
HAL Id: hal-02556382
https://hal.science/hal-02556382v2

Preprint submitted on 16 Sep 2020 (v2), last revised 28 Oct 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Sparse deep neural networks using efficient
structured projections on convex constraints for green

AI
Frederic Guyard, Michel Barlaud

To cite this version:
Frederic Guyard, Michel Barlaud. Learning Sparse deep neural networks using efficient structured
projections on convex constraints for green AI. 2020. �hal-02556382v2�

https://hal.science/hal-02556382v2
https://hal.archives-ouvertes.fr

Learning Sparse deep neural networks using
efficient structured projections on convex constraints

for green AI
Michel Barlaud
Laboratoire I3S

Cote d’Azur University
Sophia Antipolis, France

Email: michel.barlaud@i3s.unice.fr

Frédéric Guyard
Orange Labs

Sophia Antipolis, France
Email:frederic.guyard@orange.com

Abstract—In recent years, deep neural networks (DNN) have
been applied to different domains and achieved dramatic per-
formance improvements over state-of-the-art classical methods.
These high performances for DNNs were however often obtained
with networks containing millions of parameters and for which
training required heavy computational power. In order to cope
with this computational issue a huge literature deals with proxi-
mal regularization methods which are time consuming.
In this paper, we propose a constrained approach instead. We
provide the general framework for our new projection gradient
method. Our algorithm iterates a gradient step and a projection
on convex constraints. We study algorithms for different con-
straints: the classical `1 unstructured constraint and structured
constraints such as the `2,1 constraint (Group LASSO). We
propose a new `1,1 structured constraint for which we provide
a new projection algorithm. Finally, we use the recent "Lottery
optimizer" replacing the threshold by our `1,1 projection. We
demonstrate the effectiveness of our method on three popular
datasets (MNIST, Fashion MNIST and CIFAR). Experiments on
these datasets show that our projection method with our new
`1,1 structured constraint provides the best reduction of memory
and computational power.

I. MOTIVATION

In recent years, deep neural networks have been applied to
different domains and achieved dramatic accuracy improve-
ments in image recognition [31], speech recognition [41]
or natural language processing [43]. These works rely on
deep networks with millions or even billions of parameters.
For instance, the original training of ResNet-50 [25] (image
classification) contains 25.6M parameters and required 29 hours
of processing using 8 GPUs. Storing the model requires 98MB.
The memory cost of the inference on a single 224x224 image
is about 103MB and 4 GFLOPs are needed [5]. The recent
development of DNNs, hardware accelerators like GPUs and
the availability of deep learning frameworks for smartphones
[29] suggest seamless transfer of DNN models trained on
servers onto mobile devices. However, it turns out that memory
[45] and energy consumption [20] are still the main bottlenecks
on running DNNs on such devices.
Thus computational cost has an impact on carbon footprint.
The authors of [50] argued that this trend is environmentally

unfriendly. The authors of [47] advocate a practical solution
by making an efficient evaluation criterion.
In this paper, we propose a new splitting projection-gradient
method with an efficient structured constraint to cope with these
computational and memory issues. In the formulation of our
method, a constraint defines a convex set and the regularization
is replaced by a projection onto this convex set. The benefits
of this formulation are twofold. Firstly, the constraint has a
direct geometric interpretation whereas the impact of parameter
values in traditional regularization methods are more difficult
to understand. Secondly, the convergence of this new method
is formally proved.
The paper is organized as follows. We first present related works
in Section II, then in Section III, we develop the theoretical
background of our constrained projection method. In Section IV,
we give experimental comparisons between methods. The
tests involve several datasets with different neural network
architectures.

II. RELATED WORKS

Weights sparsification

It is well known [11] that DNN models are largely over-
parametrized and that in practice, relatively few network
weights are actually necessary to accurately learn data features.
Based on this result, numerous methods have been proposed in
order to remove network weights (weight sparsification) either
on pre-trained models or during the training phase. A basic
idea to sparsify the weights of the neural network is to use the
Least Absolute Shrinkage and Selection Operator (LASSO)
formulation [52], [23], [16], [24], [1]. The `1 penalty added to
the classification cost can be interpreted as a convexification of
the `0 penalty [12]. In [21], weights with the smallest amplitude
in pre-trained networks are removed. Model sensitivity to
weights can also be used [51], [18]. where weights with weak
influence on network output are pruned. Constraint optimization
is used in [6] in order to learn sparse networks with `0, `1 or
`2 constraints on the weights.

