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In this paper, we investigate the existence of a class of globally attractive solutions of the Cauchy fractional problem with the ψ-Hilfer fractional derivative using the measure of noncompactness. An example is given to illustrate our theory.

Introduction

Consider the following Cauchy fractional problem H D ν,η;ψ 0 + θ(t) = u(t, θ(t)), t ∈ (0, ∞)

I 1-γ;ψ 0 + θ(0) = θ 0 (1.1)
where H D ν,η;ψ 0 + θ(•) is the ψ-Hilfer fractional derivative of order 0 < ν < 1 and type 0 ≤ η ≤ 1, I 1-γ;ψ 0 + θ(•) is the fractional integral of order γ, with 0 ≤ γ < 1 with respect to another function, u : [0, ∞) × Ω → Ω is a continuous function satisfying some conditions and θ 0 is a element of the Banach space.

The theory of fractional differential equations can be found in for example [START_REF] Abbas | Global attractivity for Volterra type Hadamard fractional integral equations in Fréchet spaces[END_REF][START_REF] Agarwal | Mittag-Leffler stability for noninstantaneous impulsive Caputo fractional differential equations with delays[END_REF][START_REF] Gu | Existence of mild solution for evolution equation with Hilfer fractional derivative[END_REF][START_REF] Sousa | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF][START_REF] Sousa | Stability of ψ-Hilfer impulsive fractional differential equations[END_REF][START_REF] Sousa | On the existence and stability for noninstantaneous impulsive fractional integrodifferential equation[END_REF][START_REF] Sousa | Stability of the fractional Volterra integro-differential equation by means of ψ-Hilfer operator[END_REF][START_REF] Wang | A general class of noninstantaneous impulsive fractional differential inclusions in Banach spaces[END_REF][START_REF] Zhou | Existence and Attractivity for Fractional Evolution Equations[END_REF]. Existence, uniqueness and Ulam-Hyers stabilities of solutions of differential and integrodifferential equations was studied using the ψ-Hilfer fractional derivative in [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Sousa | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF][START_REF] Sousa | Stability of ψ-Hilfer impulsive fractional differential equations[END_REF][START_REF] Oliveira | Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations[END_REF][START_REF] Sousa | On the existence and stability for noninstantaneous impulsive fractional integrodifferential equation[END_REF][START_REF] Sousa | Stability of the fractional Volterra integro-differential equation by means of ψ-Hilfer operator[END_REF][START_REF] Sousa | On the Ulam-Hyers stabilities of the solutions of ψ-Hilfer fractional differential equation with abstract Volterra operator[END_REF]. In 2013 Hernandez et al. [START_REF] Hernández | Existence results for abstract fractional differential equations with nonlocal conditions via resolvent operators[END_REF], proposed a different approach to abstract fractional differential equations if one considers the existence of nonlocal mild solutions. In 2018, Sousa and Oliveira [START_REF] Sousa | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF], investigated the Ulam-Hyers stability of an fractional integrodifferential equation using the Banach fixed point theorem and in 2019, Liu et al. [START_REF] Liu | Ulam-Hyers-Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations[END_REF] considered the ψ-Hilfer fractional derivative, and investigated the Ulam-Hyers stability of a fractional delay differential equation. We also refer the reader to [START_REF] Agarwal | Non-instantaneous impulses in Caputo fractional differential equations[END_REF][START_REF] Agarwal | Mittag-Leffler Stability for impulsive caputo fractional differential equations[END_REF][START_REF] Deng | Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations[END_REF][START_REF] Hernández | On recent developments in the theory of abstract differential equations with fractional derivatives[END_REF][START_REF] Wang | A general class of noninstantaneous impulsive fractional differential inclusions in Banach spaces[END_REF][START_REF] Sousa | On the Ulam-Hyers stabilities of the solutions of ψ-Hilfer fractional differential equation with abstract Volterra operator[END_REF][START_REF] Sousa | On the fractional functional differential equation with abstract Volterra operator[END_REF]. Attractivity of mild solutions of fractional differential and integrodifferential equations was considered in [START_REF] Abbas | Global attractivity for Volterra type Hadamard fractional integral equations in Fréchet spaces[END_REF][START_REF] Abbas | Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations[END_REF][START_REF] Chen | Attractivity of fractional functional differential equations[END_REF][START_REF] Deng | Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations[END_REF][START_REF] Hernández | Existence results for abstract fractional differential equations with nonlocal conditions via resolvent operators[END_REF][START_REF] Losada | On the attractivity of solutions for a class of multi-term fractional functional differential equations[END_REF][START_REF] Wang | Existence and attractivity of global solutions for a class of fractional quadratic integral equations in Banach space[END_REF]. Chang et al. [START_REF] Chang | Fractional differential equations of Sobolev type with sectorial operators[END_REF], investigated the asymptotic decay of some operators via fixed point theorems and they considered the existence and uniqueness for a class of mild solutions of Sobolev fractional differential equations. In 2008 Banas and O'Regan [START_REF] Banaś | On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order[END_REF] investigated the existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order in Banach spaces and in 2012 Chen et al. [START_REF] Chen | Global attractivity for nonlinear fractional differential equations[END_REF] considered the global attractivity of solutions of fractional differential equations in the Riemann-Liouville fractional derivative sense, using the Krasnoselskii fixed-point theorem and the Schauder fixed point theorem. Motivated by the above we will investigate the existence of globally attractivity solutions to the ψ-Hilfer Cauchy fractional problem (1.1) (paying attention to some particular cases of the ψ-Hilfer fractional derivative) . This paper is organized as follows. In section 2 we present the definitions of the ψ-Riemann-Liouville fractional integral and the ψ-Hilfer fractional derivative and some important results. In section 3 we investigate the globally attractivity existence of solutions of the Cauchy fractional problem. An example is given to illustrate our results.

