
HAL Id: hal-02556366
https://hal.science/hal-02556366v1

Preprint submitted on 28 Apr 2020 (v1), last revised 29 Apr 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Usable everlasting encryption using the pornography
infrastructure

Enka Blanchard, Siargey Kachanovich

To cite this version:
Enka Blanchard, Siargey Kachanovich. Usable everlasting encryption using the pornography infras-
tructure. 2019. �hal-02556366v1�

https://hal.science/hal-02556366v1
https://hal.archives-ouvertes.fr

Usable everlasting encryption
using the pornography infrastructure

Enka Blanchard
Digitrust, Loria, Université de Lorraine

Nancy, France

enka.blanchard@gmail.com

Siargey Kachanovich
Corpy.co

Tokyo, Japan

Abstract—Nine years before Snapchat and its ephemeral
messages, Aumann, Ding, and Rabin introduced the idea of
everlasting security: an encryption that could not be decrypted
after a certain date, no matter the adversary’s computing power.
Their method is efficient but not adapted to real-life constraints
and cannot effectively be used today.

This paper looks at what potential entropy sources are
available today and proposes a new solution that makes use of
the already existing communications from pornography distri-
bution networks. The method proposed has multiple advantages
stemming from the fact that pornography is shameful in most
societies, giving the agents plausible deniability. It is also usable
off-the-shelf by individuals with limited technical skills, although
it still requires some effort.

Index Terms—Usable security, Random beacon, Bounded
memory model, One-time pad

Between January 5th, 2010 and February 3rd, 2010, Chelsea

Manning downloaded more than 491 000 confidential doc-

uments, smuggled them through security hidden in a Lady

Gaga CD, then onto an SD card hidden in a camera, before

sending them to WikiLeaks through Tor [1]. Later in 2016, an

anonymous1 whistle-blower nicknamed “John Doe” managed

to communicate 2.6TB of confidential financial documents

— known as the Panama Papers — to the International

Consortium of Investigative Journalists [2]. In both events, a

more attentive supervisor could probably have prevented or

at least detected the leak as it was happening. The methods

used by Chelsea Manning are most probably by now obsolete,

which poses the question of the technological tools available

to the whistle-blowers. An issue is that the whistle-blowing

attempts of highest importance come from agents within large

institutional and corporate actors, which are best suited to

detect leaks by storing and decrypting their agents’ commu-

nications.

Irrespective of the ethical considerations, it then seems

natural to look for methods through which an agent within

a large organisation could exfiltrate information — ideally

to report criminal activities. This agent’s main issue then

becomes the communication of data, while being watched by

an overpowering adversary.

There are encryption methods available today that are

currently impossible to decrypt without a key — e.g. any of

1The whistle-blower remained anonymous through the usage of Tor and
limited communications.

the current asymmetric encryption standards2. For a whistle-

blower, however, asymmetrical cryptography cannot be con-

sidered entirely secure, as the current methods all depend

on computational hardness of certain problems, and this

hardness is still just an assumption. An adversary capable

of storing the encrypted messages for an arbitrary duration

could theoretically either spend the computational resources

when they are cheaper, or wait for the development of more

efficient decryption algorithms. Furthermore, due to Shannon’s

theorems, we know that the only way to avoid a leak of

information is to use a one-time pad with the same length as

the original message [3]. We then require an external source

to obtain a one-time pad.

a) Previous work: In an article written in 2002 [4],

Aumann, Ding and Rabin introduced the first everlasting

encryption algorithm, where an adversary that cannot decrypt

the message in a bounded time after its emission will have

an exponentially small probability of being able to decrypt it

afterwards3. The peculiarity of their model is that it holds even

against an adversary that obtains unbounded computational

capabilities right after the cut-off time. For this, the authors

make two central assumptions:

• There exists a common source of public random bits.

• No adversary can store more than a constant fraction of

these random bits.

One crucial thing that the authors allow, which makes their

model different from a previous model by Maurer [6], is

that the adversary has a storage capacity that is limited by a

fraction of the number of random bits, but can store data that

is different from the random bits themselves. For example,

they could store a compressed version of the bits if doable.

This seems quite reasonable, as it simply corresponds to the

existence of a common source of public random bits that

has a very high throughput to avoid being stored. However,

implementing it in practice reveals a few challenges. An

idea initially mentioned in the original paper was to create a

constellation of satellites that beam random bits at a high rate.

2Notwithstanding side-channel attacks, infected client machines and the
possibility that an actor could have secretly found an algorithm to polynomi-
ally solve supposed hard problems.

3This is opposite to timed-release encryption methods, where it becomes
feasible after a certain point to decode a message [5] and the adversary is
assumed to have infinite computational capabilities.

This is alas costly, and not directly usable by the average user.

An alternative proposed by the same authors was to access and

compress a large amount of textual web pages, but this creates

new problems.

b) Contributions: Our goals in this paper are three-fold.

First, we formalise the objections above in an agent model.

Second, we propose a list of alternative entropy sources and

show that the choice is in fact quite limited. We show that we

can use socially generated data as a primitive for cryptography,

and that the main candidate seems to be pornography. We

also detail how to use it in an appropriate way. Finally, we

look at the social implications of using such a system, and

why it has advantages beyond the simple cryptographic ones.

One central advantage comes from the very taboo surrounding

pornography, making this choice a strength of the protocol.

I. MODEL AND INTUITION

Our goal is to study a model that is adapted to real world use

— for example two agents in different organisations wanting

to exchange securely. Keeping our introductory example, it

could be an agent of a government trying to exfiltrate some

files in a whistle-blowing attempt by communicating them to

a journalist.

