Fellow,IEEE Michel Barlaud
email: michel.barlaud@i3s.unice.fr

Frédéric Guyard
email: frederic.guyard@orange.com

Learning sparse deep neural networks using efficient structured projections on convex constraints for green AI

Deep neural networks (DNN) have been applied recently to different domains and perform better than classical state-of-the-art methods. However the high level of performances of DNNs is most often obtained with networks containing millions of parameters and for which training requires substantial computational power. To deal with this computational issue proximal regularization methods have been proposed in the literature but they are time consuming. In this paper, we propose instead a constrained approach. We provide the general framework for this new projection gradient method. Our algorithm iterates a gradient step and a projection on convex constraints. We studied algorithms for different constraints: the classical 1 unstructured constraint and structured constraints such as the 2,1 constraint (Group LASSO). We propose a new 1,1 structured constraint for which we provide a new projection algorithm. Finally, we used the recent "Lottery optimizer" replacing the threshold by our 1,1 projection. We demonstrate the effectiveness of this method with three popular datasets (MNIST, Fashion MNIST and CIFAR). Experiments with these datasets show that our projection method using this new 1,1 structured constraint provides the best decrease in memory and computational power.

I. MOTIVATION

Deep neural networks have been applied recently to different domains and have shown a dramatic improvement in accuracy of image recognition [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], speech recognition [START_REF] Nassif | Speech recognition using deep neural networks: A systematic review[END_REF] or natural language processing [START_REF] Otter | A survey of the usages of deep learning in natural language processing[END_REF]. These studies relied on deep networks with millions or even billions of parameters. For instance, the original training of ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] (image classification) contains 25.6M parameters and required 29 hours of processing using 8 GPUs. Storing the model requires 98MB. The cost in memory of the inference on a single 224x224 image is about 103MB and 4 GFLOPs are needed [START_REF] Canziani | An analysis of deep neural network models for practical applications[END_REF]. The recent development of DNNs, hardware accelerators like GPUs and the availability of deep learning frameworks for smartphones [START_REF] Ignatov | AI benchmark: Running deep neural networks on android smartphones[END_REF] suggest seamless transfer of DNN models trained on servers onto mobile devices. However, it turns out that the memory [START_REF] Rallapalli | Are very deep neural networks feasible on mobile devices[END_REF] and energy consumption [START_REF] Han | Ese: Efficient speech recognition engine with sparse lstm on fpga[END_REF] are still the main bottlenecks for running DNNs on such devices. Thus the computational cost has an impact on the carbon footprint. It has been argued that this trend is environmentally unfriendly [START_REF] Strubell | Energy and policy considerations for deep learning in nlp[END_REF]. Some authors of [START_REF] Schwartz | Green ai[END_REF] advocate a practical solution by providing an efficient evaluation criterion. In this paper, we propose a new splitting projection-gradient method with an efficient structured constraint to cope with these computational and memory issues. In the formulation of our method, a constraint defines a convex set and the regularization is replaced by projection onto this convex set. The benefits of this formulation are twofold. Firstly, the constraint has a direct geometric interpretation whereas the impact of parameter values in traditional regularization methods are more difficult to understand. Secondly, the convergence of this new method is formally proved. The paper is organized as follows. We first present related works in Section II, then in Section III, we develop the theoretical background of our constrained projection method. In Section IV, we compare experimentally the methods. The tests involve several datasets with different neural network architectures.

II. RELATED WORKS

Weights sparsification

It is well known [START_REF] Denil | Predicting parameters in deep learning[END_REF] that DNN models are largely overparametrized and that in practice, relatively few network weights are actually necessary to accurately learn data features. Based on this result, numerous methods have been proposed in order to remove network weights (weight sparsification) either on pre-trained models or during the training phase. A basic idea to sparsify the weights of the neural network is to use the Least Absolute Shrinkage and Selection Operator (LASSO) formulation [START_REF] Friedman | Regularization path for generalized linear models via coordinate descent[END_REF], [START_REF] Hastie | Statistcal learning with sparsity: The lasso and generalizations[END_REF]. The 1 penalty added to the classification cost can be interpreted as a convexification of the 0 penalty. In [START_REF] Han | Learning both weights and connections for efficient neural network[END_REF], weights with the smallest amplitude in pretrained networks are removed. Model sensitivity to weights can also be used [START_REF] Tartaglione | Learning sparse neural networks via sensitivity-driven regularization[END_REF], [START_REF] Gomez | Learning sparse networks using targeted dropout[END_REF]. where weights with a weak influence on the network output are pruned. Constraint optimization is used in order to learn sparse networks with 0 , 1 or 2 constraints on the weights [START_REF] Carreira-Perpiñán | Learning-compression algorithms for neural net pruning[END_REF].