These methods generally produce networks with random
sparse connectivity, i.e. high-dimensional but sparse weight

matrices. They only partially reduce the computational demand
since they result in networks with sparse weight matrices,
requiring the availability of sparse matrix multiplication to
effectively take advantage of the sparsity. Decreasing both
memory and computational requirements can however be
achieved by suppressing neurons instead of weights. This
approach is frequently referred to as structured sparsification
or neuron level sparsification. The two main approaches for
structured sparsity are based on group regularization and low-
rank factorization.
Many regularizing techniques have been proposed to allow
structured sparsification. Pruning methods are sparsifying
pre-trained networks. Filters in CNN are pruned based on
the `1 norm of their kernel weights [33]. [26] performs
channel pruning using LASSO regression and least squared
reconstruction. Neurons are pruned based on the average
percentage of zeros (APoZ) after the ReLU activation [27].

Learning structured sparse DNNs using regularization methods

In contrast to the case of weight sparsification, neuron level
sparsification introduces a new challenge forcing to adopt other
types of regularization.
The most common approaches are based on group LASSO `2,1
[57] or on sparse group LASSO `2,1 + `1 [16] regularization.

Numerous other methods include regularization during the
training of the DNN. It is customary in DNN learning to
train networks with Stochastic Gradient Descent (SGD) with
momentum, even in the case where non-smooth penalization
are used [46]. Group LASSO regularization is used, in [46],
[54]. Group LASSO and filter decorrelation regularization are
used in order to discard CNN filters in [17]. Group LASSO
and group variance regularization are used in [53].

In order to deal with non-smooth `1 regularization,
subgradient descent is used in [37]. Here, structured
sparsification is performed without group regularization.
The idea is to scale neurons output with a given factor λi and
apply `1 regularization to push the various factors λi towards 0.

Fully connected layers can be represented by their weights
matrix (i.e. 2d tensor) whereas convolutional layers correspond
to 4d tensors. One of the popular compression methods
for DNN is nuclear regularization (Nuclear norm penalty)
[8]. Nuclear norm penalty was successfully used in matrix
low rank approximation [8], matrix completion [59], matrix
factorization [7] and DNN dropout modeling [49].

Learning structured sparse DNNs using proximal regularization
methods

A different approach is however based on optimization under
convex constraint where proximal methods are the most natural
tools. Let’s recall the proximal operator of a function f(x)
[39]:

proxτf (x̄) := arg min
x
f(x) +

‖x− x̄‖2

2τ
, (1)

Let W be the weight matrix of a neural network, L(W) be a
gradient Lipschitz loss and R(w) be a convex penalty. Lets
define the penalty criterion by minW L(W) + λR(W). This
criterion can be minimized using a classical forward-backward
method belonging to the class of splitting methods [35], [9],
[40], [48]. Using SGD with penalization is limited and time
consuming due to the tuning of the corresponding penalization
hyper-parameters [23], [38].
Proximal gradient descent with group LASSO constraint
is used in [62] and in [2]. In [28], the output neurons is
scaled using a factor λi and accelerated proximal gradient
is used with `1 constraint to push as many coefficients λi
towards 0 without significantly decreasing the performance. In
[56], neuron sparsification is realized with proximal gradient
descent with group LASSO constraint and an additional `1,2
constraint (Exclusive Sparsity) enforces neurons to fit disjoint
sets of features. Similarly, in [61] proximal gradient descent
with group OWL constraint (grOWL [42]) is used in order
to simultaneously sparsify neurons and enforce parameter
sharing. Proximal gradient descent is also used in [60] where
Ordered Weighted `1 regularization (OWL [14]) allowing to
simulatenously sparsify weights and optimize weight sharing.
In [34], filters in CNN layers are pruned by solving an
optimization problem using a dedicated optimizer with either
group LASSO or `2,0 regularization.

Goal of the work

Classical Learning structured sparse DNNs are based on
proximal regularization methods. In this paper, we propose an
alternative constrained approach that takes advantage of an
available efficient projection on the `1-ball [10], [13], [44],
projection on the `2,1 ball [36], [4] and a new `1,1 projection
proposed in this paper.