Preliminaries

Let J = [a, b] (-∞ < a < b < +∞) be a finite interval of R and Ω a Banach space.
The space C(J, Ω) of continuous functions θ on J has the norm given by [START_REF] Sousa | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF][START_REF] Sousa | On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator[END_REF] θ := sup t∈J |θ(t)| .

We have n-times absolutely continuous functions given by

AC n (J, Ω) = {u : J -→ Ω, u (n-1) ∈ AC(J, Ω)}.
In particular, AC 1 (J, Ω) = AC(J, Ω).

The weighted space C γ,ψ (J, Ω) of functions θ on (a, b] is defined by [START_REF] Sousa | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF][START_REF] Sousa | On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator[END_REF] 

C γ,ψ (J, Ω) = {θ : (a, b] → Ω, (ψ(t) -ψ(a)) γ θ(t) ∈ C(J, Ω)}
with 0 ≤ γ < 1 and the norm is given by

θ C γ,ψ (J,Ω) = (ψ(t) -ψ(a)) γ θ(t) C γ,ψ (J,Ω) = max t∈J |(ψ(t) -ψ(a)) γ θ(t)| •
The weighted space C n γ,ψ (J, Ω) of functions θ on (a, b] is defined by

C n γ,ψ (J, Ω) = {θ : (a, b] → Ω, θ(t) ∈ C n-1 (J, Ω), θ (n) ∈ C γ,ψ (J, Ω)}
with 0 ≤ γ < 1 and the norm is given by

θ C n γ,ψ (J,Ω) = n-1 k=0 θ (k) C(J,Ω) + θ (n) C γ,ψ (J,Ω)
•

For n = 0, we have C 0 γ,ψ (J, Ω) = C γ,ψ (J, Ω) and

C ν,η γ,ψ (J, Ω) = θ ∈ C γ,ψ (J, Ω), H D ν,η;ψ a + θ ∈ C γ,ψ (J, Ω) with γ = ν + η(1 -ν).
Let (a, b) (-∞ ≤ a < b ≤ +∞) and ν > 0. Also let ψ(t) be an increasing and positive monotone function on (a, b], having a continuous derivative ψ (t) on (a, b). The ψ-Riemann-Liouville fractional integral (left-sided) of a function θ with respect to another function ψ on [a, b] is defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] 

I ν,ψ a + θ(t) = 1 Γ(ν) t a Θ ν-1 ψ (s, t)θ(s) ds. (2.1)
where Θ ν-1 ψ (s, t) := ψ (s)(ψ(t)-ψ(s)) ν-1 . Similarly one can define the ψ-Riemann-Liouville fractional integral (right-sided).

Let n -1 < ν < n, with n ∈ N, J = [a, b] is an interval such that -∞ ≤ a < b ≤ +∞ and θ, ψ ∈ C n (J, R) are two functions such that ψ is increasing and ψ(t) = 0, for all t ∈ J. The ψ-Hilfer fractional derivative (left-sided), denoted by H D ν,η;ψ a + (•) of a function θ of order ν and type 0 ≤ η ≤ 1, is defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] 

H D ν,η;ψ a + θ(t) = I η(n-ν);ψ a + 1 ψ (t) d dt n I (1-η)(n-ν);ψ a + θ(t) (2.2) 
where I ν;ψ a + (•) is the fractional integral given in (2.1). Similarly one can define the ψ-Hilfer fractional derivative (right-sided).