A. Agents

We consider four agents:

• Alice is the agent with the data, who wants to send data

to Bob without getting caught or attracting too much

attention.

• Bob just wants to receive Alice’s data.

• Eve is the supervisor of Alice as well as many other

agents, and wants to prevent data leaks. Eve has large

capabilities: she can intercept all messages from her

agents, and store all the encrypted ones for potential later

decryption. However, she cannot store all the information

exchanged in clear because of size constraints. Eve also

monitors the information exchanged in clear and tries to

detect anomalous patterns.

• Carlos represents the rest of the internet.

Here, realistically, Eve could be the head of Alice’s organ-

isation (or of its internal security division). She would then

be able to impose rules such that most of the communications

have to be in clear-text — or easily decrypted — with some

allowances for higher security to protect her agents’ privacy,

at the cost of storing those for future use if she has any hint

of wrong-doing. Eve stores every encrypted communication

between Alice and Bob, and inspects all the exchanges be-

tween Alice and Carlos. However, Eve cannot store all the

data exchanged between the internal network and Carlos —

representing the rest of the internet — due to space constraints.

If she suspects Alice, she might store her communication data,

but she cannot store all of it as long as Alice is statistically

indistinguishable from her colleagues. Eve possibly has the

capability of decrypting some encrypted messages, but this

requires time and is expensive.

We could also consider a slightly more complex model

where Bob also has a supervisor. Because of symmetries in

the protocol, both models are close to equivalent and we focus

on the simpler one.

B. Intuition behind the protocol

In such a model, a very simple protocol is available, as

imagined in [4]. Using asymmetric encryption — which we

can initially assume to be secure for at least a limited time4 —

Alice sends a set of pseudo-random numbers to Bob. Those are

pointers to a common source of random bits held by Carlos.

After they confirm having the same data — e.g. by the use of a

checksum — Alice and Bob can exchange using the equivalent

of a one-time pad. As long as Eve does not store the whole

data required, she will not be able to decrypt Alice’s messages.
The hard task is then to find a good and discreet source of

random bits. Alternatively, a public source of low-entropy bits

can also work as long as a randomness extractor is used, for

example the same extractor used in the original paper [4].

II. ENTROPY SOURCES

A. Constraints

Before listing potential sources, we have to look at the

constraints we’re facing.
a) Throughput: The first constraint is quite simple: the

data throughput has to be large enough to make storing it be

impossible, or at least extremely expensive. In practice, this

evolves with the hardware costs, but 1 TB/s is a good initial

target to counter all but the largest state actors, as the global

cloud storage increases at the rate of 8TB/s [7]. A smaller

throughput could still be secure — storing it becoming only

extremely expensive — while 10TB/s would be more than

enough for the foreseeable future.
b) Canonicity: The second constraint is the canonical

nature of the entropy source. As Alice and Bob agree on a set

of pointers, these pointers need to target the same data stream,

and both agents must obtain the same data when they try to

access it.
c) Accessibility: The third constraint is that Alice and

Bob should be able to access Carlos’ random bits, following

Alice’s pointers, but in a way that do not set Alice or Bob apart

from their colleagues. As such, the data should be common

enough, in the sense that it is accessed on a regular basis by

a large number of people.

B. Original sources

The original paper investigated two main sources of entropy:

satellite-based random beacons, and random web-page com-

pression [4]. Both have some weaknesses, however, which we

will mention before looking at potential replacements.

4This is reasonable in many cases, unless the main encryption methods
are all breakable at a low enough cost for all outgoing messages to be
automatically decoded. If that is not the case, Eve would probably have to
focus her resources on specific messages and use a queue, in which case it
would be natural for Alice to have at least a few hours between the time
the message is sent and the time it is deciphered, during which she can get
the key and encrypt the data before Eve knows that she should store all
communications.

a) Satellites: The first entropy source imagined relies on

a satellite — or a small constellation of satellites — that beams

random bits. The source being unique, canonicity is evident.

An issue is that, as storage cost decreased exponentially since

the original proposal, a single satellite is far from being an

option. Using SpaceX’s Starlink project as an example of

satellite constellation, a minimum of 1600 dedicated satellites

would be required to achieve the required bound [8], for a

total cost above one billion dollars5. Depending on whether

accessing the satellite system is only used for this purpose,

the specialised receiving equipment — which could be costly

— could set Alice apart and make her obviously suspect to

Eve. Thus, neither throughput nor accessibility is achieved.

b) Random beacons: Although not mentioned in the

original paper as it did not exist yet, a simpler possibility

would be to use a public random beacon, such as the NIST

randomness beacon [9]). This source only produces 512 bits

per minute today, but its throughput could be increased. An

issue is that, even if it achieved 1TB/s of random bits, the total

demand from clients accessing the beacon would probably

be much lower than that in practice. As such, Eve could

simply store all the random bits requested from the beacon.

A coordinated effort could be done to spam the system with

bogus requests, but seems unlikely to succeed6. Moreover,

accessing such a service — or going through an anonymising

service such as Tor — would by itself make Alice suspect.

c) Web page compression: A second original method

goes by accessing random web pages, compressing them, and

using this data as a one-time pad. A naive implementation

of this method already fails for simple throughput reasons:

considering only pages indexed by Google and ignoring —

for now — multimedia content, the total throughput is far

from enough. The total index size of Google, for example,

is still storable by a powerful adversary [11]. This method

also requires both agents to agree on a large set of web

pages and to have common access to them (without local

variability of content due to redirections, which can be hard to

foresee. Accessing these pages might trigger Eve’s detection

mechanism because of their sheer quantity and potential lack

of pattern.