III. LEARNING SPARSE DNN

A Projection gradient algorithm for constrained learning

In this work, we propose a constrained approach where the
constraint is directly related to the number of zero-weights.
Moreover it takes advantage of an available efficient projection
on the `1-ball [10], [44].
Let L(W) be a gradient Lipschitz loss, R(w) be a convex
constraint, and C its convex set. Lets define the following
criterion

min
W

L(W) s.t. R(W) 6 η (2)

where the scalar η > 0 is the constraint parameter. We use a
splitting gradient-projection method to minimize this criterion
based on the following forward-backward scheme to generate
a sequence of iterates [3]:

Vn := Wn − γ∇L(Wn), (3)
Wn+1 := proj(Vn) + εn, (4)

where proj denotes the projection on the convex constraint.
We can therefore apply the algorithm to any constraint for

which an exact or approximate projection can be computed.
We derive the following algorithm

Algorithm 1 Splitting gradient-projection algorithm where
∇L(W) is provided by the net and proj(ηV) is the projection
on the constraint

Input: X,Y,W0, N, γ, η
for n = 1, . . . , N do
V ←W − γ · ∇L(W)
W ← proj(ηV)

end for
Output: W

Optimizer with structured constraints

In the case of the constraint R(w) = ‖wi‖1, efficient
algorithms have been proposed [10], [44]. Unfortunately this
`1 constraint does not induce a sparse structure.

Classical Optimizer with `2,1 norm constraint (Group
LASSO): The Group LASSO was first introduced in [58]. The
main idea of Group LASSO is to enforce model parameters
for different classes to share features. Group sparsity reduces
complexity by eliminating entire features. Group LASSO
consists in using the `2,1 norm for the constraint on W . The
row-wise `2,1 norm of a d × k matrix W (whose rows are
denoted wi, i = 1, d) is defined as follows:

‖W‖2,1 :=

d∑
i=1

‖wi‖.

We use the following approach proposed in [4] to compute the
projection W of a d× k matrix V (whose rows are denoted
vi, i = 1, d) on the `2,1-ball of radius η: compute ti which is
the projection of the vector (‖vi‖i)di=1 on the `1 ball of Rn of
radius η; then, each row of the projection is obtained according
to

wi =
tivi

max{ti, ‖vi‖}
, i = 1, . . . , d.

This last operation is denoted as Wi := proj`2(Vi, ti) in
Algorithm 2.

Algorithm 2 Projection on the `2,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η

Input: V, η
t := proj`1((‖vi‖i)di=1, η)
for i = 1, . . . , d do
wi := proj`2(vi, ti)

end for
Output: W

This algorithm requires the projection of the vector (‖vi‖i)di=1

on the `1 ball of Rn of radius η whose complexity is only
O(d×log(d)). We can note that another approach was proposed
in [36]. The main drawback of their method is to compute the
roots of an equation using bisection, which is quite slow.

A new optimizer with an adaptive weighted `1,1 norm
constraint: The "sparsification" of a matrix A ∈ Rm×n

consists in finding a matrix B ∈ Rm×n

(i) with as many 0 components as possible (memory foot-
print decrease),

(ii) with as many vanishing columns as possible (both
MACCs and memory footprint decrease),

(iii) without degrading too much the performance of the
network.

The matrix A defines a mapping A : Rn 7→ Rm. In order
to avoid degrading too much the performance of the network,
it can be required that, for each layer, the matrix A is replaced
with a sparsified version B such that, for any x ∈ Rn

∗ , the
value of ‖ (A−B)x ‖ is as small as possible for a given norm.
The goal is to find a matrix B : Rn 7→ Rm with much more
vanishing components than in the matrix A, thus it is convenient
to impose the constraint

∑n
i=1 ‖ Bi ‖1<

∑
i=1 ‖ Ai ‖1 where

Bi and Ai are the i th column of matrices B and A respectively.
Let’s recall the induced operator norm of A−B in `1 domain
with `1 co-domain

‖ A−B ‖1,1=

(
sup
‖x‖1=1

‖ (A−B) · x ‖1

)
(5)

which is computed as the maximum `1 norm of a columns of
A−B . We therefore consider the following problem

