynamic behaviors
of ices II, III, V, and VI must have affected the thermal evolution of these worlds.
Processes in high-pressure ices also determine the efficiency of chemical exchanges
from the rocky core to the ocean, crucial to determining whether this class of
planetary object may be suitable for hosting life.
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The larger water-rich planetary bodies like Neptune and Uranus might also
contain high pressure ices, but would not have an oceans per say, as most of their
water-rich envelope is supposed to be composed of super-ionic fluids and possibly
super-ionic ice XVIII at extreme pressure and temperatures conditions (33; 162;
137; 127; 126), incompatible with habitability as considered here. Therefore, these
larger planetary bodies are not discussed hereafter.

This chapter covers the physical, thermodynamic, and dynamical aspects ris-
ing from the existence of thicker hydrospheres containing high-pressure ice poly-
morphs and other high-pressure materials, and the resulting effects of thick rocky
lithospheres and iron cores in large ocean-worlds.

1 Existing observational constraints on Ganymede/Callisto/Titan

Here, we provide an overview of the current knowledge of the hydrosphere struc-
tures of the largest moons in our solar system. We start with the observational
evidence for the presence of deep oceans and continue with the possible structures
of the high-pressure ice layers.

Table 1: Properties of high-pressure ocean worlds. Moment-of-inertia values assume hydrostatic
equilibrium

Radius (km) Density (kg m−3) Moment of Inertiad

Titana 2574.73±0.09 1879.8±0.004 0.3438±0.0005
Ganymedeb 2631±1.7 1942.0±4.8 0.3115±0.0028

Callistoc 2410.3±1.5 1834.4±3.4 0.3549±0.0042
a(89; 86)
b(155), revised from (9)
c(7)

1.1 Occurrence of High-pressure Ices in the Solar System

A key difference between the small- to medium-sized moons such as Enceladus or
Europa, and the large moons Titan, Ganymede, and Callisto, is a much thicker
hydrosphere in the case of large moons, which results in the presence of a high-
pressure ice layer between the silicate core and the deep ocean. Even though they
have similar mass and radius, the large moons have different degrees of differ-
entiation inferred from the values of the reduced moment of inertia (Table 1).
As a result, for example, Titan’s hydrosphere is about 500 km thick (32), much
thinner than Ganymede’s, which is about 800 km in thickness (183). In addition,
Ganymede’s surface gravity is higher than that of Titan (1.45 vs 1.35 m s−2).
Combined with the hydrosphere thickness, this creates pressures at the silicate-
hydrosphere interface that are twice as high on Ganymede (1.6 GPa) as on Titan
(0.8 GPa). The different pressure regimes correspond to different configurations
of high–pressure ice phases depending on the assumed ocean thermal state and
salinity (187) (Table 2).
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As discussed below (Section 3.2), convection within the ices should proceed
near the solidus temperature, leading to melt at the high-pressure ice and rock
interface, and within the upper parts of the high-pressure ice (35; 95). This po-
tentially briny liquid would have a main role in the transport of material.

1.1.1 Titan

Titan’s dense atmosphere and organic-rich surface hide an ice-rich crust and thick
water ocean. The Cassini spacecraft measured high ratios of Ar/N2 and 14N/15N
in Titan’s atmosphere relative to comet 67P/Churyumov–Gerasimenko, which has
been interpreted to indicate an evolved interior source of nitrogen, most likely
from organic-rich materials from Titan’s interior (125). The low primordial Ar
in the atmosphere has been interpreted as indicating that Titan’s N2 originates
from NH3 (138). While this finding also supports the hypothesized endogenous
scenario, alternative hypotheses for the formation of Titan’s N2 include formation
by dissociation via shock heating (122), photolysis (11), and late-stage impacts
(158).

Fig. 1: Inferred internal structure for Titan, assuming the upper ice-rich crust is thinner than
100 km. Thicker ice crusts imply a colder ocean and the presence of ice V. The depths where
high-pressure ices form are computed based on published values of radius, bulk density, and
gravitational moments of inertia (Table 1). Such solutions are non-unique, subject to the
uncertainties in bulk properties and assumptions about the composition of oceans and minerals.
The required rock density in the associated models is around 2,500 kg m−3. In previous studies
(188) this low value was not achievable for the assumed silicate mineralogies. Recent work solves
this problem with the addition of organic materials consistent with a CI chondrite parent body
(136). Modified from (188).

The endogenous sourcing of Titan’s organics implies a relation between the
atmosphere’s composition and the chemistry of Titan’s internal liquid water ocean.
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The presence of radiogenic 40Ar in Titan atmosphere suggests dissolution of K (and
other ions) from the silicate core (138). An alternative model supposes that 40Ar
produced inside the silicate core diffuses to the interface with HP ices, where it can
be dissolved in the temperate layer and delivered to the ocean (96). Geochemical
models of Titan’s ocean formation, assuming efficient extraction of potassium from
Titan’s rocky interior (32) lead to the inference that Titan’s ocean is moderately
saline (∼ 1Wt% aqueous NaCl) (113). Other models for Titan’s ocean chemistry
explore the presence of sulfates and ammonia without seeking consistency with
Titan’s atmospheric composition (58; 70; 187).

Titan’s mean upper ice layer thickness is interpreted from Cassini-Huygens
data to be 50-200 km, based on topography and admittance (76); less than 100 km
based on shape, topography, and gravity (128); and 55-80 km based on the observed
Schumann resonance (15). This entire range of thicknesses is consistent with an
ice VI layer at the base of the ocean, atop a low-density silicate interior. If Titan’s
ice crust is indeed thin and if the ocean has a low salinity, high-pressure ices may
be minimal or absent entirely.

Models of Titan’s thermal evolution indicate that high-pressure ice formed in
the most recent 2 Ga or even less (177).

Further analysis is needed to achieve resolve inconsistencies among the different
observations of Titan’s chemistry and internal structure.

1.1.2 Ganymede

Fig. 2: Two possible internal structures for Ganymede, based on Galileo gravity data. Both are
consistent with additional geological and geophysical constraints on bulk heat flow and on the
thickness of the ice Ih lithosphere. The existence of stable liquid regions between and beneath
high pressure ices (left) depends on the transport of materials within the different ices. The
corresponding rock density in the associated models is around 3,500 kg m−3, and the assumed
Fe core density (including 20 wt% S as FeS) is 7,200 kg m−3. Modified from (188).

Ganymede’s intrinsic magnetic field and small normalized moment of inertia
suggest that it experienced enough heating for a liquid iron core to differentiate
from the silicate mantle. Convection in the ice crust is in accord with the formation
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of grooved terrains on the surface (73) that are much younger that the heavily
cratered terrains. The thickness of the hydrosphere probably exceeds 800 km (188).
Ice III forms at the base of the ocean (Table 2) and atop ices V and VI for a
cold model Ganymede (≈ 1 mW−2 at the surface) with a high-salinity ocean
containing 10 wt% of MgSO4 (Fig. 2). However, this ice is buoyant relative to the
model ocean; such upward snowing ice would seem to be dynamically short-lived,
perhaps hastening the cooling of Ganymede and thickening the ice I crust such that
ice III accumulates underneath the ice I and the ocean interface. Warmer oceans
within the likely limits of Ganymede’s heat (20) can eliminate ices III and V, but
even just after its formation Ganymede seems likely to have had some amount of
ice V.

The role of ocean salinity is key in determining which high-pressure ices form,
and their dynamic stability. It has been established in recent years that briny fluids
under pressure can have densities exceeding those of high-pressure ices (80; 92; 183)
and might reside stably between the different layers of high-pressure ice (93; 184).
The left-most schematic in Fig. 2 illustrates a scenario with dense salty fluids
between high-pressure ices. Such a scenario is plausible thermodynamically, but
the stability of salty fluids under the ices requires detailed geodynamic modeling
of the type performed in recent years for pure-water oceans (e.g., 95).

The presence of solid ions in high-pressure ices may also have significant effects
on their thermal evolution and geodynamics. Dissolved ions incorporate into ice VI
(and possibly also in ice phases II, III, and V). The incorporation of salt in ice VI,
based on studies of rubidium iodide, is three times that in ice Ih (93).

Ganymede’s HP ice layer may lie upon a dry silicate mantle that still contains
a significant amounts of insoluble organic matter (IOM), as recently proposed by
(141) in order to reconcile the measured mass and moment of inertia with the
equations of state (EoS) of H2O and silicates.

