
HAL Id: hal-02556382
https://hal.science/hal-02556382v1

Preprint submitted on 28 Apr 2020 (v1), last revised 28 Oct 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Sparse deep neural networks using efficient
structured projections on convex constraints for green

AI
Michel Barlaud, Frederic Guyard

To cite this version:
Michel Barlaud, Frederic Guyard. Learning Sparse deep neural networks using efficient structured
projections on convex constraints for green AI. 2020. �hal-02556382v1�

https://hal.science/hal-02556382v1
https://hal.archives-ouvertes.fr

Learning Sparse deep neural networks using
efficient structured projections on convex constraints

for green AI
Michel Barlaud
Laboratoire I3S

Cote d’Azur University
Sophia Antipolis, France

Email: michel.barlaud@i3s.unice.fr

Frederic Guyard
Orange Labs

Sophia Antipolis, France
Email:frederic.guyard@orange.com

Abstract—In recent years, deep neural networks (DNN) have
been applied to different domains and achieved dramatic per-
formance improvements over state-of-the-art classical methods.
These performances of DNNs were however often obtained with
networks containing millions of parameters and which training
required heavy computational power. In order to cope with
this computational issue a huge literature deals with proximal
regularization methods which are time consuming.
In this paper, we propose instead a constrained approach. We
provide the general framework for our new splitting projection
gradient method. Our splitting algorithm iterates a gradient step
and a projection on convex constraints. We study algorithms
for different constraints: the classical `1 unstructured constraint
and structured constraints such as the nuclear norm, the `2,1
constraint (Group LASSO). We propose a new `1,1 structured
constraint for which we provide a new projection algorithm.
Finally we use the recent "Lottery optimizer" replacing the
thresholding by our `1,1 projection. We demonstrate the effective-
ness of our method on three popular datasets (MNIST, Fashion
MNIST and CIFAR). Experiments on these datasets show that
our projection method with our new `1,1 structured constraint
provides the best reduction of memory and computational power.
Experiments show that fully connected linear DNN are more
efficient for memory and MACCs reduction thus for green AI.

I. MOTIVATION

In recent years, deep neural networks have been applied to
different domains and achieved dramatic accuracy improve-
ments in image recognition [33], speech recognition [44]
or natural language processing [46]. These works rely on
deep networks with millions or even billions of parameters.
For instance, the original training of ResNet-50 [26] (image
classification) contains 25.6M parameters and required 29 hours
using 8 GPUs. Storing the model requires 98MB. The memory
cost of the inference on a single 224x224 image is about
103MB and 4 GFLOPs are needed [6]. The recent development
of DNNs hardware accelerators like GPUs and the availability
of deep learning frameworks for smartphones [30] suggest
seamless transfer of DNNs models trained on servers onto
mobile devices. However, it turns out that memory [48] and
energy consumption [21] are still the main bottlenecks on
running DNNs on such devices.
Thus computational cost has an impact on carbon footprint.

The authors of [53] argued that this trend is environmentally
unfriendly. The authors of [50] advocate a practical solution
by making an efficient evaluation criterion.
In this paper, we propose a new splitting projection-gradient
method with an efficient structured constraint to cope with
these computational and memory issues. In the formulation
of our method, a constraint defines a convex set and the
regularization is replaced by a projection onto this convex set.
The benefits of this formulation are twofold. The constraint
has a direct geometric interpretation whereas the impact of
parameter values in traditional regularization methods are more
difficult to understand. Furthermore, the convergence of this
new method is formally proved.
The paper is organized as follows. We first present related works
in Section II, then we develop in Section III the theoretical
background of our constrained projection method. In Section IV,
we give experimental comparisons between methods. The
tests involve several datasets with different neural network
architectures.

II. RELATED WORKS

Weights sparsification

It is well known [12] that DNN models are largely over-
parametrized and that in practice, relatively few network
weights are actually necessary to learn accurately data features.
Based on this result, numerous methods have been proposed in
order to remove network weights (weight sparsification) either
on pre-trained models or during the training phase. A basic
idea to sparsify the weights of the neural network is to use the
Least Absolute Shrinkage and Selection Operator (LASSO)
formulation [55], [24], [17], [25], [1]. The `1 penalty added to
the classification cost can be interpreted as a convexification of
the `0 penalty [13]. In [22], weights with the smallest amplitude
in pre-trained networks are removed. Model sensitivity to
weights can also be used [54], [19]. where weights with weak
influence on network output are pruned. Constraint optimization
is used in [7] in order to learning sparse networks with `0, `1
or `2 constraints on the weights.