Accepted for publication ICPR 2020 Milan

These methods generally produce networks with random sparse connectivity, i.e. high-dimensional but sparse weight matrices. They only partially reduce the computational demand since they result in networks with sparse weight matrices, requiring the availability of sparse matrix multiplication to effectively take advantage of the sparsity. Decreasing both memory and computational requirements can however be achieved by suppressing neurons instead of weights. This approach is frequently referred to as structured sparsification or neuron level sparsification. The two main approaches for structured sparsity are based on group regularization and lowrank factorization. Many regularizing techniques have been proposed to allow structured sparsification. Pruning methods are sparsifying pretrained networks. Filters in CNN are pruned based on the 1 norm of their kernel weights [START_REF] Li | Pruning filters for efficient convnets[END_REF]. Some authors perform channel pruning using LASSO regression and least squared reconstruction [START_REF] He | Channel pruning for accelerating very deep neural networks[END_REF]. Neurons are pruned based on the average percentage of zeros (APoZ) after the ReLU activation [START_REF] Hu | Network trimming: A datadriven neuron pruning approach towards efficient deep architectures[END_REF].

Learning structured sparse DNNs using regularization methods

In contrast to the case of weight sparsification, neuron level sparsification introduces a new challenge forcing adoption of other types of regularization. The most common approaches are based on group LASSO 2,1 [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] or on sparse group LASSO 2,1 + 1 [START_REF] Friedman | Regularization path for generalized linear models via coordinate descent[END_REF] regularization.

Numerous other methods include regularization during the training of the DNN. It is customary in DNN learning to train networks with Stochastic Gradient Descent (SGD) with momentum, even in the case where non-smooth penalization is used [START_REF] Scardapane | Group sparse regularization for deep neural networks[END_REF]. Group LASSO regularization in a number of studies in [START_REF] Scardapane | Group sparse regularization for deep neural networks[END_REF], [START_REF] Wen | Learning structured sparsity in deep neural networks[END_REF]. Group LASSO and filter decorrelation regularization are used in order to discard CNN filters [START_REF] Friedman | A note on the group lasso and a sparse group lasso[END_REF]. Group LASSO and group variance regularization have been used in [START_REF] Torfi | Attentionbased guided structured sparsity of deep neural networks[END_REF].

To deal with non-smooth 1 regularization, subgradient descent is used in [START_REF] Liu | Learning efficient convolutional networks through network slimming[END_REF]. Here, structured sparsification is performed without group regularization. The idea is to scale the neurons output with a given factor λ i and apply 1 regularization to push the various factors λ i towards 0.

Fully connected layers can be represented by their weights matrix (i.e. 2d tensor) whereas convolutional layers correspond to 4d tensors. One of the popular compression methods for DNN is nuclear regularization (Nuclear norm penalty) [START_REF] Cheng | A survey of model compression and acceleration for deep neural networks[END_REF]. Nuclear norm penalty was successfully used in matrix low rank approximation [START_REF] Cheng | A survey of model compression and acceleration for deep neural networks[END_REF], matrix completion [START_REF] Zhang | Matrix completion by truncated nuclear norm regularization[END_REF], matrix factorization [START_REF] Cavazza | Dropout as a low-rank regularizer for matrix factorization[END_REF] and DNN dropout modeling [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF].