C. Multimedia sources

A different solution from the ones mentioned above is to

use the multimedia content present online. Specifically, one

can use video sources, as they comprise more than half of

the 500TB/s of internet throughput [12]. Non-animated videos

also work quite well with randomness extractors as they have

a high amount of inherent noise (making lossless compression

beyond a ratio 1:2.5 unrealistic [13]). We consider two kinds

of traffic: upstream, with the communication going from a

computer to the network, which is contrasted with down-

stream, which means the communication from the network

5Moreover, one could wonder about whether the entities capable of funding
such a system have any interest in doing so.

6Akin to the famous but fruitless attempt made against the ECHELON
system [10].

to computers. Here, we must be careful, as most of the down-

stream traffic is many-to-one, with the same content being

distributed to many clients from a single source. Youtube,

for example, represents more than 11% of global downstream

traffic and sends more than 50TB/s from its servers to many

devices. Despite this, due to the fact that most people seek the

same videos, Youtube is still quite storable — and is stored

in practice — as its total sizes only increases at a rate of

40GB/s [14]. We are then left with multiple candidates, all

in the same category: many-to-many video streaming services

with many different sources of content. We will focus mainly

on the upstream throughput, as it makes it easier to distinguish

high entropy sources by traffic, as multiple sources seldom

upload similar streams, when compared to downstream traffic

where a single service can have many redundant servers, each

doing multicast.
a) Twitch: Twitch — a streaming platform with a focus

on video-game streaming — is the first candidate. It has

a sufficiently high throughput, with more than 5% of all

upstream traffic and 2.2 million active content creators each

month [14]. However, using Twitch as a source of random

bits is problematic for one central reason, which is that these

streams are potentially highly compressible. This is where the

choice of attacker model is crucial. It is, in fact, one of the few

practical cases where there is a real difference between Mau-

rer’s original model and Aumann et al.’s modified attacker.

In the former, Eve’s only choice is to select which bits of the

data she keeps because of storage limitations [6]. On the other

hand, Aumann et al.’s model allows Eve to perform arbitrary

computations on the data — e.g. compressing it [4]. As it

turns out, Twitch’s data is mostly composed of video-game

live-stream from a few major video-games. By nature, such

streams contain elements that mostly do not change during the

stream — such as the user interface of the game. Not only that,

the game streams can even be entirely simulated, from such

information as the input to the game and the random number

generator values. The size of this information is a lot smaller

than the entire stream7, which makes Eve theoretically capable

to store entire streams losslessly with extreme compression

ratios. Because of this, Twitch fails to achieve sufficiently high

throughput for our purposes.
b) Video chat: Our second candidate lies in direct video

chats and calls, corresponding to Skype, WhatsApp and com-

peting services. This has a large throughput — at least 8%

of upstream internet traffic — and is not easily compressible

without high losses. However, it suffers from two problems.

First, it is generally not accessible to people outside the call,

unless they have advanced surveillance capabilities, making it

fail the accessibility constraint. Second, they are distributed,

which makes it hard to create any canonical indexing.
c) Pornography: Our last candidate, as strange as it

seems, is live pornography. Besides its non-technical advan-

tages detailed in section V, it is the first candidate to truly

7This adopts the point of view of Kolmogorov complexity, but is also true
in practice, as many video-game replay files only weight a few MB per hour,
while containing all the information needed to replicate the game.

satisfy all our constraints. It is hard to estimate its throughput

accurately, but first order approximations seem to exceed our

expectations. At least 4% of Google search requests concern

pornography, and the largest live pornography web site (live-

jasmin.com) is consistently ranked in the top 50 most visited

web sites worldwide — behind two other pornography web

sites, according to Amazon Alexa8. It is nearly impossible to

get accurate numbers for the total throughput of live-streaming

pornography. We can try, however, to give lower bounds on

the example of livejasmin.com, despite it being only one of

many alternatives as the market is quite distributed between

a large number of actors. Like a few of its competitors,

livejasmin.com already has thousands of performers at any

point — generally less than ten thousand, however, putting

it around one order of magnitude under services like Twitch.

These performers often have high definition streams, going

from 1MB/s to 3-4MB/s [15]. By itself, this website then has

an upstream throughput counted in tens of GB/s, which is

already comparable to the storage increase of Youtube. The

real upstream throughput can be even higher, as we did not

address response streams from viewers. Some of the viewers

stream themselves, which can be visible in the main channel.

As each channel can have thousands of viewers — of which a

fraction might be streamers themselves — this could increase

the total throughput by one or two orders of magnitude.

The final reason in favour of live-streaming pornography

is that it is quite accessible. This being said, we need to note

two caveats. First, there is sometimes a — limited — financial

cost to access streams on certain websites. Second, browsing

pornography by itself is illegal in many countries — mostly in

Asia and Africa. We will come back to this issue later, as for

now this source of entropy fulfils most of our requirements.

All that is left is to find a way to make it canonical.

III. PROTOCOL TO USE THE LIVE PORNOGRAPHY

INFRASTRUCTURE

A. Protocol overview

We have found a high-throughput, hard-to-compress, dis-

tributed and accessible source — which we now denote as

Carlos as in our model. Now, Alice and Bob need to agree on

the indexing. Here is one potential protocol to address this,

with details on the crucial parts shown in the next subsection

(while a formal algorithm is shown in the Appendix).

1) Alice sends Bob an initial message using any asym-

metric encryption system. This messages contains the

parameters for the data held by Carlos, in the form

of a set of n complex pointers. Each pointer has data

corresponding to a web site9, the index of a video stream

on that web site, a time to start recording the stream,

a temporal marker to coordinate the recording, and a

duration. The pointers do not correspond to existing

8https://www.alexa.com/topsites
9A single web site could be used, making this first element obsolete, but

it is safer to include it to allow for a diversity of web sites, making it more
adaptable and giving the system access to a larger throughput.

videos but to streams in the near future. The time delay

depends on the agents’ constraints, going from 5 minutes

to a few days.