These methods generally produce networks with random
sparse connectivity, i.e. high-dimensional but sparse weight
matrices. They reduce only partially the computational demand
since they result in networks with sparse weight matrices,
requiring the availability of sparse matrix multiplication to
effectively take advantage of the sparsity. Decreasing both mem-
ory and computation requirements can however be achieved
by suppressing neurons instead of weights. This approach is
frequently referred to as structured sparsification or neuron
level sparsification. The two main approaches for structured
sparsity are based on group regularization and low-rank
factorization.
Many regularizing techniques have been proposed to allow
structured sparsification. Pruning methods are sparsifying pre-
trained networks. For instance, in [35] filters in CNN are pruned
based on the `1 norm of their kernel weights, [27] performs
channel pruning using LASSO regression and least squared
reconstruction or [28] where neurons are pruned based on the
average percentage of zeros (APoZ) after the ReLU activation.

Learning structured sparse DNNs using regularization methods

In contrast to the case of weight sparsification, neuron level
sparsification introduces a new challenge forcing to adopt other
types of regularization.
The most common approaches are based on group LASSO `2,1
[60] or on sparse group LASSO `2,1 + `1 [17] regularization.

Numerous other methods include regularization during the
training of the DNN. It is customary in DNN learning to
train networks with Stochastic Gradient Descent (SGD) with
momentum, even in the case where non-smooth penalization
are used [49]. This is for instance the case in [57] where
group LASSO regularization is used, in [49] using sparse
group LASSO [18], in [67] where group LASSO and filter
decorrelation regularization are used in order to discard CNN
filters or in [56] where group LASSO and group variance
regularization are used.

In order to deal with non-smooth `1 regularization,
subgradient descent is used in [39]. Here, structured
sparsification is performed without group regularization.
The idea is to scale neurons output with a given factor λi and
apply `1 regularization to push the various factors λi towards 0.

Fully connected layers can be represented by their weights
matrix (i.e. 2d tensor) whereas convolutional layers correspond
to 4d tensors. One of the popular compression methods
for DNN is nuclear regularization (Nuclear norm penalty)
[9]. Nuclear norm penalty was successfully used in matrix
low rank approximation [9], matrix completion [62], matrix
factorization [8] and DNN dropout modeling [52].

Learning structured sparse DNNs using proximal regularization
methods

A different approach is however based on optimization under
convex constraint where proximal methods are the most natural

tools. Let’s recall the proximal operator of a function f(x)
[42]:

proxτf (x̄) := arg min
x
f(x) +

‖x− x̄‖2

2τ
, (1)

Let W be the weight matrix of a neural network, L(W) be a
gradient Lipschitz loss and R(w) be a convex penalty. Let
define the penalty criterion by minW L(W) + λR(W). This
criterion can be minimized using a classical forward-backward
method belonging to the class of splitting methods [37], [10],
[43], [51]. Using SGD with penalization is limited and time
consuming due to the tuning of the corresponding penalization
hyper-parameters [24], [40].
Proximal gradient descent with group LASSO constraint
is used in [65] and in [2]. In [29], the output neurons is
scaled using a factor λi and accelerated proximal gradient
is used with `1 constraint to push as many coefficients λi
towards 0 without decreasing significantly the performance. In
[59], neuron sparsification is realized with proximal gradient
descent with group LASSO constraint and an additional `1,2
constraint (Exclusive Sparsity) enforces neurons to fit disjoint
sets of features. Similarly, in [64] proximal gradient descent
with group OWL constraint (grOWL [45]) is used in order
to simultaneously sparsify neurons and enforce parameter
sharing. Proximal gradient descent is also used in [63] where
Ordered Weighted `1 regularization (OWL [15]) allowing
simulatenously sparsifying weights and optimizing weight
sharing. In [36], filters in CNN layers are pruned by solving
an optimization problem using a dedicated optimizer with
either group LASSO or `2,0 regularization.

Goal of the work

Classical Learning structured sparse DNNs are based on
proximal regularization methods; In this paper, we propose
instead a constrained approach that takes advantage of an
available efficient projection on the `1-ball [11], [14], [47],
projection on the `2,1 ball [38], [5] and a new `1,1 projection
proposed in this paper.