B∗ = argmin∑n
i=1‖Bi‖1=β

(
sup
‖x‖1=1

‖ (A−B) · x ‖1

)
(6)

It is possible to show the following result:

Theorem 1 Let A = (A1 · · · An) be a Rm×n matrix. Assume
w.l.o.g. that A1 > A2 > · · · > An−1 > An. For an optimal
solution B∗ for (6), there exists p ∈ {0, · · · , n} such that

(i) For i = 0, · · · , p, Ai −Bi∗ = Ap −Bp∗
(ii) For i > p, Bi∗ = 0

Applying Theorem 1 to (6) we obtain the following algorithm:
we first compute the radius ti and then project the rows using
`1 adaptive constraint ti:

Algorithm 3 Projection on the `1,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η

Input: V, η
t := proj`1((‖vi‖1)di=1, η)
for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W

Lottery optimizer

Following the work of Frankle and Carbin [15], [63]
proposed a simple algorithm for finding sparse sub-networks
within larger networks that are trainable from scratch. Their
approach to finding these sparse networks is as follows:

after training a network, set all weights smaller than some
threshold to zero, rewind the rest of the weights to their initial
configuration, and then retrain the network from this starting
configuration but with the zero weights frozen (not trained).
We replaced the thresholding by our `1,1 projection and devised
the following algorithm:

Algorithm 4 Projection on the `1,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η,∇L(W,M0) is the masked
gradient with binary mask M0, and f is the ADAM optimizer,
γ is the learning rate

Input: W∗, γ, η
for n = 1, . . . , N(epochs) do
V ← f(W,γ,∇L(W))

end for
t := proj`1((‖vi‖1)di=1, η)
for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W,M0

Input: W∗
for n = 1, . . . , N(epoch) do
W ← f(W,γ,∇L(W,M0))

end for
Output: W

IV. EXPERIMENTAL RESULTS

We used the pytorch framework to implement our sparse
learning method using a constrained approach. We chose
the Adam optimizer [30], a standard optimizer in PyTorch
as baseline comparison to our optimizer with `1 and `2,1
constraints.
We denote as "PGL1", the algorithm with `1 constraint,
"PGL21", the algorithm with `2,1 constraint and "PGL11"
the algorithm with `1,1 constraint.
We use the entropy (bit/weight) of the weights distributions
to compute estimations of the models storage memory cost.
To this end, the weights can for instance be coded using
JPEG20001 an image coding system that uses state-of-the-art
compression techniques based on wavelet theory. The classical
computational cost evaluates FLOPs (floating point operations)
as a measure. When using FLOPs, additions (accumulates)
and multiplications are counted separately. However, a lot of
hardware can compute multiply-add operations in a single
instruction. We therefore use MACCs (multiply-accumulate
operations) as computational cost for which one multiplication
and one addition are counted as a single instruction. We
provide the results in normalized bytes and MACCs: we divide
the number of bytes or MACCs by the number of bytes or
MACCs obtained with Adam (i.e. without constraint). For all
experiments we use Algorithm 4. Computation is performed on
a Cocolink Klimax 210 HPC with 10 GPUs (Nvidia Quadro
P6000, P100 and GeForce GTX 1080).

1https://jpeg.org/jpeg2000/index.html

Results on MNIST with a convolutionnal Network

We selected the popular MNIST dataset [32] containing
28× 28 grey-scale images of handwritten digits of 10 classes
(from 0 to 9). This dataset consists of a training set of 60,000
instances and a test set of 10,000 instances.
We consider a neural network with two convolutional layers
and two linear layers denoted as Net4. The size of its weight
matrices are (1× 10× 5× 5), (10× 20× 5× 5), (320× 50)
and (50× 10) respectively. Thus the total number of elements
of these weight matrices are 250, 5000, 16000 and 500
respectively.
To apply the `1,1 constraint to the tensor, we unfold the tensor
in a matrix form. The first layer, which interacts directly with
the input image and the last one interacting directly with the
output are most sensitive to sparsity and thus we do not apply
sparsity constraint.

The sizes of matrix weights are very unbalanced. Thus our
strategy is to sparsify the 2 most numerous layers, i.e. the 2nd

convolutional and the 1st linear layer with the same optimizer.