2) Alice and Bob both record the streams pointed to, and

extract entropy from those by taking a common start

time and using a randomness extractor. This step can be

seen as the transmission of data from Carlos to Alice

and Bob.

3) Alice and Bob obtain n streams of similar length, and

truncate these to equalise the lengths.

4) If Alice only managed to download n′ streams instead of

n, she still applies the protocol with n′ streams instead.

5) Alice computes a parity stream by XORing her n

streams and sets it aside to send to Bob later. This will

allow Bob to have some redundancy in the case of one

stream being not correctly acquired.

6) Alice splits her n streams into blocks of small equal

length. She then hashes all the i-th blocks together and

concatenates them to obtain a one-time pad.

7) Alice hashes each of her streams independently to get

n checksums.

8) Alice sends a message to Bob containing the checksums,

the encrypted message and the parity stream she set

aside before.

9) As Bob is supposed to have downloaded the same

streams, he checks the hashes to ensure that they are

indeed equal to Alice’s. If Bob is missing one of the

streams, he recomputes them using the parity stream.

10) Bob hashes the streams block-wise — exactly as Alice

did — to obtain the same one-time pad and decrypt

Alice’s message.

This protocol has the advantage of requiring only two

rounds of one-sided communications from Alice to Bob, with

a delay between the two to have the time to record the

streams. It also integrates some fault tolerance, to prevent the

inevitable transmission errors. The protocol above glosses over

the pointers, which we must now investigate.

B. Making a canonical pointer

As we stated above, each pointer is composed of five

elements: the URL of a web site, the duration of the video to

record, the index of a stream on that web site, the approximate

time (up to a few seconds) to start recording the stream, and a

nonce to coordinate the two recordings. The web site’s URL,

the time to start recording, and the duration of the video are

easy to define. For instance, we can assume for simplicity that

each web site is well-defined by its URL 10. The other two

elements — stream index and starting frame — require more

work.

a) Stream index: The index of a stream on the web site

is harder to agree on, as the stream is not well-defined at

the time Alice sends her message. Even worse, streams are

generally ordered in a variable way. For example, because

10URLs can change depending on countries because of redirections, but the
underlying streams tend to be the same.

https://www.alexa.com/topsites

Alice’s and Bob’s accesses are asynchronous, some streams

may disappear in the interval between, hence changing the

order of the streams. As such, we must give a pointer that

statistically will point towards a single stream, even if both

agents do not look it up simultaneously. Finally, the probability

of selecting a stream from all streams should be as close as

possible to uniform to maintain the throughput guarantees.

One potential solution could be for Alice to select a large

number x and send it to Bob along with the pointer. If the

web site has k streams when Alice accesses it, she selects the

stream number (x mod k). Due to the strong variability in the

number of streams, this still fails with high probability. We

can then pick a large constant c and take the stream number
(

x mod
⌊

k
c

⌋)

. By taking
⌊

k
c

⌋

instead of k, we reduce the

probability of it changing between the two different accesses.

The number of streams tends to be relatively stable on

a given web site, with the previous method being able to

absorb most of the minor variability. However, this is still not

sufficient for our purpose, as the order between two streams

can change much faster than the number of streams. This is

especially true when the streams are ordered by number of

viewers. A solution is then to choose a second criterion that is

independent of the one being used for the sorting. Both Alice

and Bob then select the first stream in the list after number
(

x mod
⌊

k
c

⌋)

that satisfies this criterion11.

b) Starting frame: Alice and Bob require the exact same

streams for Bob to be able to decrypt the message. This

means that they must agree on a starting frame for the video.

In practice, they can simply record and download a certain

quantity of video, and then manually choose a starting frame.

This means that they can easily agree on the start time with a

margin of a few seconds, without having to agree on a shared

clock beforehand12.

Along with her pointer, Alice then sends a random value —

the nonce — and both she and Bob hash frames from the video

until they get a hash whose first bits coincide with the random

value. By setting an appropriate precision for this nonce, they

can get the same start frame with high probability even if

they started recording at slightly different times. However,

this means that the delay between the times when Alice and

Bob start recording has to be at least one order of magnitude

smaller than the duration they expect to record13. In practice,

assuming the delay in accessing the stream is less than 30

seconds, recording 10 minutes of video is more than sufficient.

With a canonical stream, a set duration and a starting frame,

Alice and Bob can both extract entropy from the stream (or

losslessly compress them with a good algorithm). By setting

n = 10 and sending a single parity stream, we already have

good guarantees. Eve needs to be lucky and store at least 9

out of the 10 streams. Even if she manages to store 10% of

11If we are looking at response streams, we can use this method recursively.
12This would be made even harder by the fact that Alice and Bob can have

different latencies.
13A similar method could be used for the end time, but getting a duration

is safer and increases the chance of all n streams having broadly similar
bit-length.

all streams, her probability to decrypt the message is still at

most

10×
9

10
×

(

1

10

)9

+

(

1

10

)10

≈ 9× 10−9.

IV. SOCIAL ASPECTS

In addition to its cryptographic feasibility, the protocol

that we showed has multiple advantages that are not directly

technical.

a) Plausible deniability: One aspect that seems to be a

huge defect of this protocol is its reliance on pornography,

which is badly seen in most societies, and often forbidden (at

least in working spaces). It is instead one of the main strengths,

for multiple reasons.