Learning structured sparse DNNs using proximal regularization methods

A different approach is however based on optimization under convex constraint where proximal methods are the most natural tools. We recall the proximal operator of a function f (x) [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]:

prox τ f (x) := arg min x f (x) + x -x 2 2τ , (1)
Let W be the weight matrix of a neural network, L(W) be a gradient Lipschitz loss and R(w) be a convex penalty. We define the penalty criterion by min W L(W) + λR(W). This criterion can be minimized using a classical forward-backward method belonging to the class of splitting methods [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF], [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], [START_REF] Mosci | Solving structured sparsity regularization with proximal methods[END_REF], [START_REF] Sra | Optimization for Machine Learning[END_REF]. Using SGD with penalization is limited and time consuming due to the tuning of the corresponding penalization hyper-parameters [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF], [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF].

Proximal gradient descent with group LASSO constraints was used in [START_REF] Zhou | Less is more: Towards compact cnns[END_REF] and in [START_REF] Alvarez | Learning the number of neurons in deep networks[END_REF]. In [START_REF] Huang | Data-driven sparse structure selection for deep neural networks[END_REF], the output neurons are scaled using a factor λ i and an accelerated proximal gradient is used with a 1 constraint to push as many coefficients λ i towards 0 without significantly decreasing the performance. In [START_REF] Yoon | Combined group and exclusive sparsity for deep neural networks[END_REF], neuron sparsification is performed with proximal gradient descent with group LASSO constraint and an additional 1,2 constraint (Exclusive Sparsity) enforces neurons to fit disjoint sets of features. Similarly, in [START_REF] Zhang | Learning to share: Simultaneous parameter tying and sparsification in deep learning[END_REF] proximal gradient descent with group OWL constraint (grOWL [START_REF] Oswal | Representational similarity learning with application to brain networks[END_REF]) is used to simultaneously sparsify neurons and enforce parameter sharing. Proximal gradient descent is also used in [START_REF] Zhang | Simultaneous sparsity and parameter tying for deep learning using ordered weighted 1 regularization[END_REF] where Ordered Weighted 1 regularization (OWL [START_REF] Figueiredo | Ordered weighted l1 regularized regression with strongly correlated covariates: Theoretical aspects[END_REF]) allowing simultaneous sparsify weights and optimized weight sharing. In [START_REF] Lin | Toward compact convnets via structure-sparsity regularized filter pruning[END_REF], filters in CNN layers are pruned by solving an optimization problem using a dedicated optimizer with either group LASSO or 2,0 regularization.

Goal of the work

Classical Learning structured sparse DNNs are based on proximal regularization methods. In this paper, we propose an alternative constrained approach that takes advantage of available efficient projections on the 1 -ball [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF], [START_REF] Duchi | Efficient projections onto the l 1-ball for learning in high dimensions[END_REF], [START_REF] Perez | A filtered bucketclustering method for projection onto the simplex and the 1 -ball[END_REF] and on the 2,1 ball [START_REF] Liu | Multi-task feature learning via efficient l2, 1-norm minimization[END_REF], [START_REF] Barlaud | Robust supervised classification and feature selection using a primal-dual method[END_REF]. We further propose a new 1,1 projection.

III. LEARNING SPARSE DNN

A Projection gradient algorithm for constrained learning

In this work, we propose a constrained approach in which the constraint is directly related to the number of zero-weights. Moreover it takes advantage of an available efficient projection on the 1 -ball [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF], [START_REF] Perez | A filtered bucketclustering method for projection onto the simplex and the 1 -ball[END_REF]. Let L(W) be a gradient Lipschitz loss, R(w) be a convex constraint, and C its convex set. Lets us define the following criterion min

W L(W) s.t. R(W) η (2)
where the scalar η 0 is the constraint parameter. We use a splitting gradient-projection method to minimize this criterion based on the following forward-backward scheme to generate a sequence of iterates [START_REF] Barlaud | Classification and regression using an outer approximation projection-gradient method[END_REF]:

V n := W n -γ∇L(W n), (3)
W n+1 := proj(V n) + ε n , (4)
where proj denotes the projection on the convex constraint. We can therefore apply the algorithm to any constraint for which an exact or approximate projection can be computed. We derive the following algorithm Algorithm 1 Splitting gradient-projection algorithm where ∇L(W) is provided by the net and proj(ηV) is the projection on the constraint Input: X, Y, W 0 , N, γ, η

for n = 1, . . . , N do V ← W -γ • ∇L(W) W ← proj(ηV) end for Output: W

Optimizer with structured constraints

In the case of the constraint R(w) = W 1 , efficient algorithms have been proposed [START_REF] Condat | Fast projection onto the simplex and the l1 ball[END_REF], [START_REF] Perez | A filtered bucketclustering method for projection onto the simplex and the 1 -ball[END_REF]. Unfortunately this 1 constraint does not induce a sparse structure.