III. LEARNING SPARSE DNN

A Projection gradient algorithm for constrained learning

In this work, we propose a constrained approach where the
constraint is directly related to the number of zero-weights.
Moreover it takes advantage of an available efficient projection
on the `1-ball [11], [47].
Let L(W) be a gradient Lipschitz loss, R(w) be a convex
constraint, and C its convex set. Let define the following
criterion

min
W

L(W) s.t. R(W) 6 η (2)

where the scalar η > 0 is the constraint parameter. We use a
splitting gradient-projection method to minimize this criterion

based on the following forward-backward scheme to generate
a sequence of iterates [3]:

Vn := Wn − γ∇L(Wn), (3)
Wn+1 := proj(Vn) + εn, (4)

where proj denotes the projection on the convex constraint.
We can therefore apply the algorithm to any constraint which
exact or approximate projection can be computed. We derive
the following algorithm

Algorithm 1 Splitting gradient-projection algorithm where
∇L(W) is provided by the net and proj(ηV) is the projection
on the constraint

Input: X,Y,W0, N, γ, η
for n = 1, . . . , N do
V ←W − γ · ∇L(W)
W ← proj(ηV)

end for
Output: W

Optimizer with structured constraints

In the case where the constraint R(w) = ‖wi‖1 efficient
algorithms have been proposed [11], [47]. Unfortunately this
`1 constraint does not induce sparsity structure.

Classical Optimizer with `2,1 norm constraint (Group
LASSO): The Group LASSO was first introduced in [61]. The
main idea of Group LASSO is to enforce models parameters
for different classes to share features. Group sparsity reduce
complexity by eliminating entire features. Group LASSO
consists in using the `2,1 norm for the constraint on W . The
row-wise `2,1 norm of a d × k matrix W (whose rows are
denoted wi, i = 1, d) is defined as follows:

‖W‖2,1 :=

d∑
i=1

‖wi‖.

We use the following approach proposed in [5] to compute the
projection W of a d× k matrix V (whose rows are denoted
vi, i = 1, d) on the `2,1-ball of radius η: compute ti which is
the projection of the vector (‖vi‖i)di=1 on the `1 ball of Rn of
radius η; then, each row of the projection is obtained according
to

wi =
tivi

max{ti, ‖vi‖}
, i = 1, . . . , d.

This last operation is denoted as Wi := proj`2(Vi, ti in
Algorithm 2.
This algorithm requires the projection projection of the vector
(‖vi‖i)di=1 on the `1 ball of Rn of radius η whose complexity is
only O(d× log(d)). Note than another approach was proposed
in [38]. The main drawback of their method is to compute the
roots of an equation using bisection, which is quite slow.

Algorithm 2 Projection on the `2,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η

Input: V, η
t := proj`1((‖vi‖i)di=1, η)
for i = 1, . . . , d do
wi := proj`2(vi, ti)

end for
Output: W

A new optimizer with an adaptive weighted `1,1 norm
constraint: The "sparsification" of a matrix A ∈ Rm×n

consists in finding a matrix B ∈ Rm×n

(i) with as many 0 components as possible (memory foot-
print decrease),

(ii) with as many vanishing columns as possible (both
MACCs and memory footprint decrease),

(iii) without degrading too much the performance of the
network.

The matrix A defines a mapping A : Rn 7→ Rm. In order
to avoid degrading too much the performance of the network,
it can be required that, for each layer, the matrix A is replaced
with a sparsified version B such that, for any x ∈ Rn

∗ , the
value of ‖ (A−B)x ‖ is as small as possible for a given norm.
The goal is to find a matrix B : Rn 7→ Rm with much more
vanishing components than in the matrix A, thus it is convenient
to impose the constraint

∑n
i=1 ‖ Bi ‖1<

∑
i=1 ‖ Ai ‖1.where

Bi respectively Ai is the i th column of the matrix.
Let recall the induced operator norm of A−B in `1 domain
with `1 co-domain

‖ A−B ‖1,1=

(
sup
‖x‖1=1

‖ (A−B) · x ‖1

)
(5)

which is computed as the maximum `1 norm of a columns of
A−B . We consider therefore the following problem

B∗ = argmin∑n
i=1‖Bi‖1=β

(
sup
‖x‖1=1

‖ (A−B) · x ‖1

)
(6)

It is possible to show ([4]) the following result:

Theorem 1 Let A = (A1 · · · An) be a Rm×n matrix. Assume
w.l.o.g. that A1 > A2 > · · · > An−1 > An. For an optimal
solution B∗ for (6), there exists p ∈ {0, · · · , n} such that