Proposition 2.1 [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF] Let ν > 0 and δ > 0. If θ(t) = (ψ(t) -ψ(0)) δ-1 then

I ν;ψ 0 + θ(t) = Γ(δ) Γ(ν + δ) (ψ(t) -ψ(0)) ν+δ-1 • (2.3) Proposition 2.2 [17] Let ν > 0, then H D ν,η;ψ 0 + (ψ(t) -ψ(0)) = 0 (2.4) with H D ν,η;ψ 0 + (•) is the ψ-Hilfer fractional derivative.
Assumes that the operator u : [0, ∞) × Ω → Ω is continuous. The Cauchy fractional problem (1.1) is equivalent to the integral Volterra equation,

θ(t) = (ψ(t) -ψ(0)) γ-1 Γ(γ) θ 0 + 1 Γ(ν) t 0 ψ (s)(ψ(t) -ψ(s)) ν-1 u(s, θ(s)) ds (2.5) with t > 0. Let C 0 γ,ψ ([t 0 , ∞), Ω) = {θ ∈ C γ,ψ ([t 0 , ∞), Ω); lim t→∞ |θ(t)| = 0} • Note C 0 γ,ψ ([0, ∞), Ω
) is a Banach space. We need also the following generalized Arzelà-Ascoli theorem [START_REF] Wei | A generalization and applications of Ascoli-Arzela theorem[END_REF].

Lemma 2.3 [29]

The set H ⊂ C 0 ([0, ∞), Ω) is relatively compact if and only if the following conditions hold:

1. for any T > 0, the function in H are equicontinuous on [0, T ];

2. for any t ∈ [0, ∞), H(t) = {θ(t) : θ ∈ H} is relatively compact in Ω; 3. lim t→∞ |θ(t)| = 0 uniformly for θ ∈ H.
Lemma 2.4 [START_REF] Gu | Existence of mild solution for evolution equation with Hilfer fractional derivative[END_REF][START_REF] Zhou | Basic Theory of Fractional Differential Equations World Scientific Publishing Company[END_REF] The noncompact measure µ (•) satisfies:

1. If for all bounded subsets B 1 , B 2 of Ω implies µ (B 1 ) ≤ µ (B 2 ); 2. If µ ({x} ∪ B) = µ (B)
for every x ∈ Ω and every nonempty subset B ⊆ Ω;

3. µ (B) = 0 if and only if B is relatively compact in Ω; 4. µ (B 1 + B 2 ) ≤ µ (B 1 ) + µ (B 2 ), where B 1 + B 2 = {x + y; x ∈ B 1 , y ∈ B 2 }; 5. µ (B 1 ∪ B 2 ) ≤ max {µ (B 1 ) , µ (B 2 )}; 6. µ (λB) ≤ |λ| µ (B) for any λ ∈ R. For any W ⊂ C (J, Ω), we define t 0 W (s) ds = t 0 u (s) ds : u ∈ W , for t ∈ J.
(2.6) Property 2.5 [START_REF] Gu | Existence of mild solution for evolution equation with Hilfer fractional derivative[END_REF][START_REF] Zhou | Basic Theory of Fractional Differential Equations World Scientific Publishing Company[END_REF] If W ⊂ C(J, Ω) is bounded and equicontinuous, them coW ⊂ C(J, Ω)

is also bounded and equicontinuous.

Property 2.6 [START_REF] Gu | Existence of mild solution for evolution equation with Hilfer fractional derivative[END_REF][START_REF] Zhou | Basic Theory of Fractional Differential Equations World Scientific Publishing Company[END_REF] 

If W ⊂ C(J, Ω) is bounded and equicontinuous, then t → µ (W (t))
is continuous on J, and

µ (W ) = max t∈J µ (W (t)) , µ t 0 W (s) ds ≤ t 0 µ (W (s)) ds, for t ∈ J.
Property 2.7 [START_REF] Gu | Existence of mild solution for evolution equation with Hilfer fractional derivative[END_REF][START_REF] Zhou | Basic Theory of Fractional Differential Equations World Scientific Publishing Company[END_REF] Let {u n } ∞ n=1 be a sequence of Bochener integrable functions from J in to Ω with |u n (t)| ≤ m (t) for almost all t ∈ J and every n ≥ 1, where m ∈ L (J, R + ),

then the function Φ (t) = µ ({u n (t)} ∞ n=1 ) belongs to L (J, R + ) and satisfies µ t 0 u n (s) ds : n ≥ 1 ≤ 2 t 0 Φ (s) ds.
Property 2.8 [START_REF] Gu | Existence of mild solution for evolution equation with Hilfer fractional derivative[END_REF][START_REF] Zhou | Basic Theory of Fractional Differential Equations World Scientific Publishing Company[END_REF] If W is bounded, then for each ε > 0, there is a sequence

{u n } ∞ n=1 ⊂ W , such that µ (W ) ≤ µ ({u n (t)} ∞ n=1 ) + ε.
3 Attractivity with ψ-Hilfer fractional derivative

In this section, we will first discuss two important results, namely, Lemma 3.1 and Lemma 3.4. Then we investigate the existence of attractive solutions of the Cauchy fractional problem.