1.1.3 Callisto

The evidence for an ocean at Callisto is not as strong as the evidence for oceans
in Ganymede and Titan. Callisto’s bulk MoI is larger than that of Titan (Table 1)
suggesting an even less differentiated interior (7) and a thinner hydrosphere. The
value of the MoI (Table 1) assumes hydrostatic equilibrium. If this assumption is
not verified by future missions such as ESA’s JUICE mission, then the error on
the MoI could be very large (65) and Callisto may be more differentiated than
presently thought.

The poor constraints on Callisto’s density structure mean that an ocean there
could be less than 250 km deep (Fig. 3), with little or no high-pressure ice. Or
it could be more like Titan, with a seafloor at pressures approaching 800 MPa
covered in ices V and VI (Table 2). The heavily cratered surface surface suggests
weak or no differentiation; if Callisto has differentiated, it is difficult to conceive of
how it would have cooled within a few hundred Myr to retain its cratering record.
In either case, the fully stagnant upper lithosphere (124) suggests the ocean is
nearly frozen and so has a near-eutectic composition. Buoyant ice II or III may be
present, unless the ocean contains strong freezing suppressants such as ammonia
or methanol.

Because of the greater uncertainties in the characteristics of Callisto’s hydro-
sphere and the likelihood that Callisto has experienced less heating than Ganymede,
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Fig. 3: Inferred internal structure for Callisto. The corresponding rock density in the associated
models is around 3,000 kg m−3. Modified from (188).

most studies of the dynamics of HP ice layers have focused on Ganymede and Ti-
tan.

2 High-pressure physical chemistry of ices, aqueous solutions and
relevant solids

As described in the previous section, the pressures and temperatures expected
in the hydrospheres of large icy moons (200–400 K and 0–1.6 GPa) extend into
the domain of stability of several high–pressure ice polymorphs, aqueous solu-
tions of varying compositions, and possibly other solid phases (mostly hydrates)
of neutral volatiles (gases) and ionic species (salts). Each of these phases has a
different structure and sometimes contrasting thermophysical properties. Conse-
quently, comprehensive studies of the hydrospheres of water-rich planetary bodies
remain challenging tasks requiring accurate accounts of the pressure, tempera-
ture, and chemical (PTX) dependencies of the properties of these phases. These
properties can be classified as equilibrium thermodynamic properties (e.g., den-
sity, heat capacity, thermal expansivity, entropy, chemical potential) and transport
properties (e.g., thermal diffusivity, viscosity, electrical conductivity). Equilibrium
properties can be directly derived from representations of thermodynamic poten-
tials such as the Gibbs or Helmholtz free energies. Such equations of state (EoS)
can be determined from experimental data or first-principle calculations (e.g., den-
sity functional theory, molecular dynamic modeling). Transport properties are not
directly derivable from Gibbs-energy and therefore need to be determined in-situ
or from calculations, which are both challenging in the relevant range of PT con-
ditions. This section aims to provide an overview of the known PTX dependencies
of important physical properties of the relevant ice polymorphs, aqueous solutions
and other solids found in the hydrosphere of ocean-worlds. A look-up table of
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high-pressure ices and liquid water properties at relevant ocean-worlds conditions
is provided at the end (Table 2).

2.1 Water phase diagram at high-pressure

The water phase diagram, and more particularly its solid phases, has been a rich
topic of research since the discovery and description of its polymorphism in the
beginning of the 20th century by Bridgman (1912) (25). To date, 18 crystalline
polymorphs have been characterized experimentally (126), and about three orders
of magnitude more were explored recently through first principle calculations (49).
Many of these ice structures are stable or metastable above room pressure in
a dense configuration (i.e., with a higher density than liquid H2O along their
melting curves). A complex collection of amorphous water ices also exists with
many metastable forms. One of phases, high-density glassy water (HDG), which
forms by vapor deposition and irradiation, could be a major phase at the surface
of water-rich objects (145; 66). The more complex region of the phase diagram is
arguably between 1 and 20.000 bar (0.1 to 2000 MPa) below room temperature,
where most of the polymorphs have been found (i.e. Ih, *Ic, II, III, *IV, V, VI,
*IX, XI, *XII, *XIII, *XIV and XV; metastable phases noted with an asterisk)
as well as a suite of clathrate hydrate structures (with various host molecules).
This PT range is of particular relevance regarding the hydrospheres of icy moons,
since much higher pressures (and temperatures) may be found inside water-rich
exoplanets. While metastable phases may exist in natural environments (e.g., ice Ic
on Earth), stable phases are considered more likely to play a significant role in the
structure of high-pressure water-rich mantles. This section therefore focuses mainly
on the stable ice phases Ih, II, III, V, VI for icy moons, and to some extent to VII
and X for water-rich exoplanets.

Figure 4 displays the stability fields of the stable water ice polymorphs and
some relevant clathrate hydrates up to 3 GPa, in the temperature range of interest
to the hydrospheres of water-rich planetary bodies. Above that pressure, cubic
ice VII – and its possible variants VIIt, VII’ and VI”– remains stable to high
pressures, with a gradual second order transition to ionic ice X above 50-100 GPa
(77) and super-ionic ices above 2000 K (126).

2.2 Aqueous solutions at high-pressure.

2.2.1 Equilibrium thermodynamic properties

The physical and thermodynamic properties of aqueous solutions over this large
range of pressures and temperatures remain active topics of research. Some studies
have focused on pure water liquid-ice equilibria relevant to the study of icy ocean
worlds (37; 38; 42). While this approach has led to a description of the melting
curves up to the ice VII domain (37; 38), the fragmentary measurement results
and limited computational constraints available for ices have limited progress, es-
pecially at lower temperatures and higher pressures. Ideally, independent equations
of state at the level of complexity required to describe accurately the behavior of
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Fig. 4: Phase diagram of water showing stable ice polymorphs relevant to water-rich plan-
etary body interiors. Melting curves and solid-solid phase transitions up to ice VI are from
Journaux et al. (2020) (90). Ice VII melting line is from Wagner et al. (2011) (190), and ice
VI-VII solid-solid phase from experimental data by Bridgman (1937) (26). The grey shaded
area correspond the the approximate range of conditions expected in ocean worlds. Clathrate
hydrate dissociation curves are approximated from experimental data discussed in Sohl et al.
(2010) (163) and completed for CO2 in Bollengier et al. (2013) (22). The pressure range of the
hydrosphere-rock boundary (HRB) is also reported for Earth, Europa, Titan and Ganymede.

each phase of interest (and properly constrained by measurements) should pro-
vide predictions matching known phase equilibria as well as the thermodynamic
properties inside and outside the range of stability. Here we use the SeaFreeze
software framework, which offers a self-consistent description of high-pressure ice
polymorphs and liquid water up to 2300 MPa (90; 21). Historically, the most com-
monly used thermodynamic representation for properties of fluid water remains
the IAPWS-95 formulation (189), an equation of state parameterize to reproduce
thermodynamic data to 1 GPa and 1273 K (with a fair extrapolation capability
to 100 GPa) (189). While IAPWS-95 extends to the gaseous and supercritical do-
mains of water, limited data above 100 MPa (particularly below 273 K) at the
time of its release limited its accuracy near melting temperatures; uncertainties
near the melting curve of ice III reach 0.2% for the density, 0.3% for the speed
of sound, and 20% for the specific heat (21). Since the release of IAPWS-95, im-
proved measurements of thermodynamic properties, particularly of sound speeds,
motivated the publication of updated equations of state up to 0.4 GPa (81) and
2.3 GPa (21). The adoption of representations of thermodynamic potentials (here
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the Gibbs energy) based on polynomial local basis functions gives access to equi-
librium thermodynamic properties (e.g. density ρ, heat capacities CP & CV , bulk
moduli KT & KS , thermal expansivity α, chemical potentials µ, sound speed, en-
tropy S and enthalpy H) as simple analytic functions obtained from the derivation
of the reference potential. Furthermore, such a framework brings flexibility in the
incorporation of new data sets within the domain of the representation (to update
the equation of state), and allows the domain of the representation to be extended
without impact in the initial domain (27).

Figure 5 illustrates the variation in thermodynamic properties (ρ, α, CP ,KT

and sound speed) for pure water (21) and 1 mol·kg−1 NaCl(aq) at 270, 300 and
35 K, computed using SeaFreeze (90) and an aqueous NaCl Gibbs parameterization
under development, based on Brillouin data (119) and new ultrasonic measurments
using the same methodology as in (21). As is apparent in the figure, pressure has
the largest overall effect on the properties of aqueous solutions, and its consid-
eration becomes critical at the scale of massive hydrospheres. Temperature has
a strong visible effect on density, thermal expansivity and heat capacity, but its
impact on bulk modulus and sound speed remains limited.