(i) For i = 0, · · · , p, Ai −Bi∗ = Ap −Bp∗
(ii) For i > p, Bi∗ = 0

Applying Theorem 1 to (6) we obtained the following algorithm:
we compute first the radius ti and then project the rows using
`1 adaptive constraint ti:

Lottery optimizer

Following the work by Frankle and Carbin [16] further
developed by [66] which proposed a simple algorithm for
finding sparse sub-networks within larger networks that are
trainable from scratch. Their approach to finding these sparse

Algorithm 3 Projection on the `1,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η

Input: V, η
t := proj`1((‖vi‖1)di=1, η)
for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W

networks is as follows: after training a network, set all weights
smaller than some threshold to zero, rewind the rest of the
weights to their initial configuration, and then retrain the
network from this starting configuration but with the zero
weights frozen (not trained).
We replace the thresholding by our `1,1 projection and devise
the following algorithm:

Algorithm 4 Projection on the `1,1 norm—proj`1(V, η) is the
projection on the `1-ball of radius η,∇L(W,M0) is the masked
gradient with binary mask M0, and f is the ADAM optimizer,
γ is the learning rate

Input: W∗, γ, η
for n = 1, . . . , N(epochs) do
V ← f(W,γ,∇L(W))

end for
t := proj`1((‖vi‖1)di=1, η)
for i = 1, . . . , d do
wi := proj`1(vi, ti)

end for
Output: W,M0

Input: W∗
for n = 1, . . . , N(epoch) do
W ← f(W,γ,∇L(W,M0))

end for
Output: W

IV. EXPERIMENTAL RESULTS

We modify the pytorch framework to implement our sparse
learning method using a constraint approach. We choose
Adam optimizer [31], a standard optimizer in PyTorch as
baseline comparison to our optimizer with `1 and nuclear
norm constraints.
We denote as PGL1, the algorithm with `1 constraint, PGL21,
the algorithm with `2,1 constraint and PGL11 the algorithm
with `1,1 constraint.
The first layer, which interacts directly with the input image
and the last one interacting directly with the output are
most sensitive to sparsity and thus we do not apply sparsity
constraint.
We use the entropy (bit/weight) of the weights distributions
to compute estimations of the models storage memory cost.
To this end, the weights can for instance be coded using
JPEG20001 an image coding system that uses state-of-the-

1https://jpeg.org/jpeg2000/index.html

art compression techniques based on wavelet technology. The
classical computational cost evaluates FLOPS (floating point
operations per second) as a measure. When using FLOPS,
additions (accumulates) and multiplications are counted sepa-
rately. However, a lot of hardware can compute multiply-add
operation in a single instruction. We use therefore MACCs
(multiply-accumulate operations) as computational cost for
which one multiplication and one addition are counted as a
single instruction. All experiments are performed on a Cocolink
Klimax 210 HPC with 10 GPUs (Nvidia Quadro P6000, P100
and GeForce GTX 1080).

Results on MNIST

We select the popular MNIST dataset [34] containing
28× 28 grey-scale images of handwriting digits of 10 classes
(from 0 to 9). This dataset consists on a training set of 60,000
instances and in a test set of 10,000 instances.
We consider a neural network with two convolutional layers
and two linear layers denoted as Net4. The size of its weight
matrices are (1× 10× 5× 5), (10× 20× 5× 5), (320× 50)
and (50× 10) respectively. Thus the total number of elements
of these weight matrices are 250, 5000, 16000 and 500
respectively.
The sizes of matrix weights are very unbalanced. Thus our
strategy is to sparsify the 2 most numerous layers, i.e. the 2nd

convolutional and the 1st linear layer with the same optimizer.

We study the layerwise influence of the constraint parameter
η on the accuracy and the weight sparsity defined as the
percentage of weights set to zero. For comparison purpose, the
weights using Adam for the two linear layers are depicted in
figure 3 top shows unstructured sparsity while figure 3 bottom
using PGN shows structured sparsity.

Fig. 1: Comparison of computational time for `1 and `1,1
constraints versus size d (Input m=1000)

The weight distributions using a Parzen kernel method (Fig.
2) top shows that weights distributions follow a Gaussian
shape for Adagrad and Adam optimizer. Figure 2) bottom
shows that weights distributions follow a Laplacian shape
(thus lower entropy) for PGL1 and PGL11.