Now we introduce the following hypothesis:

(C1) |u(t, θ)| ≤ L(ψ(t) -ψ(0)) -ξ 1 |θ| ξ 2 for t ∈ (0, ∞) and θ ∈ Ω, L ≥ 0, ν < ξ 1 < 1 and ξ 2 ∈ R;
(C2) There exists a constant k > 0 such that for any bounded set E ⊂ Ω µ(u(t, E)) ≤ kµ(E); here µ(•) denotes the Hausdorff measure of non compactness.

For all θ ∈ C γ,ψ ([0, ∞), Ω) and for a given n ∈ N + , we define the operator T by

T (θ) (t) = T 1 (θ) (t) + T 2 (θ) (t)
where

T 1 (θ) (t) = (ψ (t) -ψ (0)) + 1 n γ-1 θ 0 Γ (γ) (3.1) 
and

T 2 (θ) (t) = 1 Γ (ν) t 0 Θ ν-1 ψ (s, t) u (s, θ (s)) ds, (3.2) 
with t ∈ [0, ∞).

As 0 < ν < ξ 2 < 1, we can choose ξ > 0 small enough such that ν + ξ -

1 < 0, 1 -ξ 1 -ξξ 2 > 0 and ν + ξ -ξ 1 -ξξ 2 < 0. Note that |(T θ)(t)| = (ψ(t) -ψ(0)) + 1 n γ-1 Γ(γ) θ 0 + 1 Γ(ν) t 0 Θ ν-1 ψ (s, t)u(s, θ(s)) ds (3.3) ≤ (ψ(t) -ψ(0)) + 1 n γ-1 Γ(γ) |θ 0 | + 1 Γ(ν) t 0 Θ ν-1 ψ (s, t) |u(s, θ(s))| ds ≤ (ψ(t) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + 1 Γ(ν) t 0 Θ ν-1 ψ (s, t)L(ψ(s) -ψ(0)) -ξ 1 |θ(s)| ξ 2 ds ≤ (ψ(t) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + 1 Γ(ν) t 0 Θ ν-1 ψ (s, t)L(ψ(s) -ψ(0)) -ξ 1 -ξξ 2 ds ≤ (ψ(t) -ψ(0)) + 1 n γ+ξ-1 |θ 0 | Γ(γ) + L Γ(ν) t 0 Θ ν-1 ψ (s, t)(ψ(s) -ψ(0)) -ξ 1 -ξξ 2 ds .
Choosing δ = ξξ 2 -ξ 1 + 1 and substituting in (2.3) (Proposition 2.1), we get

I ν,ψ 0 + θ(t) = Γ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 -ξξ 2 ) (ψ(t) -ψ(0)) ν-ξ 1 -ξξ 2 •
Then, choosing T > 0 sufficiently large, from (3.3), we have

|T (θ)(t)| ≤ (ψ(t) -ψ(0)) + 1 n γ+ξ-1 |θ 0 | Γ(γ) + L Γ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 -ξξ 2 ) (ψ(t) -ψ(0)) ν-ξ 1 -ξξ 2 ≤ (ψ(t) -ψ(0)) + 1 n γ+ξ-1 |θ 0 | Γ(γ) + L Γ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 -ξξ 2 ) (ψ(t) -ψ(0)) ν-ξ 1 -ξξ 2 +ξ ≤ 1 (3.4)
for all t ≥ T .

Define a set Q ξ;ψ as follows

Q ξ;ψ = θ(t)|θ ∈ C γ,ψ ([0, ∞), Ω); (ψ(t) -ψ(0)) ξ θ(t) ≤ 1, t ≥ T . (3.5) 
Note that by choosing ψ(t) = t in (3.5), we have

Q ξ = Q ξ,t = θ(t)|θ ∈ C γ,t ([0, ∞), Ω); t ξ θ(t) ≤ 1, t ≥ T
and these sets are particular cases of fractional derivatives (namely Riemann-Liouville and Caputo).

Choosing ψ(t) = t ρ , ρ > 0 in (3.5), we get

Q ξ = Q ξ,t ρ = θ(t)|θ ∈ C γ,t ρ ([0, ∞), Ω); t ξρ θ(t) ≤ 1, t ≥ T
and these sets are particular cases of fractional derivatives (namely Katugampola and Caputo-type).