First, the very shame associated with pornography is useful

as it gives Alice plausible deniability. If she ends up getting

caught by Eve, she can try to explain her forbidden behaviour

by saying she was looking at pornography, and was trying to

hide her shameful behaviour. Humans do not always perform

well when they are interrogated, and having a — less serious

— crime to confess to is a boon. Although it might be a

stretch, she could also try to explain the access to potentially

restricted files she was trying to exfiltrate as being linked to

a virus downloaded at the same time as the pornography.

One issue with the protocol is that downloading pornog-

raphy can trigger some alarms on certain networks. This

is not necessarily a bad thing: getting caught downloading

pornography would probably lead to a disciplinary hearing,

which would confirm Alice’s suspicions that her communica-

tions are scrutinised, without compromising her as much as

directly trying to access cryptographic resources. Moreover,

downloading pornography wouldn’t make Alice a statistical

anomaly, quite the opposite: 59% of respondents to an online

study admitted to having accessed pornography web sites from

their office [16], and many polls reveal similar behaviours

(alas with low data quality). Firing all the people caught

doing so because of security risks would be costly to Eve

because of the sheer number of false positives. Any suspicious

behaviour of Alice — such as hiding a USB key on which the

pornography streams are recorded — then becomes partially

justified without incriminating Alice further than for the lighter

offence of watching pornography at work.

It is true that the applications of this line of reasoning

depend on where Alice works. For example, if she works in a

critical infrastructure like a nuclear plant, the pornography data

might make her visible to Eve. However, it would probably

not be the case if Alice works for a bank or on an army base.

b) Immediate employability: The second advantage of

the protocol is that it can be used directly, without advanced

tools or the creation of a large source of entropy. With

the values shown previously, anyone could send a secure

email to their interlocutor, with a list of web sites, stream

indices, different times to access them, duration and nonces.

As the system can tolerate a 30 second difference, it is doable

manually without requiring automation of any task. The only

step left is agreeing on a starting frame and computing the

one-time pad, which can be done using off-the-shelf tools.

c) Public reaction to surveillance: Finally, although

government surveillance of citizens’ online activity is now

partially tolerated, the public is much more critical of it when

it comes to intimate subjects. The public outcry after Edward

Snowden’s revelations that government agencies stored and

accessed sensitive personal data is an example of this [17].

This strongly negative image would make it harder for most

countries’ agencies to receive the massive funding required to

store even a portion of the streams considered14, especially in

Europe after the implementation of new directives on the right

to be forgotten.

V. ISSUES AND EXTENSIONS

a) Encoding variability: One technical issue with the

protocol we proposed is that the video stream can be different

due to variations in the stream’s encoding. There are multiple

ways to address this, depending on Alice and Bob’s respective

constraints. The first is to hash the received frames (by groups

of a few dozen frames), exchange the hashes, and only keep

the common ones. However, this requires an additional inter-

mediate round of communication going from Bob to Alice.

An alternative is to use locality-sensitive hashing (LSH) [20]

to ensure that the stream is similar on both ends. This

strongly reduces entropy, but maintains the 2-round one-sided

communication structure.

b) Improving stream agreement: With the proposed pro-

tocol, if the number of streams k changes between the different

access times, the probability of disagreement is 1
c . This can be

further improved at a small cost to Alice and Bob. Instead of

checking k upon getting to the web site, they instead refresh

the counter and track its evolution for a minute. Many methods

then become available to Alice and Bob, for example, they can

simply keep track of the maximum and minimum reached by

k, and then use stream
(

x mod
⌊

kmax+kmin

2c

⌋)

. This increases

their agreement probability to at least γ2
×

c−1
c , where γ is

the proportion of overlap on the time they spent looking at the

evolution of k.

c) Increasing the fault tolerance: The protocol can only

correct one missing stream in its current state. It can po-

tentially be extended to tolerate more erroneous or missing

streams. Thanks to the checksums sent by Alice, Bob can

eliminate the erroneous streams — or even try to fix them,

which can be done with probability 1
2 if Bob’s starting frame

is different from Alice’s, but he recorded a bit more than the

expected duration. We can then reduce the problem to that

of fixing missing streams instead of erroneous ones. To go

14Of course, most intelligence budgets are not made entirely public.
Considering prices similar to that of the cheapest commercial alternatives
— such as Amazon Glacier [18] — storing data costs close to 0.005$/GB per
year. Considering a hypothetical stream at 100GB/s, the costs over the first
year would be more than $70 million, and the yearly costs would increase
to reach $1 billion over less than a decade. This makes it unaffordable for
all but the USA intelligence agencies, as very few countries have intelligence
budgets counted in billions of dollars, and none besides the USA have budgets
much larger than $5 billion [19].

further, one could use double error correction as in RAID 6

and derivative systems [21]. It would also be possible to use a

method based on Shamir’s secret sharing to create some simple

redundancy [22], by sending some additional data with Alice’s

second round message.

The question to ask is therefore: how many missing or

erroneous streams should be tolerated, compared to the number

of total streams? This proportion should be quite higher than

the proportion of public data that Eve is supposed to be able

to store, as otherwise it increases her chance of decrypting

the message. However, Alice can set a high fault tolerance

ratio if she has a single opportunity to send the message and

wants to be sure that it gets decrypted. This would still be

secure if it is a rare occurrence, as Eve would not have the

incentives to invest into the storage necessary to decrypt just

a few messages with strong redundancy.

d) Addressing already compromised encryption methods:

If we decide to push Aumann et al.’s fears of an all-powerful

adversary further, we can get a slightly different model that

is in practice quite realistic. It is imaginable that Eve could

already have functioning attack schemes against certain en-

cryption methods. This is consistent with recent events, such

as what happened with the NIST SP800-90 Dual Elliptic curve

PRNG [23]. In such a case, Alice can send two or three

pointers, each in its own message encrypted with a different

encryption algorithm. She should, however, be careful with

the parity checks to prevent the decryption of one source from

revealing the whole secret.

