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This paper investigates the overall solution attractivity of the fractional differential equation introduced by the ψ-Hilfer fractional derivative and the Krasnoselskii's fixed point theorem. We highlight some particular cases of the result investigated here, especially involving the Riemann-Liouville and Katugampola fractional derivative, elucidating the fundamental property of the ψ-Hilfer fractional derivative, that is, the broad class of particular cases of fractional derivatives that consequently apply to the results investigated herein.

Introduction

Why investigate the existence, uniqueness, stability and attractivity of solutions of fractional differential equations? Over the decades, the theory of fractional differential equations has gained prominence and attention by numerous researchers, due to its theoretical importance and applicability [START_REF] Abbas | Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations[END_REF][START_REF] Deng | Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations[END_REF][START_REF] Fan | Existence and regularity of solutions for evolution equations with Riemann-Liouville fractional derivatives[END_REF][START_REF] Oliveira | Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations[END_REF][START_REF] Sousa | Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[END_REF][START_REF] Sousa | Stability of ψ-Hilfer impulsive fractional differential equations[END_REF][START_REF] Sousa | On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator[END_REF][START_REF] Zhang | Existence of mild solutions for fractional evolution equations[END_REF][START_REF] Zhou | Existence and attractivity for fractional evolution equations[END_REF][START_REF] Zhou | Attractivity for fractional differential equations in Banach space[END_REF]. However, it is not an easy and simple task to know which fractional best operator to use to propose a fractional differential equation and to attack for example the existence and uniqueness of solutions. One way to overcome such a problem is to work with more general fractional operators, especially such as the ψ-Hilfer fractional operator (differentiation) and the Riemann-Liouville fractional operator with respect to another function (integration) [START_REF] Jarad | Generalized fractional derivatives generated by a class of local proportional derivatives[END_REF][START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Sousa | On the Ψ-fractional integral and applications[END_REF]. What has been noted is the increasing number of works published in the area of fractional differential equations in recent years, due to the fact that the fractional calculation is well consoled, which consequently allows them to be used in other areas, namely: differential equations [START_REF] Abbas | Coupled Sytems of Hilfer fractional differential inclusions in Banach spaces[END_REF][START_REF] Abbas | Existence and Attractivity Results for Coupled Systems of Nonlinear Volterra-Stieltjes Multidelay Fractional Partial Integral Equations[END_REF][START_REF] Abbas | Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses[END_REF][START_REF] Abbas | Hilfer and Hadamard functional random fractional differential inclusions[END_REF][START_REF] Abbas | Coupled systems of Hilfer fractional differential equations with maximal[END_REF][START_REF] Agarwal | Non-instantaneous impulses in Caputo fractional differential equations[END_REF][START_REF] Banaś | On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order[END_REF][START_REF] Benchohra | Measure of noncompactness and fractional integro-differential equations with state-dependent nonlocal conditions in Frechet spaces[END_REF][START_REF] Benchohra | Semilinear fractional differential equations with infinite delay and non-instantaneous impulses[END_REF][START_REF] Chen | Global attractivity for nonlinear fractional differential equations[END_REF][START_REF] Chen | Attractivity of fractional functional differential equations[END_REF][START_REF] Sousa | Fractional order pseudoparabolic partial differential equation: Ulam-Hyers stability[END_REF].

Recently, Sousa e Oliveira, through the ψ-Hilfer fractional operator, has obtained interesting and important results of the existence, uniqueness, stability and attractivity of solutions of fractional differential and integrodifferential equations, by means of the fixed point technique and Gronwall inequality [START_REF] Sousa | On the Ulam-Hyers stabilities of the solutions of ψ-Hilfer fractional differential equation with abstract Volterra operator[END_REF][START_REF] Sousa | A Gronwall inequality and the Cauchy-type problem by means of Hilfer operator[END_REF][START_REF] Sousa | On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator[END_REF][START_REF] Sousa | Fractional order pseudo-parabolic partial differential equations: Ulam-Hyers Stability[END_REF][START_REF] Sousa | On the Stability of a Hyperbolic Fractional Partial Differential Equation[END_REF]. In 2012, Chen et al. [START_REF] Chen | Global attractivity for nonlinear fractional differential equations[END_REF], investigated the attractivity of solutions of fractional differential equations towards the fractional derivative of Caputo and Riemann-Liouville. In 2018, Zhou et al. [START_REF] Zhou | Existence and attractivity for fractional evolution equations[END_REF], performed excellent work on the existence and attractivity of fractional evolution equations with Riemann-Liouville fractional derivative solutions. They establish sufficient conditions for the global attractivity of mild solutions for the Cauchy problems in the case that semigroup is compact. In the same year Zhou [START_REF] Zhou | Attractivity for fractional differential equations in Banach space[END_REF], did another work on attractivity of solutions for fractional evolution equations with almost sectorial operators, establishing sufficient conditions to obtain the results in cases that semigroup is compact as well as non-compact. We suggest further work for further reading [START_REF] Abbas | Global attractivity for Volterra type Hadamard fractional integral equations in Fréchet spaces[END_REF][START_REF] Abbas | Existence and Attractivity results for Hilfer fractional differential equations[END_REF][START_REF] Losada | On the attractivity of solutions for a class of multi-term fractional functional differential equations[END_REF].