Quantifying the effects of chemistry at high pressures remains a more chal-
lenging endeavor as solvation interactions (and therefore their resulting effects on
thermodynamic properties of solutions) strongly depend on the solute species and
the pressure and temperature conditions. Therefore, one needs to experimentally
measure these properties in-situ. Expected main planetary solutes include ionic
species such as NaCl, MgSO4, and Na2SO4; as well as organics such as NH3,
CH4, and CO2 (197; 163). In figure 4 we only display the effect of 1 mol·kg−1 of
dissolved NaCl (approximately twice the sea-water concentration) for clarity, but
other species, and ternary mixtures, will be included in the SeaFreeze framework
(e.g. MgSO4, Na2SO4, MgCl2, NH3 and CO2). Aside from this work, scarce ther-
modynamic data and modeles currently exist for the pressure range found in large
ocean worlds.

Thermodynamic representations based on experimental data exist for ammo-
nia up to 2.3 GPa (including HP ice equilibria) (38) and for MgSO4 (184; 183).
For other ionic species, simple binaries of the Na-Mg-Cl-SO4 system have been
extensively studied below 100 MPa (the domain of Earth’s oceanic pressures),
but higher pressures and more complex mixtures remain largely unconstrained
to this day (60; 163; 183; 188). For NaCl(aq), the results presented in Figure 5
are from the SeaFreeze Gibbs-energy representation, based on preliminary sound
speed measurements under final development (Fig. 5) [see Bollengier et al. (2019)
(21) for a description of the initial laboratory measurements on pure water]. The
largest effects of chemistry change are visible for the density, thermal expansivity
and heat capacities, with a lesser influence on the bulk moduli and the speed of
sound.

As reported in the previous section of this chapter, concentrated brines can
become denser than some high-pressure ices (80; 92; 183), potentially creating
intermediate melt pockets at ice-ice interfaces or at the hydrosphere-rock boundary
(92; 183). It should be noted that the concentrations required for density inversion
to happen are generally above 1-1.5 mol/kg (depending on the solute molar mass
and the density of the ice polymorph). Such concentrations exceed those expected
from the inferred bulk compositions of icy moons in the solar system (197). Where
density inversions occur, they may create localized reservoirs of dense brines under
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high-pressure ice, rather than global density inversions that decouple the high-
pressure ice from the solid layer below it.

2.2.2 Transport properties

Published measurements of the physical transport properties of aqueous solutions
at high pressures, including electrical and thermal conductivities, are limited above
100 MPa. Some of the recent work and possible extrapolation to cover the range of
icy worlds interiors is reviewed in Vance et al. (2018) (188). Some general consid-
erations are given hereafter based on the available data. These should be regarded
as indicative and subject to discussion depending on the solutes of interest, since
the effects of high pressure on solution properties remain poorly understood.

The electrical conductivity of brines can vary over several orders of magnitude
depending on the solutes concentration, as illustrated by the difference between
pure water (< 10−5 S/m) and seawater ('5 S/m). Increasing pressure or decreas-
ing temperature usually decrease electrical conductivity, as seen for MgSO4 brines
(111). Similar trends are observed for seawater (82) and NaCl brines up to 400
MPa (4; 79).

The thermal conductivity of NaCl brines seems to follow the overall trend of
pure water as a function of temperature, with a peak around 680 mW/(m K)
at 140 K (5). Increasing NaCl(aq) concentrations decrease thermal conductivity
by 1-3% per molal of NaCl depending on the pressure and temperature range.
Increasing pressure will decrease the thermal conductivity by roughly 1-3% per
molal as well depending on the temperature range. The model by Aleksandrov et
al. (2013) (5) only covers the 0-100 MPa range, making the extrapolation to higher
pressures uncertain.

2.3 High-pressure ice polymorphs

High-pressure ice polymorphs have different crystallographic structures, leading
to contrasted thermodynamic and transport properties (see section on viscosities
hereafter). The first discovery of ice polymorphism was reported by (174)and then
further-explored by (25; 26). The pure water melting curves and solid-solid phase
transitions (see Figure 4) remain, to this day, mainly constrained by these old
datasets (37; 42; 191).

2.3.1 Equilibrium thermodynamic properties of ice polymorphs

The gold standard for the ice Ih equation of state is currently the Feistel and
Wagner (2006) parameterization (56) that provides a way to derive all important
equilibrium thermodynamic properties from pressure and temperature derivatives
of the Gibbs potential. High-pressure ices have remained sparsely studied until
recently as they were only of interest to the physical chemistry community.

Melting curves and triple points of pure compounds are usually described by
Simon curves. Parameterizations of this kind have been derived for all the ices by
Choukroun and Grasset (2007) (37) and Wagner et al. (2011) (191).

Recent pressure-volume-temperature measurements by Journaux et al. (2020)(90)
have enabled a full Gibbs energy representation for ices III, V and VI. Figure 6
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erties versus pressure at 270, 300 and 350 K computed with the SeaFreeze framework (90).
Dark asterisks represent high-pressure ice freezing temperatures, with ice V freezing at 270 K
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reported for Europa, Titan and Ganymede.
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illustrates the evolution with pressure of the main equilibrium thermodynamic
properties (density, thermal expansivity, heat capacity and isothermal bulk modu-
lus) and seismic wave velocities, from 250 to 300 K, computed using the SeaFreeze
package. Phase transitions and pressure variations have a significant influence for
all thermodynamic parameters and seismic wave velocities shown here. The rela-
tively small temperature range of interest for planetary hydrospheres (250-300K)
has an important effect on the thermal expansivity and heat capacity of all poly-
morphs. The density, bulk modulus, and seismic wave velocities remain mainly
influenced by pressure and phase transitions. Ice II is not represented here for
clarity as its stability range lies <250 K, thus making it less relevant for hydro-
spheres interior. Details on its properties can be found in (188; 90).

It is also worth discussing the effect of chemistry on high pressure ices. Ice
VI is the only high-pressure polymorph with ice VII to have been investigated
for salt incorporation (RbI as a NaCl analogue) (93). Ice VI seems to behave in
a similar manner to ice Ih by mostly rejecting salts out of its structure during
growth at equilibrium with a partition coefficient Kd(RbI) close to 5·10−3 (93).
Nonetheless, the very small amounts incorporated can have a significant effect on
lowering its density (93). The extent to which other planetary solute species (e.g.
MgSO4, MgCl2, Na2SO4, etc.) incorporate into high–pressure ices still remains
unconstrained to this day.

Ice VII has been the most studied after ice Ih, due to its large stability field
over 2 GPa and 300 K. This pressure is beyond the current conditions found in
any icy worlds in the solar system. It should be present in larger ocean super-
Earth exoplanets (167; 93; 139). Ice VII is a more complex phase, as it seems
to have several states of proton ordering (77) and is able to incorporate large
amounts of ionic species while retaining its structure (Kd(RbI) = 0.12) (105; 93;
23). Many pressure-volume-temperature data points and equations of state (EoS)
are available for the pure H2O. The most recent and common in the planetary
science literature for ice VII up to 50 GPa and below 1000 K are from (18) and
(106). For pressures above 50 GPa and temperature above 1000 K, in the range
interesting for ocean exoplanets, the evolution of thermodynamic properties and
the location of phase transitions into plastic phase, ice X or super-ionic ice, remains
an active field of experimental and theoretical study (62; 77; 126).

2.3.2 Thermal and electrical conductivities of water ice polymorphs

Thermal conductivities of ice polymorphs have been measured experimentally by
Andersson et al. (2005) (10). They all lie in the 1-6 W/(m K) range for ice III,
V, VI, II and Ih, in increasing order of thermal conductivity. Ices generally have
higher thermal conductivities than aqueous solutions (as described above) and
clathrate hydrates (as described below).