We study the layerwise influence of the constraint parameter
η on the accuracy and the weight sparsity, defined as the
percentage of weights set to zero. For comparison purposes,
the weights using Adam for the two linear layers are depicted
in figure 2 (top shows unstructured sparsity, bottom shows
structured sparsity using PGL11).

Fig. 1: MNIST, Net4, Top: Distribution of convolutional
layer Conv2 with Adam and Adagrad optimizers, Bottom :
Distribution of convolutional layer Conv2 with PGL1 and
PGL11 optimizers

(Fig. 1) represents the weight distributions using a Parzen
kernel method. The top part shows that weights distributions
follow a Gaussian shape for Adagrad and Adam optimizer.
The bottom part shows that weights distributions follow a

Laplacian shape (thus lower entropy) for PGL1 and PGL11.

Fig. 2: Visualization for weight matrices: Top of the two linear
layers of Net4 with Adam and weights thresholding shows
unstructured sparsity. Bottom with structured optimizer: Layer
Linear1 exhibits a high structured sparsity.

Fig. 3: MNIST with Net4: Top: Accuracy, Bottom: MACCS

TABLE I: MNIST Net 4 total memory, MACCs, and accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

Adam 33.64 480 99.
PGL1 η = 80 10.9 477 99.01
PGL11 η = 40 3.7 336 98.03
PGL11 η = 25 2.1 122 97.4

Results on MNIST with a Linear fully connected Network

We used a linear fully connected network (LFC4) with an
input layer of d neurons, 4 hidden layers followed by a RELU
activation function and a latent layer of dimension k.

Fig. 4: MNIST with LFC4: Top: Accuracy, Bottom: MACCS

TABLE II: MNIST wth LFC4, total memory, MACCs, and accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

ADAM 3989 2379 98.3
PGL1(η = 200) 438 1960 98.29

PGL11(η = 200) 72 150 97.7
PGL11(η = 400) 215 480 98.07
PGL21(η = 50) 1810 1408 98.05

Figure 3, Figure 4 and tables I and II show that the main
advantage of our method using the `1,1 constraint over `1 is the
reduction of the calculation cost (MACCs) by a factor 14 when
using LFC4 network which is crucial for low capacity devices
such as smartphones. Note that performance in MACCs using
the `2,1 constraint is intermediate between the use of `1 and
`1,1.

Comparison with public results on MNIST using Le Net 300/100

TABLE III: MNIST Le Net 300/100 total memory, MACCs, and
accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

ADAM 477 266.2 98.21
PGL1(η = 200) 61 189 98.03

PGL11(η = 200) 32 62 96.4
PGL11(η = 400) 83 150 97.8
PGL21 (η = 50) 164 257 98.1
Tartaglione [51] 33.7 - 96.6

Le Net 300/100 is a popular Linear Fully connected Network.
The table III shows that our method outperforms the state of
the art [51] in terms of bytes accuracy compromise. Note that,
to the best of our knowledge no results have been published
in terms of FLOP reduction on this basis.

Results on Fashion MNIST using a Linear Fully connected
Network.

Fashion-MNIST [55] is a dataset of Zalando’s article images
consisting of a training set of 60,000 examples and a test set
of 10,000 examples. Each example is a 28x28 grayscale image,
associated with a label from 10 classes. Fashion-MNIST is to
serve as a direct drop-in replacement for the original MNIST
dataset for benchmarking machine learning algorithms. Fashion-
MNIST and MNIST share the same image size and structure
of training and testing splits.

Fig. 5: Fashion MNIST with LFC4:Top Accuracy , Bottom
MACCs

TABLE IV: Fashion MNIST LFC4 : Memory, MACCs, and accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

ADAM 3989 2379 89.9
PGL1(η = 400) 567 2114 89.2

PGL11(η = 400) 131 267 87.5

We observe a behaviour similar to the previous experience
on MNIST dataset. Table (IV) shows a large global memory
reduction by a factor 9. On the other hand, we observe reduction
of the calculation cost by a factor 9 for `1,1 constraint and
very small for `1 constraint.