Note

Q ξ;ψ = ∅ and Q ξ;ψ is a closed convex subset of C 0 γ,ψ ([0, ∞), Ω). Lemma 3.1 Assume (C1) holds. Then, {T θ; θ ∈ Q ξ,ψ } is equicontinuous and lim t→∞ |T θ(t)| = 0 uniformly for θ ∈ Q ξ,ψ .
Proof: As ν -ξ 1 -ξξ 2 < 0, then there exists ε > 0 and T 1 > 0 large enough such that

(ψ(t) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) < ε 4 and L Γ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 -ξξ 2 ) (ψ(t) -ψ(0)) ν 1 -ξ 1 -ξξ 2 < ε 4 for t ≥ T 1 .
For each θ ∈ Q ξ,ψ and t 1 , t 2 ≥ T 1 , we have

|(T θ)(t 2 ) -(T θ)(t 1 )| = (ψ(t 2 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + 1 Γ(ν) t 2 0 Θ ν-1 ψ (s, t 2 ) u(s, θ(s)) ds -(ψ(t 1 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) - 1 Γ(ν) t 1 0 Θ ν-1 ψ (s, t 1 ) u(s, θ(s)) ds ≤ (ψ(t 2 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + (ψ(t 1 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + + 1 Γ(ν) t 2 0 Θ ν-1 ψ (s, t 2 ) |u(s, θ(s))| ds + 1 Γ(ν) t 1 0 Θ ν-1 ψ (s, t 1 ) |u(s, θ(s))| ds ≤ (ψ(t 2 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + (ψ(t 1 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + + 1 Γ(ν) t 2 0 Θ ν-1 ψ (s, t 2 ) (ψ(s) -ψ(0)) -ξ 1 -ξξ 2 ds + 1 Γ(ν) t 1 0 Θ ν-1 ψ (s, t 1 ) (ψ(s) -ψ(0)) -ξ 1 -ξξ 2 ds ≤ (ψ(t 2 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + (ψ(t 1 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + +L Γ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 -ξξ 2 ) (ψ(t 2 ) -ψ(0)) ν-ξ 1 -ξξ 2 + +L Γ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 -ξξ 2 ) (ψ(t 1 ) -ψ(0)) ν-ξ 1 -ξξ 2 ≤ (ψ(t 2 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + (ψ(t 1 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + +L Γ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 -ξξ 2 ) (ψ(t 2 ) -ψ(0)) ν-ξ 1 -ξξ 2 + (ψ(t 1 ) -ψ(0)) ν-ξ 1 -ξξ 2 < ε 4 + ε 4 + ε 4 + ε 4 = ε, (3.6) 
and then, we have

|(T θ)(t 2 ) -(T θ) (t 1 )| < ε. For 0 ≤ t 1 < t 2 ≤ T 1 we have |(T θ)(t 2 ) -(T θ)(t 1 )| ≤ (ψ(t 2 ) -ψ(0)) + 1 n γ-1 -(ψ(t 1 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + 1 Γ(ν) t 2 0 Θ ν-1 ψ (s, t 2 ) u(s, θ(s)) ds - t 1 0 Θ ν-1 ψ (s, t 1 ) u(s, θ(s)) ds ≤ (ψ(t 2 ) -ψ(0)) + 1 n γ-1 -(ψ(t 1 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + 1 Γ(ν) t 2 0 ψ (s)[(ψ(t 2 ) -ψ(s)) ν-1 -(ψ(t 1 ) -ψ(s)) ν-1 ] |u(s, θ(s))| ds + 1 Γ(ν) t 2 t 1 Θ ν-1 ψ (s, t 2 ) |u(s, θ(s))| ds ≤ (ψ(t 2 ) -ψ(0)) + 1 n γ-1 -(ψ(t 1 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + M Γ(ν) t 2 0 ψ (s)[(ψ(t 2 ) -ψ(s)) ν-1 -(ψ(t 1 ) -ψ(s)) ν-1 ] ds + M Γ(ν) t 2 t 1 Θ ν-1 ψ (s, t 2 ) ds ≤ (ψ(t 2 ) -ψ(0)) + 1 n γ-1 -(ψ(t 1 ) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + M Γ(ν) (ψ(t 2 ) -ψ(t 1 )) ν -(ψ(t 2 ) -ψ(0)) ν ν + (ψ(t 1 ) -ψ(0)) ν ν + M Γ(ν) (ψ(t 2 ) -ψ(t 1 )) ν ν
which goes to zero as t 2 → t 1 ; here