VI. DISCUSSION

The main contribution of this paper is a protocol to exfiltrate

secrets that can realistically be used today by people with

limited technical skills. It is a concern that our protocol can

be used by actors with nefarious intents as well as well-

meaning whistle-blowers. As such, it is not politically neutral.

We believe, however, that it would have limited effect on

governmental and industrial espionage. Indeed, those activi-

ties generally benefit from advanced technical expertise and

highly-refined toolkits due to the powerful financial interests

involved. On the other hand, whistle-blowers generally do not

benefit from such a support network and would be the primary

users of this technology.

One important limitation of this protocol is that it relies

on Alice and Bob having access to live pornography, which

presupposes two things. First, they must both have reliable

internet access. Second, they must also have legal access to

pornographic websites, or at least access without being an

anomaly. For example, citizens of most European countries

fulfil both conditions, whereas people in China would not be

able to use this protocol at all15 [25]. In states like Indonesia,

the situation is mixed, as despite the pornography being illegal

[26], there currently exists a wide pornography consumption

in the country [27]. That said, the lax enforcement of the

15As Chinese traffic is quite different on many criteria, including the
propensity to use certain multimedia content such as audio versus text
messages, alternatives might still be possible [24].

law and the fact that pornography is still widely accessed

would mostly allow the police to arbitrarily target certain

users. It is true that Alice and Bob might invite additional

scrutiny by looking at pornography from work, but two factors

limit this. First, this behaviour is far more widespread than

most people believe, as mentioned earlier. Second, the amount

of pornography needed is in fact pretty limited. Assuming

wide margins, encrypting 100MB of data would require about

150MB of pornographic videos, which could be obtained in a

few minutes16. For countries where the access to pornography

is limited, there are alternatives that satisfy the constraints

presented in this paper and could be used instead of our

protocol. For example, we could use slightly altered data from

P2P networks. We could also create a large entropy source by

introducing some noise into the content distribution system

of a P2P network. A similar idea could work by slightly

modifying the Scuttlebutt protocol [28]. Contrary to the system

we propose, these alternatives are not directly employable

today, as they require the cooperation of a large set of users.

Moreover, they would require a higher technical ability to

implement.

Other entropy source might also appear as the result of

two things: the evolution of our online behaviour and the

increasing traffic from the deployment of the Internet of

Things (IoT). As it stands today, the main sources of upstream

traffic that account for more than a few percent either have

widely repeated data (such as bittorrent, which can account

for up to 30% of upstream traffic), or they tend to be hard

to access (like VoIP) and decentralised (like social media

video uploads). Twitch is the main contender, but the average

compressibility of its feeds should be evaluated before it is

used. On the positive side, recent tendencies in hardware

costs for data storage and global throughput are currently

working in our advantage. If these trends continue, sources

that today represent a smaller percentage of global throughput

than pornography could become sufficient for our protocol in

the future. However,

Social behaviours online have garnered a lot of interest,

especially when it comes to security [29], [30] or to subjects

that can be taboo like pornography [31]. Besides just analysing

these behaviours, we were interested in how we could build se-

curity features based on the social behaviours without directly

affecting them. This is but one example and there might be

many more social effects awaiting to be used as primitives to

improve our security and privacy online.

REFERENCES

[1] C. Madar, The passion of Bradley Manning: The story behind the

Wikileaks whistleblower. Verso Books, 2013.
[2] F. Obermaier, B. Obermayer, V. Wormer, and W. Jaschensky, “About the

panama papers,” Süddeutsche zeitung, 2016.
[3] C. E. Shannon, “Communication theory of secrecy systems,” Bell system

technical journal, vol. 28, no. 4, pp. 656–715, 1949.

16If the data to be encrypted is much larger, one could potentially relax the
security requirements of using a one-time pad, and re-use it a few times by
splitting the data, at the risk of letting Eve probabilistically deciphering some
fraction of the data.

[4] Y. Aumann, Y. Z. Ding, and M. O. Rabin, “Everlasting security in
the bounded storage model,” IEEE Transactions on Information Theory,
vol. 48, no. 6, pp. 1668–1680, 2002.

[5] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” USA, Tech. Rep., 1996.

[6] U. M. Maurer, “Conditionally-perfect secrecy and a provably-secure
randomized cipher,” Journal of Cryptology, vol. 5, no. 1, pp. 53–66,
1992.

[7] Cisco, “Global cloud index: Forecast and methodology, 2016-2021,”
Cisco, Tech. Rep., 2018. [Online]. Available: https://web.archive.
org/web/20190320151956/https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/global-cloud-index-gci/white-paper-c11-
738085.html

[8] I. del Portillo, B. G. Cameron, and E. F. Crawley, “A technical compar-
ison of three low earth orbit satellite constellation systems to provide
global broadband,” in 69th International Astronautical Congress 2018,
2018.

[9] M. J. Fischer, M. Iorga, and R. Peralta, “A public randomness service,”
in Proceedings of the International Conference on Security and Cryp-

tography – SECRYPT. IEEE, 2011, pp. 434–438.
[10] P. Dykstra. (2001) Net activists launch campaign to jam ’echelon’.

[Online]. Available: https://web.archive.org/web/20040109233032/http://
edition.cnn.com/2001/TECH/internet/07/30/echelon.protest/index.html

[11] A. van den Bosch, T. Bogers, and M. de Kunder, “Estimating search en-
gine index size variability: a 9-year longitudinal study,” Scientometrics,
vol. 107, no. 2, pp. 839–856, 2016.