Results on CIFAR10

The CIFAR-10 data set is composed of 60,000 32x32
colour images, 6,000 images per class, for a classification

in 10 classes. The training set is made up of 50,000 images,
while the remaining 10,000 are used for the testing set.
We use Simplenet2, the highly optimized architecture [22].
This network is composed of 13 blocks Bi =
(convolutional2D/BatchNormalization/ReLU) for
i = 1, .., 13 with sequences MaxPool2d/Dropout after the
blocks B4, B7, B9, B10, B12 and B13 followed by a classifier
layer. Results are reported in Figures 7 and in the Table V.

Fig. 6: SimpleNet, weight size for each layer

Fig. 7: CIFAR 10 SimpleNet, MACCs as a function of η, PGL1
(red) and PGL11 (green)

TABLE V: CIFAR10 total memory, and accuracy using Simplenet

Methods MACCs Memory Accuracy
(M-MACCs) (M-Bytes) %

Adam 631.51 9.44 93.8
PGL1 (η = 13000) 626.08 1.45 91.12
PGL11(η = 14000) 441 0.86 91

Table (V) show a large global memory reduction by a factor
10. On the other hand of the calculation cost the reduction is

2https://github.com/Coderx7/SimpleNet_Pytorch

https://github.com/Coderx7/SimpleNet_Pytorch

about 30% for `1,1 constraint and almost null for `1 constraint
(Figure 7).

V. DISCUSSION

To the best of our knowledge, entropy of the weights
(bit/weight) as a measure of memory was never reported in
the DNN literature. Thus memory comparison with previous
results is not straightforward. A more in depth study will be
performed as well as the JPEG2000 compression of the model
for storage in a forthcoming paper.
Energy consumption is directly related to the number of
instructions (Flops or MACCs) [19]. Thus we report MACCs
rather than Flops. Experimental results show, as expected, that
our new `1,1 norm constraint is more efficient for structured
sparsity and thus MACCs reduction than `1 constraint.
Experimental results on MNIST and Fashion MNIST using
Lenet 300/100 show a memory improvement by a factor 12.9
and 8 and a computational improvement by a factor 3 and 2
of computational power respectively. We obtain on CIFAR10 a
good trade-off between 0.98% accuracy drop and large storage
memory improvement by a factor 8.5 in comparison with the
Adam optimizer.
Algorithm 4 for projecting a matrix on the constraint
`1,1 can be extended to the projection of a tensor on
generalized constraints of the form `1,1,1,···. A straightforward
improvement could be obtained using layer-wise adaptive
constraints (η).

Remark that, in this paper, the various projections are not
layer-wise optimized. The same constraint is applied to each
layer of the network. There are a priori no reasons to believe
that the same constraint value is adapted to the sparsification
of all the layers of a network. In particular, layers with large `1
norm may need small constraint value η in order to significantly
decrease the MACCs whereas such small η may be detrimental
to other layers with small `1 norm. This leaves place for
further optimization where the size of the constraint is layer-
wise dependant. This layer-wise adaptation will be investigated
in a forthcoming study.

VI. CONCLUSION

In order to cope with the computational issue associated
to DNNs, a huge literature deals with proximal regularization
methods which are time consuming. In this paper, we propose
an alternative constrained approach. We provide a general
framework of our new projection gradient method. We design
algorithms for the classical `1 constraint and the new `1,1
constraint. Our experiments show the benefits of Lottery
optimizer which uses only one projection for deep neural
networks sparsification. Experiments on three popular datasets
(MNIST, FASHION MNIST and CIFAR) show that our
new projection method on the `1,1 constraint provides better
structured sparsity resulting in high reduction of memory cost
and computational cost.
Furthermore, we are currently applying our method to other
large Neural Networks.

REFERENCES

[1] A Ali and R Tibshirani. The generalized lasso problem and uniqueness.
Electronic Journal of Statistics, 13(2):2307–2347, 2019.

[2] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons
in deep networks. In Advances in Neural Information Processing Systems,
pages 2270–2278, 2016.

[3] Michel Barlaud, Wafa Belhajali, Patrick L. Combettes, and Lionel Fillatre.
Classification and regression using an outer approximation projection-
gradient method. volume 65, pages 4635–4643, 2017.