M = sup t∈[0,t 2 ] x∈S ξ,ψ |u(t, θ(t))| .
Similarly, for t 1 < T 1 < T 2 we have

|(T θ)(t 2 ) -(T θ)(t 1 )| = |T θ(t 2 ) -T θ(t 1 ) + T θ(T 1 ) -T θ(t 1 )| ≤ |T θ(t 2 ) -T θ(T 1 )| + |T θ(T 1 ) -T θ(t 1 )| → 0 as t 2 → t 1 .
Thus {T θ : θ ∈ Q ξ,ψ } equicontinuous. Now, we show lim t→∞ |(T θ)(t)| = 0 uniformly for θ ∈ Q ξ,ψ . We have,

|T θ(t)| = (ψ(t) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + 1 Γ(ν) t 0 Θ ν-1 ψ (s, t) u(s, θ(s)) ds ≤ (ψ(t) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + 1 Γ(ν) t 0 Θ ν-1 ψ (s, t) (ψ(s) -ψ(0)) -ξ 1 -ξξ 2 ds ≤ (ψ(t) -ψ(0)) + 1 n γ-1 |θ 0 | Γ(γ) + LΓ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 -ξξ 2 ) (ψ(t) -ψ(0)) ν-ξ 1 -ξξ 2
which goes to zero for t → ∞ (note 0 < γ < 1 and ν -ξ 1 -ξξ 2 + ξ < 0). Proof: First we prove

T takes Q ξ,ψ into Q ξ,ψ . For θ ∈ Q ξ,ψ and from Lemma 2.3, we see that T θ ∈ C γ,ψ ([0, ∞), Ω).
Using the inequality (3.4) we have

(ψ(t) -ψ(0)) ξ (T θ)(t) = (ψ(t) -ψ(0)) ξ (ψ(t) -ψ(0) + 1 n γ-1 |θ 0 | Γ(γ) + 1 Γ(ν) t 0 Θ ν-1 ψ (s, t) u(s, θ(s)) ds ≤ (ψ(t) -ψ(0)) ξ (ψ(t) -ψ(0) + 1 n γ-1 |θ 0 | Γ(γ) + 1 Γ(ν) t 0 Θ ν-1 ψ (s, t 1 ) |u(s, θ(s))| ds ≤ (ψ(t) -ψ(0)) ξ (ψ(t) -ψ(0) + 1 n γ-1 |θ 0 | Γ(γ) 1 Γ(ν) t 0 Θ ν-1 ψ (s, t 1 ) (ψ(s) -ψ(0)) -ξξ 2 -ξ 1 ds ≤ (ψ(t) -ψ(0) + 1 n ξ+γ-1 |θ 0 | Γ(γ) + LΓ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 -ξξ 2 ) (ψ(t) -ψ(0)) ν+ξ-ξ 1 -ξξ 2 ≤ 1 for t ≥ T . Thus, we have (ψ(t) -ψ(0)) ξ T θ(t) ≤ 1, so T takes Q ξ,ψ into Q ξ,ψ (T Q ξ,ψ ⊂ Q ξ,ψ ). Now we prove T is continuous in Q ξ,ψ . Now, for θ m , θ ∈ Q ξ,ψ , m = 1, 2, 3, . . . with lim m→∞ θ m = θ, we prove T θ m → T θ, as m → ∞. For ∀ ε > 0, there exists T 2 > 0 large enough such that (ψ(T 2 ) -ψ(0)) γ < ε 2 with γ = ν + η(1 -ν), and 
LΓ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 -ξξ 2 ) (ψ(T 2 ) -ψ(0)) ν-ξ 1 -ξξ 2 < ε 2 •
Then, for t > T 2 , we have

|(ψ(t) -ψ(0)) γ (T θ m (t) -T θ(t))| = (ψ(t) -ψ(0)) γ 1 Γ(ν) t 0 Θ ν-1 ψ (s, t) u(s, θ m (s)) ds - 1 Γ(ν) t 0 Θ ν-1 ψ (s, t) u(s, θ(s)) ds ≤ (ψ(t) -ψ(0)) γ 1 Γ(ν) t 0 Θ ν-1 ψ (s, t 1 ) (|u(s, θ m (s))| + |u(s, θ(s))|) ds ≤ 2L(ψ(t) -ψ(0)) γ Γ(ν) t 0 Θ ν-1 ψ (s, t 1 ) (ψ(s) -ψ(0)) ξξ 2 -ξ 1 ds ≤ 2L(ψ(T 2 ) -ψ(0)) γ (ψ(T 2 ) -ψ(0)) ν-ξ 1 -ξξ 2 Γ(1 -ξ 1 -ξξ 2 ) Γ(1 + ν -ξ 1 + ξξ 2 ) < 2 ε 2 ε 2 = ε .
For 0 < t ≤ T 2 we have

|(ψ(t) -ψ(0)) γ (T x m (t) -T θ(t))| (3.7) = (ψ(t) -ψ(0)) γ 1 Γ(ν) t 0 Θ ν-1 ψ (s, t) u(s, x m (s)) ds- 1 Γ(ν) t 0 Θ ν-1 ψ (s, t) u(s, θ(s)) ds ≤ (ψ(t) -ψ(0)) γ 1 Γ(ν) t 0 Θ ν-1 ψ (s, t) |u(s, θ m (s)) -u(s, θ(s))| ds .
Taking the limit as m → ∞ on both sides of (3.7) and using the Lebesgue dominated convergence theorem, we get Proof: Note T : Q ξ,ψ → Q ξ,ψ is bounded, continuous (see Lemma 3.4). Also {T θ : θ ∈ Q ξ,ψ } is equicontinuous and lim t→∞ |T θ(t)| = 0 uniformly for x ∈ Q ξ,ψ (see Lemma 3.1), in particular {T 2 θ : θ ∈ Q ξ,ψ }.