W 1 := i,j |w i,j |.
Classical optimizer with 2,1 norm constraint (Group LASSO): The Group LASSO was first introduced in [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. The main idea of Group LASSO is to enforce model parameters for different classes to share features. Group sparsity reduces complexity by eliminating entire features. Group LASSO consists in using the 2,1 norm for the constraint on W . The row-wise 2,1 norm of a n × d matrix W (whose columns are denoted w i , i = 1, . . . , d) is defined as follows:

W 2,1 := d i=1 w i .
We use the approach proposed in [START_REF] Barlaud | Robust supervised classification and feature selection using a primal-dual method[END_REF] to compute the projection W on the 2,1 -ball of radius η of a n × d matrix V (whose columns are denoted

v i , i = 1, • • • , d) : compute t i which is the projection of the vector (v i i) d
i=1 on the 1 ball of radius η in R n . Each column of the projection is then obtained according to

w i = t i v i max{t i , v i } , i = 1, . . . , d.
This last operation is denoted as

W i := proj 2 (V i , t i) in Algorithm 2.
This algorithm requires the projection of the vector

(v i i) d i=1
on the 1 ball of R n of radius η whose complexity is only O(d×log(d)). We can note that another approach was proposed in [START_REF] Liu | Multi-task feature learning via efficient l2, 1-norm minimization[END_REF]. The main drawback of their method is to compute the roots of an equation using bisection, which is quite slow.

Algorithm 2 Projection on the 2,1 norm-proj 1 (V, η) is the projection on the 1 -ball of radius η Input: V, η t := proj 1 ((

v i i) d i=1 , η) for i = 1, . . . , d do w i := proj 2 (v i , t i) end for Output: W
A new optimizer with an adaptive weighted 1,1 norm constraint: Unfortunately, algorithm 2 does not provide efficient sparsity. Thus we propose the algorithm 3.

Algorithm 3 Projection on the 1,1 norm-proj 1 (V, η) is the projection on the 1 -ball of radius η Input: V, η t := proj 1 ((v i 1) d i=1 , η) for i = 1, . . . , d do w i := proj 1 (v i , t i) end for Output: W
This "projection" can be seen in the following way: Given a matrix V = (v i,j), 1 ≤ i ≤ d, 1 ≤ j ≤ n, the algorithm computes t as the solution of:

min d i=1 |ti|≤η d i=1   n j=1 |v i,j | -t i   2 (5)
and then for all i = 1, . . . , d, the solution w of:

min n j=1 |wi,j |≤ ti n j=1 (v i,j -w i,j) 2 . (6
)
Clearly both t and w are bounded by η in their respective 1 norm.

Let us consider, for ε > 0, the problem

(P ε) min i ti≤η j |wi,j |-ti≤0 d i=1   n j=1 |v i,j | -t i   2 +ε d i=1 n j=1 (v i,j -w i,j) 2
It turns out that this is a (strongly) convex problem, with solution (t ε , w ε). It is easy to show that (t ε , w ε) → (t, w) as ε → 0. Indeed , since (t, w) is admissible i ti ≤ η and j | wi,j | ≤ ti , and then, using the strong convexity of the objective with respect to t i ,

d i=1 (t ε i -ti) 2 + d i=1   n j=1 |v i,j | -t ε i   2 + ε d i=1 n j=1 (v i,j -w ε i,j) 2 ≤ d i=1   n j=1 |v i,j | -ti   2 + ε d i=1 n j=1 (v i,j -wi,j) 2 .
Using first that t is a minimizer of the first term in the righthand side, we find:

d i=1 (t ε i -ti) 2 +ε d i=1 n j=1 (v i,j -w ε i,j) 2 ≤ ε d i=1 n j=1 (v i,j -wi,j) 2
Sending ε → 0, we obtain that t ε → t. Then, dividing the expression by ε, and considering ε → 0 again along a subsequence for which w ε converges to some limit w, we obtain:

d i=1 n j=1 (v i,j -w i,j) 2 ≤ d i=1 n j=1 (v i,j -wi,j) 2 .
Now, since in the limit, t ε → t, we have n j=1 |w i,j | ≤ ti for all i = 1, . . . , d, so that w is admissible in the minimization problem [START_REF] Ignatov | AI benchmark: Running deep neural networks on android smartphones[END_REF] whose solution is w. Hence w = w, and in fact we get that lim ε→0 w ε = w. Observe also that this shows also t εt = o(√ ε). Similarly, one can show that w εw = o(ε1/4). Actually a more precise analysis shows that t εt = O(ε 2/3) and w ε -w = O(ε 1/3). A further remark is that one can show the problem (P ε) to be equivalent to (P + ε) defined with

min i ti≤η j |wi,j |-ti≤0 d i=1   n j=1 |v i,j | -t i +   2 +ε d i=1 n j=1 (v i,j -w i,j) 2 .
whose value is now convex with respect to V . Indeed, if i,j |v i,j | ≤ η, it is easy to see that the value of both problems is zero, with w = v (while the value of t is no longer unique in this case in (P ε)). On the other hand, when i,j |v i,j | > η, then at least for one i one must have j |v i,j | > t i so that, if for some other i , j |v i ,j | < t i , it is clear that decreasing slightly t i and increasing t i of the same amount, one can reduce the objective. Hence, in that case, the unique solution of (P + ε) is given by the solution of (P ε) and the value is the same. This shows that in fact, the values of both problems are equal, and hence, also, convex with respect to V (since the objective in the (P + ε) is globally convex in (V, t, w)).

Lottery optimizer

Following the work of Frankle and Carbin [START_REF] Frankle | The lottery ticket hypothesis: Finding sparse, trainable neural networks[END_REF], [START_REF] Zhou | Deconstructing lottery tickets: Zeros, signs, and the supermask[END_REF] proposed a simple algorithm to find sparse sub-networks within larger networks that are trainable from scratch. Their approach to finding these sparse networks is as follows: after training a network, set all weights smaller than some threshold to zero, rewind the rest of the weights to their initial configuration, and then retrain the network from this starting configuration but with the zero weights frozen (not trained). We replaced the thresholding by our 1,1 projection and devised the following algorithm: Algorithm 4 Projection on the 1,1 norm-proj 1 (V, η) is the projection on the 1 -ball of radius η, ∇L(W, M 0) is the masked gradient with binary mask M 0 , and f is the ADAM optimizer, γ is the learning rate

Input: W * , γ, η for n = 1, . . . , N (epochs) do V ← f (W, γ, ∇L(W)) end for t := proj 1 ((v i 1) d i=1 , η) for i = 1, . . . , d do w i := proj 1 (v i , t i) end for Output: W, M 0 Input: W * for n = 1, . . . , N (epoch) do W ← f (W, γ, ∇L(W, M 0)) end for Output: W IV. EXPERIMENTAL RESULTS
We used the pytorch framework to implement our sparse learning method using a constrained approach. We chose the Adam optimizer [START_REF] Kingma | a method for stochastic optimization[END_REF], a standard optimizer in PyTorch as baseline comparison to our optimizer with 1 and 2,1 constraints. We denoted as "PGL1", the algorithm with 1 constraint, "PGL21", the algorithm with 2,1 constraint and "PGL11" the algorithm with 1,1 constraint. We used the entropy (bit/weight) of the weights distributions to compute estimations of the model storage memory cost. To this end, the weights can for instance be coded using JPEG2000 1 an image coding system that uses state-of-the-art compression techniques based on wavelet theory. The classical computational cost evaluates FLOPs (floating point operations) as a measure. When using FLOPs, additions (accumulates) and multiplications are counted separately. However, a lot of hardware can compute multiply-add operations in a single instruction. We therefore use MACCs (multiply-accumulate operations) as computational cost for which one multiplication and one addition are counted as a single instruction. We provide the results in normalized bytes and MACCs: we divided the number of bytes or MACCs by the number of bytes or MACCs obtained with Adam (i.e. without constraint). For all experiments we used Algorithm 4. Computation was performed on a Cocolink Klimax 210 HPC with 10 GPUs (Nvidia Quadro P6000, P100 and GeForce GTX 1080).