The electrical conductivities of ices generally obey the Jaccard model, in which
protons are the charge carriers (88; 57). Increasing pressure, temperature, close
packing of the lattice structure, and static or dynamic proton disorder can ease
significantly the propagation of defects and the diffusivity of protons, resulting
in larger electrical conductivities. Overall, ice polymorphs are not good electrical
conductors, with electrical conductivity <10−5 S/m for ice Ih (57), <10−4 S/m for
ice VI and <10−3 S/m for ice VII (143; 115). Electrical conductivity of ice II, III
and V remain unconstrained to this day. Except for proton-ordered ice II, disorderd
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ice III and V should have similar proton dynamics to ice Ih or VI and therefore
should have electrical conductivities in between those of the latter. Transition to
super-ionic ice is observed above 100 GPa and 2000 K, when proton diffusivity
increases significantly, results in a major increase in electrical conductivity to 102

S/m - 103 S/m (127).

2.4 Other relevant solids for ocean world hydrospheres

Because of the likely presence in extraterrestrial hydrospheres of many ionic (e.g.
NaCl, Na2SO4, MgSO4, MgCl2) and volatile species (e.g. CH4, NH3, CO2), other
water-bearing solid phases may be expected to contribute to the internal structures
and geophysical processes of icy worlds.

2.4.1 Clathrate hydrates

Clathrate hydrates comprise a family of water-rich compounds in which a skeleton
of hydrogen-bonded H2O molecules forms cage-like structures that trap usually
neutral guest molecules (e.g. CH4, N2, CO2). Generally, no bond between the
host and guest species occurs; rather, van der Waals interactions between the
guest and the surrounding water molecules stabilize the structure itself. The ther-
modynamically favored combination of cage type, or clathrate structure (i.e. CS-I,
CS-II, SH, sT, FIS), changes depending on the PT conditions and the nature of the
guest species. Several species may occupy a single structure simultaneously. Some
properties of clathrate hydrates are similar to that of water ices: for example, the
thermal expansion, heat capacity and elasticity of the CS-I and CS-II structures
are close to that of ice Ih (39). However, due to their nature, clathrate hydrates
exhibit distinct values of thermal conductivity, viscosity and density.

As illustrated in Figure 4, clathrate hydrates may become more stable than
water ices between a few MPa and up to GPa pressures (see reviews by (163) and
(39)). However, this stability is dependent on the abundance of the guest species
in the environment, controlled by the partial pressure of the guest species but
limited by their solubility in water. In the absence of guest molecules, the empty
cages remain highly unstable but can be observed at cryogenic temperatures, as
was successfully demonstrated for an emptied CS-II structure (52) (see also the
comparable achievement for a higher-pressure”filled ice” by (150)). Because of this
compositional variability, clathrate hydrates may be considered as solid solutions.
A successful approach in the thermodynamic modelling of clathrate hydrates has
been to consider the empty water structure as a reference state stabilized by the
statistical filling of the cages by the guest molecules. The thermodynamic modeling
of these phases thus remains challenging at higher pressures where the activity
and solubility of many gases of interest to planetary science is poorly constrained,
particularly at lower temperatures. Reviews of the different clathrate structures,
guest molecules and thermodynamic modeling are provided by (94) and (39).

The specific thermophysical and rheological properties of clathrate hydrates
have important consequences for the structure and processes of icy worlds. Densi-
ties vary largely, depending on the structure, occupancy, and type of guest species.
Clathrate hydrates of lighter volatiles like N2, CH4, or CO2, while generally less
dense than HP ices, can achieve buoyancy or sink in aqueous solutions depending
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on the pressure, temperature, clathrate structure, and aqueous composition. As for
thermal conductivity and rheology, the methane CS-I clathrate hydrate has ther-
mal conductivity up to one order of magnitude smaller, and viscosity one order of
magnitude larger, than ice Ih (192; 46). These combined factors potentially make
clathrate hydrates mechanically stiffer thermal insulators at the ice-ocean inter-
face (98). The thermophysical and rheological properties of other clathrate hydrate
structures (CS-II, SH, sT, FIS) remain poorly constrained at higher pressures.

In summary, because of their unique properties, clathrate hydrates of common
planetary volatiles are expected to play an important role in the dynamics, chem-
ical layering, thermal states and geological histories of planetary hydrospheres.

2.4.2 Other hydrates

Most volatiles of planetary interest adopt clathrate structures under increasing
pressure (39). Even if their total mass fraction in large icy moons is small, they
may have a strong influence of on the thermal and compositional evolution.

N2, CH4, Ar and Kr adopt two to three different clathrate hydrate structures
between 0 and 1∼2 GPa. Above this pressure, these structures give way to a
different type of higher-pressure hydrate called ”filled ice”. These phases abandon
the cage-like skeletons for configurations more similar to the known water ice
phases—for example ice Ih—with larger quantities of guest molecules stored in
the channels formed by the water molecules. CO2 presents a more singular case,
as a single clathrate hydrate structure destabilizes into a filled iced structure below
1 GPa(6; 121), and into a mixture of H2O and CO2 ice above 1 GPa (78; 22). Above
3∼4 GPa however, a change of speciation of CO2 leads to greater solubility of C
and the appearance of crystalline, hydrated carbonic acid (193; 1; 2).

Other types of hydrates of relevant molecules can form at the pressures and
temperatures found inside planetary hydrospheres. Many salt hydrates have al-
ready been identified at ambient pressure, with as many as 11 so far for MgSO4

alone (with meridianiite, MgSO4·11H2O, the hydrate stable at the eutectic at
0.1 MPa) (36); several transitions to new MgSO4 hydrates have been reported
at GPa pressures (72). For NaCl, the eutectic phase transits from hydrohalite at
0.1 MPa to halite at 1200 MPa (3). Many other phases of salts hydrates remain to
be discovered at high pressure for single salt-water systems, and even at 0.1 MPa
for mixtures of salts, as suggested by experiments on H2O-NaCl (181) and H2O-
MgSO4 (135) systems.

Ammonia has the ability to form hydrogen bonds with water, thus facilitating
the stability of several hydrates structures. A large diversity of ammonia hydrates
phases have been identified (but not all characterized) with three known stoichio-
metric mixtures: ammonia dihydrate (ADH, NH3·2H2O), ammonia monohydrate
(AMH; NH3·H2O) and ammonia hemihydrate (AHH; 2NH3·H2O). Every mixture
has a complex phase diagram at high pressures, with four known phases for ADH
(61), six for AMH (116), and 2 experimentally confirmed but up to potentially 5
for AHH (148).
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2.5 Look-up table with main properties

The following table provides a summary of high-pressure ices and liquid water
thermodynamic properties and seismic wave velocities at typical conditions of
ocean worlds in our solar system. All values were computed with the SeaFreeze
framework (90).

Typical conditions P T Phase ρ α Cp Cv Kt Vp Vs Ref
(MPa) (K) (kg/m3) (K−1) (J/kg) (J/kg) (MPa) (m/s) (m/s)

Icy moon surfaces 0 100 ice Ih 933 3.04E-05 874 873 10445 4183 2172 (56)
Icy moon ocean ceilings 50 260 liquid 1024 -7.08E-05 4028 4025 2021 1405 - (21)

Bottom ocean
Europa 150 270 liquid 1066 2.90E-04 3856 3794 2875 1656 - (21)
Callisto 300 250 liquid 1124 4.05E-4 3615 3478 3734 1859 - (21)
Titan 400 260 liquid 1146 4.60E-04 3743 3528 4493 2040 - (21)
Ganymede 600 270 liquid 1186 4.92E-04 3847 3526 5808 2311 - (21)

Top HP ices
Ganymede 300 250 ice III 1166 2.07E-04 1814 1725 9761 3665 1863 (90)
Callisto 400 260 ice V 1248 1.78E-04 1805 1719 13134 4094 2070 (90)
Titan 600 270 ice VI 1326 2.43E-04 2149 1971 14822 4335 2226 (90)

Bottom HP ice
Titan/Callisto 800 280 ice VI 1341 2.30E-04 2168 1993 15877 4419 2233 (90)
Ganymede 1600 300 ice VI 1396 1.82E-04 2151 2007 20273 4755 2298 (90)

General HP ices
in their stability field
ice III 250 250 ice III 1160 2.14E-04 1824 1730 997 3622 1843 (90)
ice V 500 250 ice V 1260 1.63E-04 1741 1667 13890 4187 2125 (90)
ice VI 900 260 ice VI 1355 2.04E-04 2035 1899 17022 4535 2307 (90)

Table 2: Thermodynamic properties of ice polymorphs and liquid water at pressure and tem-
perature conditions relevant to ocean worlds. Inferred conditions are based on the PlanetProfile
interior models from (188).