Fig. 2: MNIST, Net4,Up: Distribution of convolutional layer
Conv2 with Adam and Adagrad optimizers, Bottom : Distri-
bution of convolutional layer Conv2 with PGL1 and PGL11
optimizers

Fig. 3: Visualization for weight matrices: Top of the two
linear layers Linear1 and Linear2) of Net4 with Adam and
weights thresholding shows unstructured sparsity. Bottom with
structured optimizer: Layer Linear1 exhibits a high structured
sparsity.

Fig. 4: MNIST with Net4: Top Memory per layer for optimizers
Adam, PGL1 and PGL11. Bottom: MACCs for optimizers
Adam, PGL1 and PGL11

Fig. 5: MNIST with Lenet: Top Memory per layer for
optimizers Adam, PGL1, PGL21 and PGL11. Bottom: MACCs
for optimizers Adam, PGL1,PGL21 and PGL11

TABLE I: MNIST Net 4 total memory, MACCs, and accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

Adam 33.64 563.7 99.
PGL1 eta=100 6.82 460 97.5
PGL11 eta= 80 9.03 380 97.7

TABLE II: MNIST Le Net 300/100 total memory, MACCs, and
accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

ADAM 440 266.2 98.21
PGL1(250) 34.03 217.7 96.17

PGL11(η = 250) 34.42 89.9 97.2
Tartaglione [54] 33.72 - 96.6

PGL21(30) 197 217 97.6

Our splitting algorithm with `1,1(L11) structured constraint
outperforms state of the art sparsifying methods for memory
footprint. The main advantage of our method using the `1,1
constraint over `1 and [54] is the reduction of the calculation
cost (MACCs) by a factor 3 which is crucial for low capacity
devices. Note that convolutional network Net 4 requires at least
380 k-MACCs while fully connected Lenet 300/100 network
requires only 90 k-MACCs. Note the poor performances of
`2,1 constraint.

Results on Fashion MNIST

Results on Fashion MNIST with convolutionnal Net5 2

Fashion-MNIST [58] is a dataset of Zalando’s article images
consisting of a training set of 60,000 examples and a test set
of 10,000 examples. Each example is a 28x28 grayscale image,
associated with a label from 10 classes. Fashion-MNIST to
serve as a direct drop-in replacement for the original MNIST
dataset for benchmarking machine learning algorithms. Fashion-
MNIST and MNIST share the same image size and structure
of training and testing splits.

TABLE III: Fashion MNIST Net 5 total memory, MACCs, and
accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

ADAM 45 24,700 89,7
PGL1(200) 11.06 21,270 84.18

PGL11(250) 16.82 20,700 84.46

Note that computational cost is huge (24,700 k-MACCs)
with Net 5 and none of the method is efficient for reducing
computational cost.

Results on Fashion MNIST with Lenet 300/100
Note that computational cost is ×200 smaller with Lenet

300/100 than with Net5 (266 k-MACCs). Moreover PGL11
projection is efficient reducing computational cost by a factor
2.

2https://engmrk.com/lenet-5-a-classic-cnn-architecture/

TABLE IV: Fashion MNIST Lenet 300/100 total memory, MACCs,
and accuracy

Methods Memory MACCs Accuracy
(kBytes) (k-MACCs) (%)

ADAM 418 266.2 89,3
PGL1(400) 40.06 193 84.37

PGL11(700) 52.5 136.08 84.8

Results on CIFAR10
The CIFAR-10 data set is composed of 60,000 32x32

colour images, 6,000 images per class, for a classification
in 10 classes. The training set is made up of 50,000 images,
while the remaining 10,000 are used for the testing set.
We use Simplenet3, the highly optimized architecture [23]
This network is composed of 13 blocks Bi =
(convolutional2D/BatchNormalization/ReLU) for
i = 1, .., 13 with sequences MaxPool2d/Dropout after the
blocks B4, B7, B9, B10, B12 and B13 followed by a classifier
layer . For this dataset, we use Lottery optimizer (Algorithm
4).
Results are reported in Figures 9 and 8 and in the Table VI.