Results on MNIST with a convolutionnal Network

We selected the popular MNIST dataset [START_REF] Lecun | The mnist database of handwritten digits[END_REF] containing 28 × 28 grey-scale images of handwritten digits of 10 classes (from 0 to 9). This dataset consists of a training set of 60,000 instances and a test set of 10,000 instances. We consider a neural network with two convolutional layers and two linear layers denoted as Net4. The size of its weight matrices are (1 × 10 × 5 × 5), (10 × 20 × 5 × 5), (320 × 50) and (50 × 10) respectively. Thus the total number of elements of these weight matrices are 250, 5000, 16000 and 500 respectively. To apply the 1,1 constraint to the tensor, we unfolded the tensor in a matrix form. The first layer, which interacts directly with the input image and the last one interacting directly with the output are most sensitive to sparsity and thus we did not apply sparsity constraint.

The sizes of matrix weights was very unbalanced. Thus our strategy was to sparsify the 2 most numerous layers, i.e. the 2 nd convolutional and the 1 st linear layer with the same optimizer.

We studied the layer-wise influence of the constraint parameter η on the accuracy and the weight sparsity, defined as the percentage of weights set to zero. For comparison purposes, the weights using Adam for the two linear layers are depicted in figure 2 (top shows unstructured sparsity, bottom shows structured sparsity using PGL11).

Figure 1 represents the weight distributions using a Parzen kernel method. The top part shows that weights distributions follow a Gaussian shape for Adagrad and the Adam optimizer. The bottom part shows that weights distributions follow a Laplacian shape (thus lower entropy) for PGL1 and PGL11. Results on MNIST with a Linear fully connected Network

We used a linear fully connected network (LFC4) with an input layer of d neurons, 4 hidden layers followed by a RELU activation function and a latent layer of dimension k. Comparison with public results on MNIST using Le Net 300/100

Le Net 300/100 is a popular Linear Fully connected Network. Table III shows that our method outperforms the state-of-the-art [START_REF] Tartaglione | Learning sparse neural networks via sensitivity-driven regularization[END_REF] in terms of bytes accuracy compromise. Note that, to the best of our knowledge no results have been published in terms of FLOP reduction on this basis.

Results on Fashion MNIST using a Linear Fully connected Network. We observe a similar behavior to that of the previous experiment with the MNIST dataset. Table (IV) shows a large decrease in the global memory by a factor 9. On the other hand, we observed a decrease in the calculation cost by a factor of 9 for the 1,1 constraint and a very small decrease for the 1 constraint.

Fashion-MNIST

Results on CIFAR10

The CIFAR-10 data set is composed of 60,000 32x32 color images, 6,000 images per class, for a classification in 10 classes. The training set is made up of 50,000 images, while the remaining 10,000 are used for the testing set. We use Simplenet 3 , the highly optimized architecture [START_REF] Hasanpour | Lets keep it simple, using simple architectures to outperform deeper and more complex architectures[END_REF]. This network is composed of 13 blocks B i = (convolutional2D/Batch N ormalization/ReLU) for i = 1, .., 13 with sequences M axP ool2d/Dropout after the blocks B 4 , B 7 , B 9 , B 10 , B 12 and B 13 followed by a classifier layer. Results are reported in Figures 5 andin the Table V.

Table (V) shows a large global decrease in memory by a factor of 10. On the other hand the decrease in the calculation cost was about 30% for the 1,1 constraint and almost null for

V. DISCUSSION

To the best of our knowledge, entropy of the weights (bit/weight) as a measure of memory has never been reported in the DNN literature. Thus comparison of memory with that of previous reports is not straightforward. A more in-depth study will be performed as well as the JPEG2000 compression of the model for storage and reported in a forthcoming paper. Energy consumption is directly related to the number of instructions (Flops or MACCs) [START_REF] Grochowski | Energy per instruction trends in intel ® microprocessors[END_REF]. Thus we report MACCs rather than Flops. The experimental results with MNIST and Fashion MNIST using Lenet 300/100 showed an improvement in memory by a factor 12.9 and 8 and by a factor 3 and 2 for computational power. We obtain on CIFAR10 a good trade-off between a 0.98% drop in accuracy and a substantial improvement in memory by a factor of 8.5 in comparison with the Adam optimizer. Note that, in this paper, the different projections are not layerwise optimized. The same constraint was applied to each layer of the network. There is a priori no reason to believe that the same constraint value is adapted to the sparsification of all the layers of a network.