3 Dynamics of HP ice layer and exchange processes

In large ocean worlds, the presence of a thick HP ice layer prevents direct contact
between the ocean and the silicate mantle. However, the exchange of materials
between these two layers might still be possible via convective flow in the HP ices.
In addition to facilitating the transfer of materials, the dynamics of the HP ice
layer also govern the extraction of heat from the deep interior. Understanding these
dynamics is thus crucial for addressing the habitability of large ocean worlds. In
the following, we first summarize what is known about the HP ice viscosity because
it controls the layer dynamics. We then proceed to describe the current state of
knowledge of the dynamics of the HP ice layers of Ganymede and Titan. To our
knowledge, no such study has been performed for Callisto.

3.1 HP ice viscosity

Viscosity, the ratio of shear stress to strain rate, is a critical parameter that controls
dynamics of the HP ice layer. For the very differentiated Ganymede that has a
thick hydrosphere, the main HP ice phase is ice VI, while for Titan, which is
less differentiated and has a thinner HP ice layer, both ice VI and ice V should
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be considered. Ices III and II may also occur if the oceans are sufficiently cold, as
discussed below. Assessing the viscosity of HP ice phases is critical for anticipating
the dynamics of HP ice mantles.

The viscosity of HP ices has been measured by two groups. Sotin et al. (166)
measured the deformation of ice VI at large values of shear stress (light blue rect-
angle in Figure 7) and found deformation rates of 10−2 s−1 (viscosity of 1010 Pa s,
blue dots). They also found a small value of the stress exponent, which is inter-
preted as resulting from the experimental temperature being close to the melting
temperature. Extrapolation of their results to typical convective shear stresses
(gray rectangle) gives viscosities on the order of 1012 to 1014 Pa s, similar to the
viscosities of ice I at its melting point, which are also very close to field measure-
ments on glaciers (yellow rectangle) (84).

Another group, led by Durham (45), measured the viscosity of ice VI at smaller
values of confining pressure (light red rectangle in Figure 7) and found stronger
stress dependence (i.e., larger values of the stress exponent) (red dots). Extrapo-
lation of their measurements to typical convective stresses suggests melting point
viscosity on the order of 1017 to 1023 Pa s, which is orders of magnitude larger
than values extrapolated from (166). Both studies (166; 45) suggest that viscosity
is close to constant along the melting curve, which justifies the use of an Arrhenius
law (35; 95). Extrapolation from laboratory experiments (high stresses) to natural
conditions (small stresses) can add large uncertainties, so numerical simulations
usually consider a large range of viscosity values (35; 95; 96).

The relative viscosity of ice V compared to ice VI can be determined at the
transition between the two phases. Figure 7 also shows the values of ice V viscosity
(lines) at the triple point ice V-ice VI-water. Sotin and Poirier (169) (blue lines)
observed that ice V is harder to deform than ice VI and that their viscosity ratio
is close to two orders of magnitude at the experimental conditions. By contrast,
Durham et al. (45) found that ice V and ice VI deform in a similar manner.
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Fig. 7: Viscosity of ice VI (dots) and ice V (lines) as a function of shear stress measured by
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Ice II and III can also be stable in the interior of large moons under certain
pressure-temperature conditions (cf. Section 1.1). At laboratory conditions, ice II
is the strongest among all ice phases while III is the weakest (43). Both phases
also exhibit at least one change in deformation mechanism. Extrapolation to lower
stresses appropriate for the icy moons interiors does not significantly modify the
relative strength of these two phases. The strong viscosity contrast between ices
I, II (much stronger) and III (much weaker) may lead to layering and disruption
of the large scale convection pattern (44).

3.2 Dynamics and exchange processes through the HP ice layers

The HP ice layer is squeezed between the silicate core and the ocean and is likely
to be convecting according to the values of viscosity described previously. The
presence of the above lying ocean implies that there is no cold thermal boundary
layer (the temperature close to the ocean follows the melting curve) and thus the
dynamics is driven by the upwelling thermal and compositional plumes that form
at the bottom boundary.

The thermal-chemical evolution of the whole hydrosphere, including the HP
ice layer, has been investigated by several authors for both Ganymede and Titan
(102; 69; 161; 176; 58; 71; 20). In the majority of these studies, heat transfer
through the HP ice layer was not explicitly treated and the temperature profile
within the HP ice was assumed to follow the melting curve. Another approach is
to describe the thermal state and heat transfer of the HP ice layer using scaling
laws based on the instability of a hot thermal boundary layer at the interface with
the silicates - this strategy was adopted by (71) for Titan and (139) for water-rich
exoplanets.

To infer the effect of transitions between the different ice phases on convection
in large satellites, (16) performed a linear stability analysis considering a model
consisting of two layers with the same viscosity and thickness. They found that an
exothermic phase change can either impede or enhance the whole-layer convection,
depending on the ice viscosity. For endothermic transitions, they showed that phase
change always inhibits whole-layer convective overturn and tends to enforce two-
layer convection. A study extending their approach (168) found that taking into
account different thickness and viscosity results in whole-layer convection for a
much larger range of phase transition parameters than previously thought.

Recently, Choblet et al. (35) performed numerical simulations of convection in
the HP ice layer in 3D spherical geometry. They showed that melting can occur
in the HP ice layer for a wide range of model parameters, especially at the top
boundary with the deep ocean, and possibly also at the bottom boundary with the
silicates. In their model, they monitored the melt production and assumed that
the generated melt is instantaneously extracted into the overlying ocean. Thus the
matrix compaction associated with the volume change due to melting did not have
to be taken into account.

To understand the fate of water within the HP ice layer, a numerical model
must handle a mixture composed of two phases: solid ice and liquid water. The
only studies on the topic have been conducted for Ganymede by (95; 96) using a
2D Cartesian model of convection of a two-phase mixture of pure ice and water.
This formalism allows a self-consistent treatment of both the melting process and
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the water flow within or through the convecting solid ice (depending on the ice
permeability). The two-phase simulations have confirmed some of the previous
results by (35)—namely, that melting in the pure HP ice layer always occurs at
the top interface with the overlying ocean in a layer of temperate ice (i.e., ice where
temperature equals the melting temperature, T=Tm). However, depending on the
efficiency of convection, some melt may also be generated at the interface with
the silicates as well as in the thick layer of convecting ice. Based on the thermal
structure of the HP ice layer and the occurrence of melting at the interface with
silicates or in the convecting ice, four different regimes of exchange between the
silicates and the ocean were defined (96): (1) direct exchange (melting at the
bottom interface as well as in the upwelling plumes), (2) indirect exchange
(melting at the bottom interface but freezing within the convective domain), (3)
limited exchange (only limited melting at the bottom interface), and (4) no
exchange (no melting at the bottom interface). The temperature profiles and the
corresponding exchange regimes are described in Figure 8. Note that no significant
amount of water is accumulated at the silicate interface in any of the cases.
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Fig. 8: Temperature profiles for each of the four exchange regimes (circled numbers). Maximum
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temperate layers (gray). Bottom panels show lower10 km. Modified from (96).

The occurrence of bottom melting depends on the efficiency of thermal convec-
tion in the HP ice layer—for high Rayleigh number, the heat transfer by solid-state
convection is very efficient, the temperature at the silicate interface is below the
melting temperature and thus no melting occurs—this corresponds to exchange
regime #4. For small Rayleigh number, the heat transfer by convection is not very
efficient, the whole layer warms and melting occurs at the silicate interface. This
corresponds to regimes #1 and 2, while regime #3 is a transition between these
two end members. Rayleigh number increases strongly with the thickness of the
HP ice layer, as H3, and decreases with the ice viscosity µi. Thus, for a fixed vis-
cosity, the thickening of the cooling HP ice layer with time (crystallization of the
sandwiched ocean) leads to an increase of the Rayleigh number and the transition
from exchange regimes with bottom melting toward the regime without bottom
melting. The presence of melt at the interface between the silicate layer and the
HP ice layer facilitates the transfer of volatiles from the rock into the ocean. The
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exchange between the silicates and the ocean due to melting and water transport
through the HP ice layer is thus more likely early in the moon’s evolution when
its HP ice layer is thin enough for bottom melting to occur (96). As discussed in
Section 1.1, the thickness of Titan’s ice crust is between 50 and 100 km and thus
does not provide a strong constraint on the thickness of the HP ice layer, which
can be anywhere between 50 and 300 km. For the more differentiated Ganymede,
which has a much thicker hydrosphere, the presence of large impact craters sug-
gests a thick icy crust and thus a thick HP ice layer around 400 km (e.g. 182).
Consequently, melting at the HP ice/silicates interface is predicted to have oc-
curred longer in Titan’s interior, and it may be ongoing while it is less likely for
Ganymede.