Fig. 6: SimpleNet, weight size for each layer

Fig. 7: CIFAR 10 SimpleNet, Accuracy as a function of
MACCs, PGL1 (red) and PGL11 (green)

Figure 8 and Table (VI) shows a large global memory
reduction by a factor 25. On the other hand, the reduction

3https://github.com/Coderx7/SimpleNet_Pytorch

https://github.com/Coderx7/SimpleNet_Pytorch

Fig. 8: CIFAR 10 SimpleNet, Accuracy as a function of Bytes,
PGL1 (red) and PGL11 (green)

TABLE V: CIFAR10: MACCs, memory, and accuracy using
Simplenet

Methods MACCs Memory Accuracy
(M-MACCs) (M-Bytes) %

Adam 631.51 9.44 93.8
PGL1 626.08 0.37 91.12
PGL11 441 0.37 91

of the calculation cost is low for `1,1 constraint and null for
`1 constraint.

Results on biological dataset
Lung dataset [41] is a metabolomic dataset with 1005

samples and 2944 features. These are urine samples obtained
from two groups of patients, one group has a lung cancer,
the other is a control group. We use a linear fully connected
network (LFC) with an input layer, 3 hidden layer layers
followed by a RELU activation function and followed by a
classifier layer inspired by the network in [32].

TABLE VI: Lung dataset: MACCs , memory, and accuracy using
LFC network

Methods MACCs Memory Accuracy
(M-MACCs) (M-Bytes) %

Adam 4.03 53.4 77
PGL1 4.03 5.3 82.2
PGL11 2.4 5.3 81.2

Contrary to the previous results, for a compression ratio of
10 on the memory bytes, the accuracy increases by 4.2% and
5.2% with PGL1 and PGL11 respectively. Note that accuracy
is slightly better for memory bytes compression when using `1
constraint. We obtain compression ratio of 1.7 for MACCS with
accuracy improvement by 4.2% when using `1,1 constraint.

V. DISCUSSION

To the best of our knowledge, entropy of the weights
(bit/weight) as a measure of memory was never reported in
the DNN literature. Thus memory comparison with previous
results is not straightforward. A more in depth study will be
performed as well as the JPEG2000 compression of the model

Fig. 9: Lung LFC Network ,Left Accuracy as a function of
MACCs, PGL1 (red) and PGL11 (green),Right: Accuracy as a
function of Bytes, PGL1 (red) and PGL11 (green)

for storage in a forthcoming paper.
Energy consumption is directly related to the number of
instructions (Flops or MACCs) [20].
Experimental results show that convolutional networks require
a huge amount of Flops and thus Energy while improving
very slightly accuracy. On the MNIST and Fashion MNIST
datasets, we note an improvement by a factor 200 for MACCs
by using linear fully connected (LFC) Lenet 300/100 instead
of convolutional neural networks (CNN).
Experimental results show, as expected, that our new `1,1
norm constraint is more efficient for structured sparsity and
thus MACCs reduction than `1 constraint.

VI. CONCLUSION

In order to cope with computational issue of DNN, a huge
literature deals with proximal regularization methods which are
time consuming. In this paper, we propose instead a constrained
approach. We provide a general framework of our new splitting
projection gradient method. Our splitting algorithm iterates a
gradient step and a projection on the convex constraint. We
design a new algorithm for the `1,1 constraint. Our experiments
show the benefit of Lottery optimizer which uses only one
projection for deep neural networks sparsification.
Experiments on three popular dataset (MNIST, FASHION
MNIST and CIFAR) and a metabolomics dataset show that our
projection method with our new `1,1 constraint provides better

structured sparsity resulting in high reduction of memory and
computational power reduction.
We highlight the two main results. First fully connected
neural networks outperform in terms of MACCs convolutional
networks by a factor of 200. Second our algorithm with L11
projection improve MACCS by a factor of 2. So we believe that
fully connected neural networks with our new `1,1 projections
is the best solution to reduce energy consumption and thus for
green AI.
We are currently developing layer-wise adaptive constraints (η)
and applying our method to other large Neural Networks.

REFERENCES

[1] A Ali and R Tibshirani. The generalized lasso problem and uniqueness.
Electronic Journal of Statistics, 13(2):2307–2347, 2019.

[2] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons
in deep networks. In Advances in Neural Information Processing Systems,
pages 2270–2278, 2016.

[3] M. Barlaud, W. Belhajali, P. L. Combettes, and L. Fillatre. Classification
and regression using an outer approximation projection-gradient method.
volume 65, pages 4635–4643, 2017.

[4] M. Barlaud and F. Guyard. The `1,1 projection and matrices sparsification.
in progress, 2020.

[5] Michel Barlaud, Antonin Chambolle, and Jean-Baptiste Caillau. Robust
supervised classification and feature selection using a primal-dual method.
arXiv cs.LG/1902.01600, 2019.