VI. CONCLUSION

To deal with the computational issue associated to DNNs, a lot of studies into proximal regularization methods which are time consuming have been published. In this paper, we propose an alternative constrained approach. We provide a general framework with a new projection gradient method. We designed algorithms for the classical 1 constraint and the new 1,1 constraint. Our experiments show the benefit of the Lottery optimizer that uses only one projection for deep neural network sparsification. Experiments using three popular datasets (MNIST, FASHION MNIST and CIFAR) show that our new projection method on the 1,1 constraint provides better structured sparsity resulting in a substantial decrease in the cost of memory and of computation. Furthermore, we are currently applying our method to other large Neural Networks.

Fig. 1 :Fig. 2 :

 12 Fig. 1: MNIST, Net4, Top: Distribution of convolutional layer Conv2 with Adam and Adagrad optimizers, Bottom : Distribution of the convolutional layer Conv2 with PGL1 and PGL11 optimizers

Figure 3 ,Fig. 4 :

 34 Figure 3, figure 4 and tables I and II 2 show that the main

 [START_REF] Xiao | Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms[END_REF] is a dataset from the publication by Zalando of article images consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Fashion-MNIST is to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. Fashion-MNIST and MNIST share the same image size and structure of training and testing splits.

Fig. 5 :

 5 Fig. 5: CIFAR 10 SimpleNet, MACCs as a function of η, PGL1 (red) and PGL11 (green)

TABLE I :

 I MNIST Net 4 total memory, MACCs, and accuracy

	Methods	Memory (kBytes) (k-MACCs) MACCs	Accuracy (%)
	Adam	33.64	480	99.
	PGL1 η = 80	10.9	477	99.01
	PGL11 η = 40	3.7	336	98.03
	PGL11 η = 25	2.1	122	97.4

TABLE II :

 II MNIST wth LFC4, total memory, MACCs, and accuracy

	Methods	Memory (kBytes) (k-MACCs) MACCs	Accuracy (%)
	ADAM	3989	2379	98.3
	PGL1(η = 200)	438	1960	98.29
	PGL11(η = 200)	72	150	97.7
	PGL11(η = 400)	215	480	98.07
	PGL21(η = 50)	1810	1408	98.05

TABLE III :

 III MNIST Le Net 300/100 total memory, MACCs, and accuracy

	Methods	Memory (kBytes) (k-MACCs) MACCs	Accuracy (%)
	ADAM	477	266.2	98.21
	PGL1(η = 200)	61	189	98.03
	PGL11(η = 200)	32	62	96.4
	PGL11(η = 400)	83	150	97.8
	PGL21 (η = 50)	164	257	98.1
	Tartaglione [15]	33.7	-	96.6

TABLE IV :

 IV Fashion MNIST LFC4 : Memory, MACCs, and accuracy

	Methods	Memory (kBytes) (k-MACCs) MACCs	Accuracy (%)
	ADAM	3989	2379	89.9
	PGL1(η = 400)	567	2114	89.2
	PGL11(η = 400)	131	267	87.5

TABLE V :

 V CIFAR10 total memory, and accuracy using Simplenet

	Methods	MACCs (M-MACCs) (M-Bytes) Memory	Accuracy %
	Adam	631.51	9.44	93.8
	PGL1 (η = 13000)	626.08	1.45	91.12
	PGL11(η = 14000)	441	0.86	91

https://jpeg.org/jpeg2000/index.html

The projections PGL1, PGL11 and PGL21 being different, the impact of the projection parameter η is different on each of them. When comparing the projections (tables II and III), we provide parameter η such that the models PGL1, PGL11 and PGL21 have a similar accuracy.

constraint (Figure5). 3 https://github.com/Coderx7/SimpleNet_Pytorch

Acknowledgement The authors would like to thank Antonin Chambolle for his contribution to the theoretical background of the 1,1 "projection".