Based on the results of the numerical simulations, scaling laws were derived
for Ganymede (96). First, the occurrence of melt at the silicates interface was
investigated and scaling for a critical Rayleigh number as a function of silicate
heat flux qs was found. If the Rayleigh number is larger than the critical value,
melting does not occur at the silicate interface. This scaling parameterization thus
predicts whether melt will occur at the silicate interface without the neeeding
to perform two-phase convection simulations, and can be used in future thermal
evolution models. Scaling laws were also derived for the amount of melt produced
at the silicate interface and the outflowing water velocity at the ocean interface.
For both, the controlling parameter is the heat flux that comes from the silicate
interior (96).

One pending question is the effect of a cold ocean whose crystallization tem-
perature is shifted toward lower temperature due to the presence of solutes. The
presence of salts may result in the formation of a cold thermal boundary layer at
the interface between the ocean and the HP ice layer, which can limit the transfer
to the ocean. In addition, the exchange processes may be affected by the presence
of salts in the melt produced at the interface between the silicates and the HP ice
layer. Further work on this topic is needed in order to understand how the HP ice
layer mediates the exchange between the silicate interior and the ocean.

4 Origin, differentiation and evolution

The present-day structures and compositions of Ganymede, Callisto, and Titan re-
sulted from accretion and differentiation processes that likely occurred very early
during the evolution of the solar system. The differences in structure and com-
position we can determine at present between these three moons may have been
caused by subtle differences during the accretion and differentiation processes,
which led to divergent evolutionary paths. In the present section, we review the
state of the art concerning the origin and differentiation of large icy moons, and
the implications for their evolution.

4.1 Accretion, impact-induced melting, and ocean formation

Most of the icy moons of Jupiter and Saturn formed in a disk that was the out-
growth of the formation of planet itself. The conditions under which the giant
planet formed therefore had a direct impact on the formation of their moons (e.g.
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51; 154). The evolution of the circumplanetary disk is controlled by the accretion
rate of the gas and dust from the surrounding solar nebula and the growth rate
of the giant planet. Many models have been proposed to describe the evolution
of the disk and growth of icy satellites from it (e.g. 30; 132; 133; 51; 154). The
evolution of this disk determined the composition and architecture of the whole
giant planet system as well as the final assemblage that led to the formation of
regular icy moons. For instance, it has been proposed that the fact that Saturn has
only one big moon (Titan) while Jupiter has four could be explained by difference
in gas-dust infall from the solar nebula onto the subdisk (154). According to this
model, Jupiter’s formation and its subsequent migration into the disk may have
resulted in a slower gas infall onto Saturn and subsequently to less available mass
to accrete large icy moons.

A critical aspect concerns the way solids were incorporated into the disk. Differ-
ent processes have been advocated (see for instance (51) and (31) for more detailed
discussions): (1) direct transport of small particles into the disk with the inflowing
gas, (2) ablation and gas drag capture of planetesimals orbiting the Sun through
the gas-rich circumplanetary disk, (3) break-up, dissolution and recondensation of
planetesimals in the extended envelope of the forming planet, (4) collisional cap-
ture of planetesimals. These mechanisms result in differences in impactor size and
velocity distribution that have major consequences for the satellite accretion (129).

The size and velocity distribution of the impactors, as well as their composi-
tion, have probably varied in space and time within the subdisk (e.g. 149), which
may explain the difference in composition between the icy satellites. Two reservoirs
of primitive bodies may have contributed to the satellite growth: bodies in orbit
around the planet, formed or captured within the circumplanetary disk, and bodies
in orbit around the Sun, colliding directly with the growing satellite (e.g. 171). The
contribution of each of these two reservoirs probably varied as the circumplanetary
disk evolved. When the accretion sequence started, centimeter-sized planetocen-
tric particles were probably pre-dominant, while kilometer-sized and larger bodies
became more and more frequent during the late-stage of accretion (142; 47).

By modeling the satellite accretion in 3D from a swarm of impactors of various
sizes, Monteux et al.(129) tested the influence of impact size distribution on the
thermal evolution of growing satellite. They showed that for satellites exceeding
1500-2000 km, surface melting can be avoided only if the satellite accreted rela-
tively slowly (> 1Myr) from small impactors ( < 1 km) and if the conversion of
impact energy into heat is unrealistically inefficient (< 10−−15%), confirming the
first estimations of (14). However, as soon as a small fraction (> 10%) of the im-
pactor exceeds 1 km, global melting for large bodies like Titan or Callisto cannot
be avoided. Global melting results in the formation of a surface ocean in equilib-
rium with a massive primitive atmosphere generating by the release of volatiles
brought by the icy impactors (108; 178; 120) (see Figure 9- left column).

The post-accretional structure of a large icy moon like Titan or Ganymede
thus consists of an inner undifferentiated ice-rock interior overlaid by a layer of
sedimented rocks and a thick liquid water ocean, resulting from melting of the icy
impactor (102; 178). A primitive atmosphere potentially exceeding 10 bars can be
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maintained in equilibrium with the water ocean as long as the surface temperature
exceeds the crystallization point. During this post-accretional period, the pressure
at the base of the ocean is not large enough to lead to the formation of a high-
pressure layer and the water ocean directly interacts with the sedimented rock
layer, potentially promoting large-scale water-rock interactions and production of
CH4 and other gas compounds (67).

4.2 Heat budget and water-ice-rock segregation

During the early stages of the satellite’s history three main sources of energy may
have contributed to the internal thermal budget, in addition to impact heating: ra-
diogenic heating, tidal heating associated with despinning, and viscous heating due
to ice-rock separation. Differences in accretion rate and heat sources may explain
the different differentiation states of Ganymede, Callisto, and Titan. Differences
in the efficiency of heat and mass transfer from mixed ice-rock layers, owing to
differences in post-accretional structure, may further accentuate the differentiation
dichotomies. In this section, we review the various processes that may explain the
divergence of ice-rock segregation and internal melting between the three large icy
ocean moons (Figure 9).

Impact heating results from the deposition of impactor kinetic energy during
satellite accretion and subsequent periods of intense bombardment. It therefore
depends on the momentum of the impactor and the way kinetic energy is con-
verted into heat. The impact creates a shock wave that compresses the satellite
beneath the impact site. Because shock compression is an irreversible process, the
entropy below the impact site increases, leading to a temperature increase. Barr
et al.(13) proposed that differences in impact energy received by Ganymede and
Callisto during the late heavy bombardment may explain the dichotomy between
the two moons. Ganymede is closer to Jupiter than Callisto, so it is expected to
experience twice as many impacts as Callisto. The impact velocity at Ganymede
would have been also larger than at Callisto (∼ 20 km s−1 vs ∼ 15 km s−1). This
difference may have created large-scale melting of the outer envelop, leading to
runaway differentiation in the case of Ganymede, while impact-induced melting
would have been more moderate at Callisto (14).

The heat sources may also differ substantially between the three large moons,
due to difference in composition and orbital configuration. Internal heating due
to short-lived radioactive isotopes (mainly 26Al) probably does not play a role on
these large moons. As the half-time of these short-lived elements is of the order
of 1 million years, they are probably already negligible at the end of accretion
of these big moons. The main heat source is provided by the decay of long-lived
radiogenic elements, mostly 40K, 235U during the first billion of years. Chondrites
can be used to provide some estimate of the heat power generated by the radio-
genic decay of the rocky phase in the moons. For Titan, carbonaceous chondrites,
which are believed to be the dominant types of chondrites beyond Jupiter (107),
are commonly assumed as good proxy of the rocky phase (59; 175; 67; 136). For
Jupiter’s moons, LL-type ordinary chondrites have also been proposed as pos-
sible rocky phase candidates (109; 110). Depending on the assumed chondritic
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Fig. 9: Possible evolution scenarios for the interior of Callisto, Titan, and Ganymede assuming
different initial states. Depending mostly on the efficiency of heat transfer in the interior,
different bifurcations in the evolutionary path may have occurred explaining the present-day
state of their interior. The interior structure shown here are just possible interior structures
compatible with existing observational constraints. Existing data are, however, not sufficient
to conclude with certitude concerning the differentiation state of these moons (Adapted from
Tobie et al. (178))
.

composition, the initial radiogenic power may vary between 2.8 and 4.6 TW for
Ganymede, and 1.9 and 3.2 TW for Callisto (85). For Titan, if we assume a compo-
sition dominated by CI chondrites, the total power should not exceed 2.5 TW (85).