[6] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of
deep neural network models for practical applications. arXiv 1605.07678,
2016.

[7] Miguel Á. Carreira-Perpiñán and Yerlan Idelbayev. Learning-compression
algorithms for neural net pruning. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[8] Jacopo Cavazza, Pietro Morerio, Benjamin Haeffele, Connor Lane,
Vittorio Murino, and Rene Vidal. Dropout as a low-rank regularizer for
matrix factorization. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 435–444, 2018.

[9] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model com-
pression and acceleration for deep neural networks. arXiv:1710.09282,
2017.

[10] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal
processing. In Fixed-point algorithms for inverse problems in science
and engineering, pages 185–212. Springer, 2011.

[11] L. Condat. Fast projection onto the simplex and the l1 ball. Mathematical
Programming Series A, 158(1):575–585, 2016.

[12] Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al.
Predicting parameters in deep learning. In Advances in neural information
processing systems, pages 2148–2156, 2013.

[13] D. L. Donoho and M. Elad. Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization. Proceedings of the
National Academy of Sciences, 100(5):2197–2202, 2003.

[14] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient
projections onto the l 1-ball for learning in high dimensions. In
Proceedings of the 25th international conference on Machine learning,
pages 272–279. ACM, 2008.

[15] Mario Figueiredo and Robert Nowak. Ordered weighted l1 regularized
regression with strongly correlated covariates: Theoretical aspects. In
Artificial Intelligence and Statistics, pages 930–938, 2016.

[16] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In International Conference
on Learning Representations, 2019.

[17] J. Friedman, T. Hastie, and R. Tibshirani. Regularization path for
generalized linear models via coordinate descent. Journal of Statistical
Software, 33:1–122, 2010.

[18] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A note on the
group lasso and a sparse group lasso. arXiv preprint arXiv:1001.0736,
2010.

[19] Aidan N Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal, and Geoffrey E
Hinton. Learning sparse networks using targeted dropout. arXiv
:1905.13678, 2019.

[20] E Grochowski and M Annavaram. Energy per instruction trends in intel
® microprocessors. 2006.

[21] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. Ese: Efficient
speech recognition engine with sparse lstm on fpga. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 75–84. ACM, 2017.

[22] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems, pages 1135–1143, 2015.

[23] Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, and
Mohammad Sabokrou. Lets keep it simple, using simple architectures
to outperform deeper and more complex architectures. arXiv preprint
arXiv:1608.06037, 2016.

[24] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization
path for the support vector machine. Journal of Machine Learning
Research, 5:1391–1415, 2004.

[25] T. Hastie, R. Tibshirani, and M. Wainwright. Statistcal learning with
sparsity: The lasso and generalizations. CRC Press, 2015.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778, 2016.

[27] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating
very deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1389–1397, 2017.

[28] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network
trimming: A data-driven neuron pruning approach towards efficient deep
architectures. arXiv preprint arXiv:1607.03250, 2016.

[29] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection
for deep neural networks. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 304–320, 2018.

[30] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim
Hartley, and Luc Van Gool. AI benchmark: Running deep neural networks
on android smartphones. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 0–0, 2018.

[31] D Kingma and J Ba. a method for stochastic optimization. International
Conference on Learning Representations , pages=1–13, year=2015,.

[32] Anna Klimovskaia, David Lopez-Paz, Léon Bottou, and Maximilian
Nickel. Poincaré maps for analyzing complex hierarchies in single-cell
data. bioRxiv, 2019.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[34] Yann LeCun. The mnist database of handwritten digits. http://yann.
lecun. com/exdb/mnist/.

[35] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710,
2016.

[36] Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li.
Toward compact convnets via structure-sparsity regularized filter pruning.
IEEE transactions on neural networks and learning systems, 2019.

[37] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two
nonlinear operators. SIAM Journal on Numerical Analysis, 16(6):964–979,
1979.

[38] Jun Liu, Shuiwang Ji, and Jieping Ye. Multi-task feature learning via
efficient l2, 1-norm minimization. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages
339–348. AUAI Press, 2009.

[39] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan,
and Changshui Zhang. Learning efficient convolutional networks through
network slimming. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2736–2744, 2017.

[40] J. Mairal and B. Yu. Complexity analysis of the lasso regularization
path. In Proceedings of the 29th International Conference on Machine
Learning (ICML-12), pages 353–360, 2012.