|(ψ(t) -ψ(0)) γ [T θ m (t) -T θ(t)]| → 0• Thus T θ m -T θ C γ,ψ → 0 as m → ∞ so T is continuous, which concludes the proof. 2 Lemma 3.5 Assume (C1) holds with ψ (t) = t. Then, T takes Q ξ,t into Q ξ,

Let's check that for any

t ∈ [0, ∞), {(T θ)(t) : θ ∈ Q ξ,ψ } is relatively compact in Ω by using (C2). For each bounded subset Q 0 ⊂ Q ξ,ψ , set T 1 (Q 0 ) = T 2 (Q 0 ) , T n (Q 0 ) = T 2 co T n-1 (Q 0 ) , n = 2, 3, ...
where co is closure convex hull [START_REF] Cao | Nonlocal fractional functional differential equations with measure of noncompactness in Banach space[END_REF].

Using the condition (C2), Property 2.8 and Property 2.7, for any ε > 0, there is a sequence θ

(1) n ∞ n=1 such that µ T 1 (Q 0 (t)) = µ (T 2 (Q 0 )) ≤ 2µ 1 Γ (ν) t 0 Θ ν-1 ψ (s, t) u s, θ (1) n (s) ∞ n=1 ds + ε ≤ 4 Γ (ν) t 0 Θ ν-1 ψ (s, t) µ u s, θ (1) n (s) ∞ n=1 ds + ε ≤ 4k Γ (ν) µ (Q 0 ) t 0 ψ (s) (ψ (t) -ψ (s)) ν-1 ds + ε = 4k Γ (ν + 1) µ (Q 0 ) (ψ (t) -ψ (0)) ν + ε.
Since ε > 0 is arbitrary, we get

µ T 1 (Q 0 (t)) ≤ 4k Γ (ν + 1) µ (Q 0 ) (ψ (t) -ψ (0)) ν .
By means of the Property 2.7 and Property 2.8, for any ε > 0, there is a sequence θ

(2) n ∞ n=1 ⊂ co T 1 (Q 0 ) such that µ T 2 (Q 0 (t)) = µ T 2 co T 1 (Q 0 (t)) ≤ 2µ 1 Γ (ν) t 0 Θ ν-1 ψ (s, t) u s, θ (2) n (s) ∞ n=1 ds + ε ≤ 4 Γ (ν) t 0 Θ ν-1 ψ (s, t) µ u s, θ (2) n (s) ∞ n=1 ds + ε ≤ 4k 2 µ (Q 0 ) Γ (ν) Γ (ν + 1) t 0 ψ (s) (ψ (t) -ψ (s)) ν-1 (ψ (s) -ψ (0)) ν ds + ε (let u = ψ (s) -ψ (0)) = 4k 2 µ (Q 0 ) Γ (ν) Γ (ν + 1) ψ(t)-ψ(0) 0 (ψ (t) -ψ (0) -u) ν-1 u ν du + ε Then D = ∞ n=0
D n is a nonempty, compact and convex subset in Q ξ,ψ .

We will prove T 2 D ⊂ D. Firstly, we prove,

T 2 (D n ) ⊂ D n , n = 0, 1, 2, .... (3.8) From T 1 (D 0 ) = T 2 (D 0 ) ⊂ D 0 , we know co T 1 (D 0 ) ⊂ D 0 . Therefore T 2 (D 0 ) = T 2 co T 1 (D 0 ) ⊂ T 2 (D 0 ) = T 1 (D 0 ) , T 3 (D 0 ) = T 2 co T 2 (D 0 ) ⊂ T 2 co T 1 (D 0 ) = T 2 (D 0 ) , T 4 (D 0 ) = T 2 co T 3 (D 0 ) ⊂ T 2 co T 2 (D 0 ) = T 3 (D 0 ).
Performing this procedure, m-times, we have

T m (D 0 ) = T 2 co T m-1 (D 0 ) ⊂ T 2 co T m-2 (D 0 ) = T m-1 (D 0 ) . Hence, D 1 = co (T m (D 0 )) ⊂ co T m-1 (D 0 ) , so T (D 1 ) ⊂ T co T m-1 (D 0 ) = T m (D 0 ) ⊂ co (T m (D 0 )) = D 1 .
Employing the same method, we can prove T 2 (D n ) ⊂ D n (n = 0, 1, 2, ...). By (3.8), we get 3), T is relatively compact. Therefore, by Schauder's fixed point theorem guarantees that T has a fixed point θ n ∈ Q ξ,ψ with θ n (t) → 0 as t → ∞. Using the idea as in Lemma 3.1, we know that {θ n (t)} is uniformly bounded and equicontinuous on [0, ∞) and for all t ∈ [0, ∞), {θ n (t)} is relatively compact.