Differences in tidal heating might also explain the dichotomies between these
moons. Due to its closer distance to Jupiter and its interaction with Io and Europa
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through the Laplace resonance, Ganymede likely experienced more tidal heating
than Callisto during its evolution (161; 19). In particular, Malhotra (118) and
Showman et al.(161) suggested that the Galilean satellites passed through one or
more Laplace-like resonances before evolving into the current Laplace resonance,
resulting in prolonged periods with enhanced eccentricity and tidal dissipation in
Ganymede (19; 20). By contrast, Callisto’s eccentricity probably remained small
(0.007 at present) during its evolution, resulting in very small tidal forcing due to
the distance to Jupiter (85). Tidal forces on Titan raised by Saturn are comparable
to those experienced by Callisto. However, as Titan’s eccentricity is larger (0.0294
at present), this leads to large time variations of tidal forces, resulting in more
tidal energy potentially dissipated. The elevated eccentricity of Titan in the ab-
sence of orbital resonances suggests that the present-day value is the remnant from
Titan’s early evolution when it may have experienced tidal heating comparable to
Europa’s (176; 177). Simultaneously with their accretion, the moons also experi-
enced strong tidal despinning to tidally-locked spin-orbit resonances. Although the
associated dissipation rate is large, it lasted for short periods of time, on the order
of 100,000 years (85), resulting in a moderate increase of internal temperature of
25-50 K (178).

A final source of energy resulted from the release of gravitational energy asso-
ciated to internal differentiation (63; 85; 178). The increase of temperature asso-
ciated with the change of gravitational energy between an initially homogeneous
interior and a differentiated interior with a full separation of rock and ice phases is
of the order of 100-150 K. If the ice-rock separation is fast enough (< 0.5 Gyr), the
dissipation of potential energy may induce runaway melting and thus may create
a catastrophic differentiation, as has been proposed for Ganymede (63; 102). This
early period corresponds to the first stage of evolution for Ganymede in Figure 9.
If the differentiation process is slow and more gradual (> 1 Gyr), the convective
heat transfer should be able to transport the additional energy, preventing inter-
nal melting, as proposed for Callisto (134) (see Figure 9 - first row). O’Rourke
and Stevenson (144) showed, using Titan as an example, that double-diffusive
convection in a mixed ice-rock interior can delay internal melting and ice-rock
separation, but cannot prevent it, even if reduced radiogenic power is assumed
(see Figure 9—second row). This indicates that it may be difficult to prevent full
ice-rock separation. If Callisto is not fully differentiated, then it would be a mys-
tery in this regard. We should keep in mind, however, that ice-rock separation
depends on the rheology of ice-rock mixtures, which is poorly constrained at high
pressures. Further experimental and modeling efforts are required to better under-
stand the differentiation processes of large icy moons.

Throughout the differentiation process, internal melting may contribute to the
efficiency of heat transfer, which has not been quantified so far. Melt migration
is an efficient way to transport heat and to favor chemical exchange. The com-
positions of internal oceans have almost certainly been conditioned by leaching
processes (Figure 9). Though some studies have focused on this topic, especially
for Titan (50; 32; 59), work is needed to understand the interplay between ice-rock
segregation, fluid generation and transport, and leaching in large ocean worlds.
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4.3 Iron core formation and core-mantle-hydrosphere evolution

The presence of an iron core depends on the degree of differentiation. As men-
tioned previously, Callisto and Titan seem to be only moderately differentiated—
the rock+metal and ice phases may have been separated only incompletely (e.g.,
8; 87). Furthermore, both satellites lack an intrinsic magnetic fields (100; 12),
which is consistent with their partial differentiation. In contrast, Ganymede’s low
moment of inertia (MoI) (e.g. 9) and intrinsic magnetic field (104) suggest a fully
differentiated interior—further differentiation of the rock+metal primordial core
into a metallic core and an overlying rocky mantle (Figure 9 - third row). Charac-
terized by five flybys of the Galileo spacecraft, the magnetic field is predominantly
dipolar, with an equatorial surface field strength of 719 nT and a tilt away from
the spin axis of 4o (104). Ganymede’s unique magnetic field is most likely driven
by a core dynamo, where the kinetic energy is converted to magnetic energy. Core
flows are likely driven by convection (e.g. 75); libration-driven elliptical instability
is likely absent (114) although precession-driven flows may be possible. The exis-
tence of Ganymede’s magnetic field implies that the central iron alloy core is at
least partially liquid. Estimates of the core’s size range from one-quarter to one-
third of the satellite’s radius (165). Core composition is similarly open question,
with sulfur often assumed as the dominant light element (e.g. 157; 155), although
other elements such as oxygen are also likely present (146).

McKinnon (123) and Spohn et al. (170) showed that, once ice and rock-metal
phases are fully separated, radiogenic heating in the rock+metal phase is sufficient
to raise the temperature to the Fe-FeS melting temperature. Such heating, how-
ever, may take several hundred million years assuming insignificant heat escape
during this time (170). If enough melt is generated, it may permeate downwards
to form a metal-rich core (e.g. 195). The slightly lower rock fraction of Callisto
and Titan and therefore lower radiogenic heating compared to Ganymede could
be another reason for only partial differentiation of these two (155).

In the present day, tidal heating probably contributes insignificant heat to
Ganymede, Callisto, and Titan. While tidal heating probably never played an
important role in Callisto’s history, it might have for Ganymede and Titan (e.g.
161; 164; 19; 179). Transfer of heat in icy satellites is dominated by heat conduc-
tion and convection. As also discussed in Section 3.2, thermal convection occurs if
the Rayleigh number—the ratio of diffusive and advective heat transport—exceeds
a critical value. While convection is likely to occur in the putative liquid reser-
voirs of icy satellites like an ocean or a metallic core, it can be harder to achieve
in the solid parts like the rocky mantle or the ice I crust (or high-pressure ice
phases). The onset of convection depends on the viscosity, the thermal properties,
and the size of the satellite. Different scenarios illustrating the basic mechanisms
have been calculated by Ellsworth et al.(48) for the small Saturnian satellites. If
convection occurs in the rocky mantle, it likely operates in the stagnant lid mode
due the strongly temperature-dependent viscosity of silicates and water ice (e.g.
156). Convection then takes place below a rigid shell, across which heat is trans-
ported less efficiently via conduction.
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If a metal core exists, which is the case for Ganymede, cooling of that core
presents another heat source to the overlying rocky mantle and hydrosphere. Even
though heat transport within the core is efficient due to convection, cooling of the
core is limited to the amount of heat that can be extracted by the much more
slowly convecting rocky mantle. The rocky mantle and metallic core are coupled
via the temperature at the core-mantle boundary (CMB). If the core temperature
has cooled sufficiently to drop below the melting point of the core alloy, the core
will start to freeze. The latent heat released during freezing slows cooling at the
CMB, temporarily delaying cooling of the mantle (e.g., 173).

Based on experimental work with low-pressure Fe-FeS alloys, core differentia-
tion in small planetary bodies like Ganymede may substantially differ from Earth’s
inner core growth (54; 53; 55; 41; 130; 131; 28). Instead of freezing from the inside
out, the core solidifies from the top to the bottom (123; 75; 194). Thermal evolu-
tion models of metallic cores are important for estimating the power available to
a potential dynamo.

Thermal evolution models have focused mostly on understanding how a satel-
lite with a small iron core could have an active magnetic field at present day.
Although thermal convection has been considered (101), most studies have relied
on thermo-compositional convection (75; 19; 151; 153). In this mode, compositional
buoyancy is associated with the sinking of Fe snow, assuming top-down core solid-
ification for an iron-rich composition or with the upward flotation of solid FeS if
the core is more sulfur-rich than the eutectic (24). Rückriemen et al.(153), for ex-
ample, argued that both of these regimes can explain Ganymede’s magnetic field,
although dynamos driven by iron snow are generally young (less than 1 Ga) while
FeS flotation dynamos can be up to 3.8 Ga.