[4] Michel Barlaud, Antonin Chambolle, and Jean-Baptiste Caillau. Robust
supervised classification and feature selection using a primal-dual method.
arXiv cs.LG/1902.01600, 2019.

[5] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of
deep neural network models for practical applications. arXiv 1605.07678,
2016.

[6] Miguel Á. Carreira-Perpiñán and Yerlan Idelbayev. Learning-compression
algorithms for neural net pruning. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[7] Jacopo Cavazza, Pietro Morerio, Benjamin Haeffele, Connor Lane,
Vittorio Murino, and Rene Vidal. Dropout as a low-rank regularizer for
matrix factorization. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 435–444, 2018.

[8] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model com-
pression and acceleration for deep neural networks. arXiv:1710.09282,
2017.

[9] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal
processing. In Fixed-point algorithms for inverse problems in science
and engineering, pages 185–212. Springer, 2011.

[10] L. Condat. Fast projection onto the simplex and the l1 ball. Mathematical
Programming Series A, 158(1):575–585, 2016.

[11] Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al.
Predicting parameters in deep learning. In Advances in neural information
processing systems, pages 2148–2156, 2013.

[12] D. L. Donoho and M. Elad. Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization. Proceedings of the
National Academy of Sciences, 100(5):2197–2202, 2003.

[13] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient
projections onto the l 1-ball for learning in high dimensions. In
Proceedings of the 25th international conference on Machine learning,
pages 272–279. ACM, 2008.

[14] Mario Figueiredo and Robert Nowak. Ordered weighted l1 regularized
regression with strongly correlated covariates: Theoretical aspects. In
Artificial Intelligence and Statistics, pages 930–938, 2016.

[15] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In International Conference
on Learning Representations, 2019.

[16] J. Friedman, T. Hastie, and R. Tibshirani. Regularization path for
generalized linear models via coordinate descent. Journal of Statistical
Software, 33:1–122, 2010.

[17] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A note on the
group lasso and a sparse group lasso. arXiv preprint arXiv:1001.0736,
2010.

[18] Aidan N Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal, and Geoffrey E
Hinton. Learning sparse networks using targeted dropout. arXiv
:1905.13678, 2019.

[19] E Grochowski and M Annavaram. Energy per instruction trends in intel
® microprocessors. 2006.

[20] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. Ese: Efficient
speech recognition engine with sparse lstm on fpga. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 75–84. ACM, 2017.

[21] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems, pages 1135–1143, 2015.

[22] Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, and
Mohammad Sabokrou. Lets keep it simple, using simple architectures
to outperform deeper and more complex architectures. arXiv preprint
arXiv:1608.06037, 2016.

[23] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization
path for the support vector machine. Journal of Machine Learning
Research, 5:1391–1415, 2004.

[24] T. Hastie, R. Tibshirani, and M. Wainwright. Statistcal learning with
sparsity: The lasso and generalizations. CRC Press, 2015.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778, 2016.

[26] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating
very deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1389–1397, 2017.

[27] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network
trimming: A data-driven neuron pruning approach towards efficient deep
architectures. arXiv preprint arXiv:1607.03250, 2016.

[28] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection
for deep neural networks. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 304–320, 2018.

[29] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim
Hartley, and Luc Van Gool. AI benchmark: Running deep neural networks
on android smartphones. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 0–0, 2018.

[30] D Kingma and J Ba. a method for stochastic optimization. International
Conference on Learning Representations , pages=1–13, year=2015,.

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[32] Yann LeCun. The mnist database of handwritten digits. http://yann.
lecun. com/exdb/mnist/.

[33] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710,
2016.

[34] Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li.
Toward compact convnets via structure-sparsity regularized filter pruning.
IEEE transactions on neural networks and learning systems, 2019.

[35] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two
nonlinear operators. SIAM Journal on Numerical Analysis, 16(6):964–979,
1979.

[36] Jun Liu, Shuiwang Ji, and Jieping Ye. Multi-task feature learning via
efficient l2, 1-norm minimization. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages
339–348. AUAI Press, 2009.

[37] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan,
and Changshui Zhang. Learning efficient convolutional networks through
network slimming. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2736–2744, 2017.

[38] J. Mairal and B. Yu. Complexity analysis of the lasso regularization
path. In Proceedings of the 29th International Conference on Machine
Learning (ICML-12), pages 353–360, 2012.