T 2 D ⊂ ∞ n=0 T 2 (D n ) ⊂ ∞ n=0 D n = D.
As {(T θ)(t) : θ ∈ Q ξ,ψ } is relatively compact for any t ∈ [0, ∞), then, every sequence {θ n } in Q ξ,ψ admit a uniformly convergent subsequence {θ n k } in C 0 γ,ψ (J, Ω) (Q ξ,ψ ⊂ C 0 γ,ψ (J, Ω)) by Arzelà-Ascoli theorem. Furthermore, {θ n k } satisfies

θ n k (t) = (ψ(t) -ψ(0) + 1 n k γ-1 θ 0 Γ(γ) + 1 Γ(ν) t 0 Θ ν-1 ψ
(s, t) u(s, θ n k (s)) ds, (3.9) 

Then T 2 D

 2 is compact. Hence, µ T 2 D = 0, i.e., T 2 D is relatively compact.On the other hand, for any θ 1 , θ 2 ∈ D and t ∈ J, we have|(ψ (t) -ψ (0)) γ [(T 1 θ 1 ) (t) -(T 1 θ 2 ) (t)]| = (ψ (t) -ψ (0)) γ (ψ (t) -ψ (0implies that T 1 θ 1 -T 1 θ 2 C γ,ψ = 0. Thus, we obtain that µ T 1 D = 0. So, we have µ T D ≤ µ T 2 D + µ T 1 D = 0 implies µ T D = 0,therefore T D is relatively compact. By means of Arzelà-Ascoli theorem (see Lemma 2.

  

  Lemma 3.3 Assume (C1) holds with ψ (t) = t ρ . Then {T θ; θ ∈ Q ξ,t ρ } is equicontinuous and lim t→∞ |T θ(t)| = 0 uniformly for θ ∈ Q ξ,t ρ . Suppose (C1) holds. Then, T takes Q ξ,ψ into Q ξ,ψ and is continuous on Q ξ,ψ .

	Proof: This follows immediately from Lemma 3.1.	2
	Lemma 3.4	
	Thus lim	

t→∞ |T θ(t)| = 0 uniformly for θ ∈ Q ξ,ψ , which concludes the proof. 2 Lemma 3.2 Assume (C1) holds with ψ (t) = t. Then, {T θ; θ ∈ Q ξ,t } is equicontinuous and lim t→∞ |T θ(t)| = 0 uniformly for θ ∈ Q ξ,t . Proof: This follows immediately from Lemma 3.1. 2

  t and is con-tinuous on Q ξ,t . Assume (C1) holds with ψ (t) = t ρ . Then, T takes Q ξ,t ρ into Q ξ,t ρ and is continuous on Q ξ,t ρ .Theorem 3.7 Assume (C1) and (C2) hold. Then, the Cauchy fractional problem (1.1) admits at least one attractive solution.

	Proof: This follows immediately from Lemma 3.4.	2
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By mathematical induction, for every n ∈ N, we have

We know from Property 2.5, T m (Q 0 (t)) is bounded and equicontinuous. Then, by Property 2.6, we get We consider the following problem, a fractional differential equation and an initial condition, in R H D ν,η;ψ

From Corollary 3.8, the problem given in (3.10) has an attractive solution since (C1) is valid. Indeed, this can be proved directly, since the solution of (3.10) has an exact solution, given by

Using (2.5), i.e.,

and taking u(t, θ(t)) = (ψ(t) -ψ(0)) -ξ 1 we have

which is attractively global.

Remark 3.9 As a particular case of (3.10), we take ψ(t) = t and η → 0. Then

which is the solution of (3.10), in the Riemann-Liouville fractional derivative sense.

Also, taking ψ(t) = t ρ (ρ > 0) and η → 1 in (3.10), we get

which is the solution of (3.10), in the Caputo-type fractional derivative sense.

The following graph is for (3.13). We choose t ∈ [0, 1], ρ = 0.5 and ξ 1 = 0.06.

Taking ψ(t) = t and ν → 1 on both sides of (3.10), we obtain the problem Consequently, the solution is given by

with θ(t) → ∞ as t → ∞.