[12] Cisco, “Global visual networking index: Forecast and trends,
2017-2022,” Cisco, Tech. Rep., 2018. [Online]. Available: https://
web.archive.org/web/20190323025839/https://www.cisco.com/c/en/
us/solutions/collateral/service-provider/visual-networking-index-vni/
white-paper-c11-741490.html

[13] K. Kawaharada, K. Ohzeki, and U. Speidel, “Information and entropy
measurements on video sequences,” in 2005 5th International Con-

ference on Information Communications Signal Processing, 2005, pp.
1150–1154.

[14] C. Cullen, “Global internet phenomena report,” Sandvine, Tech. Rep.,
2018.

[15] L. Pressly, “Cam-girls: Inside the romanian sexcam industry,” BBC

News, Bucharest, 2017.
[16] T. McDonald. (2018) How many people watch porn at work will shock

you. [Online]. Available: https://web.archive.org/web/20180205170953/
https://sugarcookie.com/2018/01/watch-porn-at-work/

[17] K. Hill. (2014) NSA responds to Snowden claim that intercepted
nude pics ’routinely’ passed around by employees. [Online]. Available:
https://web.archive.org/web/20140720001012/https://www.forbes.com/
sites/kashmirhill/2014/07/17/nsa-responds-to-snowden-claim-that-
intercepted-nude-pics-routinely-passed-around-by-employees/

[18] “Amazon S3 Glacier pricing (Glacier API only),” 2019, accessed: 2019-
09-03. [Online]. Available: https://aws.amazon.com/glacier/pricing/

[19] C. Hippner, “A study into the size of the world’s intelligence industry,”
Master’s thesis, Mercyhurst College, 2009.

[20] M. Slaney and M. Casey, “Locality-sensitive hashing for finding nearest
neighbors [lecture notes],” IEEE Signal processing magazine, vol. 25,
no. 2, pp. 128–131, 2008.

[21] C. Jin, H. Jiang, D. Feng, and L. Tian, “P-code: A new raid-6 code with
optimal properties,” in Proceedings of the 23rd international conference

on Supercomputing. ACM, 2009, pp. 360–369.
[22] A. Shamir, “How to share a secret,” Communications of the ACM,

vol. 22, no. 11, pp. 612–613, 1979.
[23] T. C. Hales, “The NSA back door to NIST,” Notices of the AMS, vol. 61,

no. 2, pp. 190–19, 2013.
[24] J. Horwitz, “Stop texting right now and learn from

the Chinese: there’s a better way to message,” 2015.
[Online]. Available: https://qz.com/443441/stop-texting-right-now-and-
learn-from-the-chinese-theres-a-better-way-to-message/

[25] Z. Huang, “Watching porn on China’s censored internet is an
infinitely evolving cat-and-mouse game,” 2017. [Online]. Avail-
able: https://qz.com/1001366/how-the-chinese-watch-porn-on-chinas-
censored-internet/

[26] M. Lim, “The Internet and Everyday Life in Indonesia: A New Moral
Panic?” Bijdragen tot de taal-, land- en volkenkunde / Journal of the

Humanities and Social Sciences of Southeast Asia, vol. 169, no. 1, pp.
133 – 147, 2013. [Online]. Available: https://brill.com/view/journals/
bki/169/1/article-p133 8.xml

https://web.archive.org/web/20190320151956/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://web.archive.org/web/20190320151956/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://web.archive.org/web/20190320151956/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://web.archive.org/web/20190320151956/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://web.archive.org/web/20040109233032/http://edition.cnn.com/2001/TECH/internet/07/30/echelon.protest/index.html
https://web.archive.org/web/20040109233032/http://edition.cnn.com/2001/TECH/internet/07/30/echelon.protest/index.html
https://web.archive.org/web/20190323025839/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://web.archive.org/web/20190323025839/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://web.archive.org/web/20190323025839/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://web.archive.org/web/20190323025839/https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://web.archive.org/web/20180205170953/https://sugarcookie.com/2018/01/watch-porn-at-work/
https://web.archive.org/web/20180205170953/https://sugarcookie.com/2018/01/watch-porn-at-work/
https://web.archive.org/web/20140720001012/https://www.forbes.com/sites/kashmirhill/2014/07/17/nsa-responds-to-snowden-claim-that-intercepted-nude-pics-routinely-passed-around-by-employees/
https://web.archive.org/web/20140720001012/https://www.forbes.com/sites/kashmirhill/2014/07/17/nsa-responds-to-snowden-claim-that-intercepted-nude-pics-routinely-passed-around-by-employees/
https://web.archive.org/web/20140720001012/https://www.forbes.com/sites/kashmirhill/2014/07/17/nsa-responds-to-snowden-claim-that-intercepted-nude-pics-routinely-passed-around-by-employees/
https://aws.amazon.com/glacier/pricing/
https://qz.com/443441/stop-texting-right-now-and-learn-from-the-chinese-theres-a-better-way-to-message/
https://qz.com/443441/stop-texting-right-now-and-learn-from-the-chinese-theres-a-better-way-to-message/
https://qz.com/1001366/how-the-chinese-watch-porn-on-chinas-censored-internet/
https://qz.com/1001366/how-the-chinese-watch-porn-on-chinas-censored-internet/
https://brill.com/view/journals/bki/169/1/article-p133_8.xml
https://brill.com/view/journals/bki/169/1/article-p133_8.xml

[27] G. M. Hald and T. W. Mulya, “Pornography consumption and non-
marital sexual behaviour in a sample of young Indonesian university
students,” Culture, Health & Sexuality, vol. 15, no. 8, pp. 981–996,
2013, pMID: 23782270. [Online]. Available: https://doi.org/10.1080/
13691058.2013.802013

[28] R. van Renesse, D. Dumitriu, V. Gough, and C. Thomas, “Efficient
reconciliation and flow control for anti-entropy protocols,” in Proceed-

ings of the 2nd Workshop on Large-Scale Distributed Systems and

Middleware, ser. LADIS ’08. New York, NY, USA: ACM, 2008, pp.
1–7.