[39] J.J Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc.Math.
France., 93, pages 273–299, 1965.

[40] S. Mosci, L. Rosasco, M. Santoro, A. Verri, and S. Villa. Solving
structured sparsity regularization with proximal methods. In Machine
Learning and Knowledge Discovery in Databases, pages 418–433.
Springer, 2010.

[41] Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and
Khaled Shaalan. Speech recognition using deep neural networks: A
systematic review. IEEE Access, 7:19143–19165, 2019.

[42] Urvashi Oswal, Christopher Cox, Matthew Lambon-Ralph, Timothy
Rogers, and Robert Nowak. Representational similarity learning with
application to brain networks. In International Conference on Machine
Learning, pages 1041–1049, 2016.

[43] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the
usages of deep learning in natural language processing. arXiv:1807.10854,
2018.

[44] Guillaume Perez, Michel Barlaud, Lionel Fillatre, and Jean-Charles Régin.
A filtered bucket-clustering method for projection onto the simplex and
the `1-ball. Mathematical Programming, May 2019.

[45] S Rallapalli, H Qiu, A Bency, S Karthikeyan, R Govindan, B Manjunath,
and R Urgaonkar. Are very deep neural networks feasible on mobile
devices. IEEE Trans. Circ. Syst. Video Technol, 2016.

[46] Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio
Uncini. Group sparse regularization for deep neural networks. Neuro-
computing, 241:81–89, 2017.

[47] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green
ai, 2019.

[48] S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning.
MIT Press, 2012.

[49] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[50] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and
policy considerations for deep learning in nlp. In ACL, 2019.

[51] Enzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, and Gianluca Francini.
Learning sparse neural networks via sensitivity-driven regularization. In
Advances in Neural Information Processing Systems, pages 3878–3888,
2018.

[52] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), pages 267–288,
1996.

[53] Amirsina Torfi, Rouzbeh A Shirvani, Sobhan Soleymani, and Nasser M
Nasrabadi. Attention-based guided structured sparsity of deep neural
networks. arXiv preprint arXiv:1802.09902, 2018.

[54] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
Learning structured sparsity in deep neural networks. In Advances
in neural information processing systems, pages 2074–2082, 2016.

[55] Han Xiao, K Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv
cs.LG/1708.07747, 2017.

[56] Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive
sparsity for deep neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3958–3966. JMLR.
org, 2017.

[57] Ming Yuan and Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 68(1):49–67, 2006.

[58] Ming Yuan and Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 68(1):49–67, 2006.

[59] D. Zhang, Y. Hu, J. Ye, X Li, and X He. Matrix completion by truncated
nuclear norm regularization. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, June 2012.

[60] Dejiao Zhang, Julian Katz-Samuels, Mário AT Figueiredo, and Laura
Balzano. Simultaneous sparsity and parameter tying for deep learning
using ordered weighted `1 regularization. In 2018 IEEE Statistical Signal
Processing Workshop (SSP), pages 65–69. IEEE, 2018.

[61] Dejiao Zhang, Haozhu Wang, Mario Figueiredo, and Laura Balzano.
Learning to share: Simultaneous parameter tying and sparsification in
deep learning. 2018.

[62] Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more: Towards
compact cnns. In European Conference on Computer Vision, pages
662–677. Springer, 2016.

[63] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstruct-
ing lottery tickets: Zeros, signs, and the supermask. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages
3597–3607. Curran Associates, Inc., 2019.

	Motivation
	Related Works
	Weights sparsification
	Learning structured sparse DNNs using regularization methods
	Learning structured sparse DNNs using proximal regularization methods
	Goal of the work

	Learning sparse DNN
	 A Projection gradient algorithm for constrained learning
	 Optimizer with structured constraints
	Classical Optimizer with 2,1 norm constraint (Group LASSO)
	A new optimizer with an adaptive weighted 1,1 norm constraint

	Lottery optimizer

	Experimental results
	Results on MNIST with a convolutionnal Network
	Results on MNIST with a Linear fully connected Network
	Comparison with public results on MNIST using Le Net 300/100
	Results on Fashion MNIST using a Linear Fully connected Network.
	Results on CIFAR10

	Discussion
	Conclusion
	References