Dynamo models simulating convection and magnetic field generation in the
core are complementary to these studies. Zhan and Schubert (196) showed that
dynamo properties differ depending on the core crystallization regime and conclude
that FeS flotation is most consistent with a dipole-dominated magnetic field, while
Christensen et al. (40) showed that convection driven by iron snow can reproduce
Ganymede’s observed dipole moment as well as its anomalously low quadrupole
component. The contrasting conclusions of these studies is primarily a consequence
of the different assumed source regions for compositional buoyancy (i.e., volumet-
ric versus boundary origins) and the absence/presence of an outer stably-stratified
layer in the model.

5 Discussion and perspectives

5.1 Habitability

In the last ten years, progress in understanding the formation and evolution of
large icy moons has come from the observations of Titan by the Cassini-Huygens
mission, progress on numerical modeling, and a wealth of new laboratory data.
However, the question of the degree of habitability of these large icy moons is far
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from being solved.

The global fluxes of chemical energy must be understood in terms of a world’s
interior structure and evolution (186). Such a global picture is necessary for quan-
tifying the types of life and amounts of biomass that might be supported (160).
A global perspective is also required for interpreting any potential indications of
life that might be found through in-situ sampling, as, for example, by a lander on
Europa’s surface (74). In light of recent progress on the occurrence and potential
stability of fluids within and underneath high-pressure ices (35; 95), it no longer
seems to be the case that the presence of such ices impedes water-rock interactions
altogether. A greater concern for the availability of chemical energy where high-
pressure ices occur may be that the surface areas available for water-rock exchange
are limited. High pressures at the water-rock interface (> 250 MPa) may force the
elastic closure of fractures (185) and prevent tectonic opening (29). These consid-
erations are also directly relevant to the habitability of ocean worlds that may be
present around other stars (117) for which the three large solar icy moons can be
used as proxi.

5.2 Ocean exoplanets

The number of detected exoplanets has grown exponentially thanks to the Ke-
pler data. Among those planets, some may have a thick hydrosphere overlying
a rocky interior (97; 139; 140). In applying the ideas discussed here to larger
exo-ocean worlds, it is important to distinguish between water-rich super-Earths
and mini-Neptunes. It appears that a population gap around 1.8 Earth radii
(REarth) separates these two populations, with the larger planets potentially richer
in volatile species (64; 112). Like the solar system’s ice giants Uranus and Neptune,
mini-Neptunes would contain layers of super-ionic fluid and ices at extreme pres-
sures and temperatures, potentially mixing with their rocky core (diffuse structure
rather than layered), incompatible with the type of habitability discussed in this
chapter. Therefore, exo-ocean worlds refers here to water-rich super-Earths with
radii below 1.8REarth.

These exoplanets, also referred to as ocean planets (117), are much larger than
Ganymede, and their interior structure, inferred from first principles, predicts that
their hydrosphere would be dominated by high pressure ices (VII and X)(167; 139).
Recent data on the characteristics of ice VII and X (17; 106; 91; 77) can be
used in further modeling to understand the possible hydrosphere structures and
evolution of such planets. Nonetheless, many aspects remain largely unconstrained
by experiment or theory, such as the rheology of these ultra high-pressure ices, as
well as the possible water/ice-rock interactions at gigapascal pressures and>1000K
temperatures, important for understanding thermal and chemical transport and
potential for habitability of their ocean (139).

Depending on their orbital distances and the chemistry of their atmospheres
(e.g., a hydrogen-helium dominated atmosphere or a carbon-dioxide rich atmo-
sphere), the surface temperatures of exo-ocean worlds can also be high enough to
allow for liquid water at the surface, such that the ocean may be in direct con-
tact with the atmosphere. (103) showed that the existence of a high-pressure layer
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would lead to a different carbon cycle than on a rocky planet covered by water,
since the carbonate-silicate cycle would not be active on such planets. Instead, the
climate would be determined by the solubility of carbon dioxide in the oceans, and
could potentially be very unstable. Future studies are needed to understand the
equilibria between atmosphere and ocean on such planets, to predict if, for exam-
ple, reducing atmospheres similarly to Titan’s would be possible, or if carbon- or
nitrogen-dominated atmospheres are likely to exist for ocean planets.

5.3 Geochemical exchange processes

The ability of the HP ice layer to transfer compounds from the rocky core to the
ocean is key to understanding the conductivity of the ocean. It is also important
to determine whether salty layers can form and exist stably between the different
types of HP ice, and also between the HP ice and the silicate layer (92; 183; 139).
In the case of pure water, it was demonstrated (95) that only a few percent of
melt can be present at the interface with the silicates. Contrary to the terrestrial
equivalent of subglacial lakes where water is denser than ice I, HP ice is denser
than water. As a result, the presence of water adds to the buoyancy of the ice
and favors its upwelling. To make water denser requires the addition of salt in
amounts on the order of 10 wt% (92; 184). Numerical simulations that can handle
the complexities of salts which create eutectics and can concentrate in pockets will
have to be addressed in the future.

The terrestrial ocean is characterized by the presence of hydrothermal vents
where autotrophic communities of organisms reside indepedent from the sun’s
energy. Such vents have been proposed as places where life may have emerged.
They are settings with gradients in pH and redox between the ocean and the
fluids circulating in the oceanic crust (152). Such hydrothermal activity has been
inferred to occur in Enceladus based on the analysis of ice grains ejected from
Enceladus’s interior (83; 159; 147). However, the presence of gradients between
the water circulating in the rocks and the ocean is not established. Recent models
for Enceladus (34) suggest that the ocean circulates into the porous rocky core,
indicative of chemical equilibrium. Enceladus pressure is low and porosity can be
large. On the large icy moons, the percolation of fluids may be more limited. One
process may be the cracking of the crust due to serpentinization of the rock (99). It
is still unknown whether such processes could exist in the upper part of the rocky
core of large icy moons. Numerical modelling of such environments may help in
understanding the interaction between a hydrated core and a HP ice layer. Finally,
it is worth recalling that Titan may not have had a HP ice layer during much of
its history, and that conditions at the ocean-silicate interface may have resembled
those at Europa, albeit with higher pressures at the water-rock interaface.

5.4 Space missions and experimental perspectives

A better understanding of the role of high-pressure ices on the habitability of
large icy moons will require progress in numerical simulations, more laboratory
experiments to measure the parameters in the (P,T) range of interest, and ob-
servations from space missions. Two missions are in development: the ESA-led
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JUICE mission to Callisto and Ganymede (68), and the NASA Dragonfly mission
to Titan (180). The JUICE mission is equipped with a radar sounder and mag-
netometer whose data should provide precise thickness of Ganymede’s ice crust,
which strongly constrains the depth of the ocean-HP ice interface (182). In addi-
tion, the interpretation of the magnetic data (conductivity of the ocean) and the
gravity data (density of the ocean through the moment of inertia and value of the
tidal Love number k2) should provide constraints on the thickness and salinity of
the ocean. These data will be key to inferring the thickness of the HP ice layer
and assessing its dynamics and the transfer of volatiles from the silicates to the
ocean. The Dragonfly mission will land at different places on Titan’s surface. It is
equipped with a geophysical package including seismometers that could determine
the thickness of the ice crust and characterize its dynamics. It may also provide
information about the deep interior if the seismic activity triggered by tidal forces
along Titan’s highly eccentric orbit around Saturn is high enough and allows the
sensors to record seismic waves propagating deep into Titan’s interior (172).

As demonstrated in the Section 2, the effect of high pressures in large ocean-
worlds cannot be correctly extrapolated from data collected in well-studied ranges
below 100 MPa. If equilibrium properties can be derived from thermodynamic
potentials based on a few parameters (e.g., sound speed, density), transport prop-
erties (especially the rheology) need to be measured independently at the relevant
conditions. Few studies have characterizied and quantifyied the creep behavior
of high-pressure ice polymorphs at the small strain rates occurring in icy ocean
worlds. In addition, there is no ice VII creep law to date, although it may be a
major constituent of the hydrospheres of exo-oceans.

Furthermore, there is evidence that new major phases remain to be discovered
and characterized at high pressure, as compression allows stabilization of new
crystallographic configurations in non-pure system, as suggested for the H2O-NaCl
binary (181). Even in modest amounts, these phases could considerably influence
the bulk physical properties of the ice dominated layers (upper ice crust and high
pressure ices mantle) and the chemical transport through the hydrosphere, but
remain largely unconstrained to date.

These are a few examples of laboratory experiments that should be carried
out as they are critical to the interpretation of data acquired by space missions.
The development of the JUICE and Dragonfly missions should be a lever for the
funding of such laboratory experiments.
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