[29] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F.
Cranor, P. G. Kelley, R. Shay, and B. Ur, “Measuring password guess-
ability for an entire university,” in Proceedings of the 2013 ACM SIGSAC

Conference on Computer Communications Security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 173–186.

[30] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
web of password reuse.” in NDSS, vol. 14, 2014, pp. 23–26.

[31] A. Mazières, M. Trachman, J.-P. Cointet, B. Coulmont, and C. Prieur,
“Deep tags: toward a quantitative analysis of online pornography,” Porn

Studies, vol. 1, no. 1-2, pp. 80–95, 2014.

VII. APPENDIX

The following algorithms show the normal version of the

protocol with a limited amount of error correction (assuming

that the streams are recorded in a similar fashion, otherwise

the extensions of Section IV have to be used).

The first algorithm is used by Alice to send Bob the pointers.

They then both execute the recording algorithm. Alice then

launches her second round algorithm and sends the result to

Bob, who obtains the original data through his decrypting

algorithm.

Data: Size of secret data LDATA, desired number of streams n
L := ⌈LDATA/256⌉ × 256
/* Padding the length for simplification */

nonce = 2 × log2 L
/* Creating a nonce of appropriate size to end up

agreeing on the same start frame. It should also

have a minimum required size if the secret data is

short. */

c := 50
/* c should be higher than the average variation in

number of streams) */

for i from 1 to n do

Pointer[i].URL := random pornographic website url
Pointer[i].index := Random(100000)
Pointer[i].nonce := nonce
Pointer[i].quotient := c
Pointer[i].duration := L
Pointer[i].time := reasonable time/date for Bob to start recording

end

Send Bob (n, Pointer[]) using any asymmetric cryptography method.

Algorithm 1: Alice first round algorithm

Data: number of streams n, Pointer list Pointer[]
for i from 1 to n do

Go to Pointer[i].URL
At time Pointer[i].time, refresh the page
k := total number of streams

α := Pointer[i].index mod ⌊ k
Pointer[i].quotient

⌋

Stream[i] := record stream number α for Pointer[i].duration
end

Algorithm 2: Common recording algorithm

Data: Secret data DATA, number of streams n, Streams Stream[],
Pointer list Pointer[], stream length L

begin

Good str := []
for i from 1 to n do

Trunc str[i] :=TRUNCATE(Stream[i], Pointer[i].start, L)

/* Truncating each stream to the same number

of bits by looking for the first hashed

segment of 256 bits that is compatible with

the start nonce. */

if LENGTH(Trunc str[i]) = L then

PUSH(Good str[], Trunc str[i])
/* Removing the streams with insufficient

information (or the ones which failed to

record). */

end

m :=LENGTH(Good str[])
Parity str := 0
for i from 1 to m do

Parity str :=XOR(Parity str,Good str[i])
Check sum[i] :=SHA1(Good str[i])

end

One Time Pad := []
for j from 0 to L/256 − 1 do

Block[j] := []
for i from 1 to m do

PUSH(Block[j], Good stream[i][256 × j], 256 bits)
end

PUSH(One Time Pad, SHA-256(Block[j])
end

Encrypted Data :=XOR(DATA,One Time Pad)
SEND(m,Check sum[], Parity str, Encrypted Data)

end

Algorithm 3: Alice second round algorithm

Data: Initial number of streams n, Pointer list Pointer[], Received number
of streams m, List of checksums Check sum[], Recorded streams
Stream[], Parity stream Parity str, stream length L

begin

Good str := []
Final str := []
for i from 1 to n do

Trunc str[i] :=TRUNCATE(Stream[i], Pointer[i].start, L)

if LENGTH(Trunc str[i]) = L then

PUSH(Good str[], Trunc str[i])
end

k1 :=LENGTH(Good str[])
for i from 1 to k do

if SHA1(Good str[i]) ∈ Check sum[] then

PUSH(Final str[], Good str[i])
end

k2 :=LENGTH(Final str[])
if k2 < m then

if k2 < m − 1 then
return Failure

else

Final str[m] := Parity str
for i from 1 to m − 1 do

Final str[m]:=XOR(Final str[m], F inal str[i])

end

/* This section seeks to correct one

missing stream, or returns failure if

more than one common stream is missing.

*/
end

One Time Pad := []
for j from 0 to L/256 − 1 do

Block[j] := []
for i from 1 to m do

PUSH(Block[j], F inal stream[i][256 × j], 256 bits)
end

PUSH(One Time Pad, SHA-256(Block[j])
end

Decrypted Data :=XOR(Encrypted Data,One Time Pad)
return Decrypted Data

end

Algorithm 4: Bob decrypting algorithm.

https://doi.org/10.1080/13691058.2013.802013
https://doi.org/10.1080/13691058.2013.802013

	Model and intuition
	Agents
	Intuition behind the protocol

	Entropy sources
	Constraints
	Original sources
	Multimedia sources

	Protocol to use the live pornography infrastructure
	Protocol overview
	Making a canonical pointer

	Social aspects
	Issues and extensions
	Discussion
	References
	Appendix