[41] E. Mathé et al. Noninvasive urinary metabolomic profiling identifies
diagnostic and prognostic markers in lung cancer. Cancer research,
74(12):3259—3270, June 2014.

[42] J.J Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc.Math.
France., 93, pages 273–299, 1965.

[43] S. Mosci, L. Rosasco, M. Santoro, A. Verri, and S. Villa. Solving
structured sparsity regularization with proximal methods. In Machine
Learning and Knowledge Discovery in Databases, pages 418–433.
Springer, 2010.

[44] Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and
Khaled Shaalan. Speech recognition using deep neural networks: A
systematic review. IEEE Access, 7:19143–19165, 2019.

[45] Urvashi Oswal, Christopher Cox, Matthew Lambon-Ralph, Timothy
Rogers, and Robert Nowak. Representational similarity learning with
application to brain networks. In International Conference on Machine
Learning, pages 1041–1049, 2016.

[46] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the
usages of deep learning in natural language processing. arXiv:1807.10854,
2018.

[47] Guillaume Perez, Michel Barlaud, Lionel Fillatre, and Jean-Charles Régin.
A filtered bucket-clustering method for projection onto the simplex and
the `1-ball. Mathematical Programming, May 2019.

[48] S Rallapalli, H Qiu, A Bency, S Karthikeyan, R Govindan, B Manjunath,
and R Urgaonkar. Are very deep neural networks feasible on mobile
devices. IEEE Trans. Circ. Syst. Video Technol, 2016.

[49] Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio
Uncini. Group sparse regularization for deep neural networks. Neuro-
computing, 241:81–89, 2017.

[50] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green
ai, 2019.

[51] S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning.
MIT Press, 2012.

[52] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[53] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and
policy considerations for deep learning in nlp. In ACL, 2019.

[54] Enzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, and Gianluca Francini.
Learning sparse neural networks via sensitivity-driven regularization. In
Advances in Neural Information Processing Systems, pages 3878–3888,
2018.

[55] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), pages 267–288,
1996.

[56] Amirsina Torfi, Rouzbeh A Shirvani, Sobhan Soleymani, and Nasser M
Nasrabadi. Attention-based guided structured sparsity of deep neural
networks. arXiv preprint arXiv:1802.09902, 2018.

[57] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
Learning structured sparsity in deep neural networks. In Advances
in neural information processing systems, pages 2074–2082, 2016.

[58] Han Xiao, K Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv
cs.LG/1708.07747, 2017.

[59] Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive
sparsity for deep neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3958–3966. JMLR.
org, 2017.

[60] Ming Yuan and Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 68(1):49–67, 2006.

[61] Ming Yuan and Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 68(1):49–67, 2006.

[62] D. Zhang, Y. Hu, J. Ye, X Li, and X He. Matrix completion by truncated
nuclear norm regularization. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, June 2012.

[63] Dejiao Zhang, Julian Katz-Samuels, Mário AT Figueiredo, and Laura
Balzano. Simultaneous sparsity and parameter tying for deep learning
using ordered weighted `1 regularization. In 2018 IEEE Statistical Signal
Processing Workshop (SSP), pages 65–69. IEEE, 2018.

[64] Dejiao Zhang, Haozhu Wang, Mario Figueiredo, and Laura Balzano.
Learning to share: Simultaneous parameter tying and sparsification in
deep learning. 2018.

[65] Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more: Towards
compact cnns. In European Conference on Computer Vision, pages
662–677. Springer, 2016.

[66] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstruct-
ing lottery tickets: Zeros, signs, and the supermask. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages
3597–3607. Curran Associates, Inc., 2019.

[67] Xiaotian Zhu, Wengang Zhou, and Houqiang Li. Improving deep neural
network sparsity through decorrelation regularization. In IJCAI, pages
3264–3270, 2018.

	Motivation
	Related Works
	Weights sparsification
	Learning structured sparse DNNs using regularization methods
	Learning structured sparse DNNs using proximal regularization methods
	Goal of the work

	Learning sparse DNN
	 A Projection gradient algorithm for constrained learning
	 Optimizer with structured constraints
	Classical Optimizer with 2,1 norm constraint (Group LASSO)
	A new optimizer with an adaptive weighted 1,1 norm constraint

	Lottery optimizer

	Experimental results
	Results on MNIST
	Results on Fashion MNIST
	Results on CIFAR10
	Results on biological dataset

	Discussion
	Conclusion
	References