However, it is also clear that although there is a growing number of scientific papers publications, there are few works in the area involving the attractivity of differential equation solutions, particularly involving the ψ-Hilfer fractional derivative, since an important property worth mentioning is the broad class of particular cases they hold.

So, in order to contribute to the theory of fractional differential equations, in this paper we will consider the nonlinear fractional differential equation.

(1.1)

H D p,q;ψ t0+ ξ 1 (t) = G (t, ξ 1 (t)) , t ≥ t 0 I 1-r;ψ t0+ ξ 1 (t 0 ) = ξ 0
where H D p,q;ψ t0+ (•) is the ψ-Hilfer fractional derivative of order 0 < p < 1, type 0 ≤ q ≤ 1, and

I 1-r;ψ t0+ (•) is the ψ-Riemann-Liouville fractional integral of order 0 < 1 -r < 1, where r = p + q (1 -p) and G : [t 0 , ∞) × R → R.
The main motivation for the elaboration of this paper comes from the above highlighted articles on the attractivity of solutions of fractional differential equations and to provide more general and global results. So, in this sense, we aim to investigate the attractivity of the global solution to the nonlinear fractional differential equation in a Banach space.

This article is written as follows: In Section 2, we present fundamental concepts of weighted continuous function spaces, and their respective norm. In this sense, we present the definitions of integral in the Riemann-Liouville sense with respect to another function and ψ-Hilfer fractional derivative. To close the section, some important results that will help throughout the article are presented. In Section 3, we will investigate the main result of the paper, that is, the attractiveness of solutions to the problem of the nonlinear fractional differential equation. On the other hand, we present some particular cases during the section, in order to highlight the fundamental property that the ψ-Hilfer fractional derivative holds, the broad class of particular cases of fractional derivatives, which in this context investigated the results on attractiveness, will also be valid.

Preliminaries

In this section, we will present the space of continuous weight functions, as well as their respective norm. In this sense, we present the fundamental concepts of the Riemann-Liouville of fractional integral with respect to another function and the ψ-Hilfer fractional derivative. On the other hand, some fundamental results and the idea of an attractive global solution, concludes the section.

Denoted by C n (J, Ω) the space of functions n-times continuously differentiable on the interval J := [a, b], with values in Ω a Banach space. The space of weighted functions C 1-r,ψ (J, Ω) of ξ over J = (a, b], are defined by [START_REF] Sousa | Stability of ψ-Hilfer impulsive fractional differential equations[END_REF][START_REF] Sousa | On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator[END_REF] denoted by the norm

ξ C 1-r;ψ = (ψ (t) -ψ (0)) 1-r ξ (t) C = max t∈[a,b] (ψ (t) -ψ (0)) 1-r ξ (t) .
Obviously the C 1-r;ψ (J, Ω) space is a Banach space. Let (a, b) (-∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real line R and p > 0. Also let ψ(x) be an increasing and positive monotone function on (a, b], having a continuous derivative ψ (x) on (a, b). The left-sided fractional integral of a function f with respect to another function ψ on [a, b] is defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Sousa | On the Ψ-fractional integral and applications[END_REF] (2.1)

I p;ψ a+ ξ (t) = 1 Γ (p) t a ψ (s) (ψ (t) -ψ (s))
p-1 ξ (s) ds.

Similarly defined, Riemann-Liouville fractional integral right-sided with respect another function.

On the other hand, let n - R) two functions such that ψ is increasing and ψ (t) = 0, for all t ∈ I. The ψ-Hilfer fractional derivative left-sided H D p,q;ψ a+ (•) of function of order p and type 0 ≤ q ≤ 1, is defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Sousa | On the Ψ-fractional integral and applications[END_REF] (2.2)

1 < p < n with n ∈ N, I = [a, b] is the interval such that -∞ ≤ a < b ≤ ∞ and ξ, ψ ∈ C n ([a, b],
H D p,q;ψ a+ ξ (x) = I q(n-p);ψ a+ 1 ψ (t) d dt n I (1-q)(n-p);ψ a+ ξ (t) .
Similarly defined, the ψ-Hilfer fractional derivative right-sided.

Theorem 2.1. [23] If ξ ∈ C n r,ψ [a, b], n -1 < p < n and 0 ≤ q ≤ 1, then I p;ψ a+ H D p,q;ψ a+ ξ (t) = ξ (t) - n k=1 (ψ (t) -ψ (a)) r-k Γ (r -k + 1) ξ [n-k] ψ I (1-q)(n-p);ψ a+ ξ (t) .
Definition 2.2. The zero solution ξ 1 (t) of system (1.1) is globally attractive if every solution of (1.1) tends to zero as t → ∞.

The following fixed point theorems, including the improvement of a fixed point theorem of Krasnoselskii (due to Burton) and Schauder's fixed point theorem, will be needed in the text.

Theorem 2.3. [START_REF] Burton | A fixed point theorem of Krasnoselskii[END_REF] Let S be a nonempty, closed, convex and bounded subset of the Banach space Ω and A : Ω → Ω and B : S → Ω be two operators such that (1) A is a contraction with constant L < 1;

(2) B is continuous, BS resides in a compact subset of Ω;

(

) [ξ 3 = Aξ 1 + Bξ 2 , ξ 1 , ξ 2 ∈ S] =⇒ ξ 3 ∈ S; 3 
Then the operator equation

ξ 1 = Aξ 1 + Bξ 1 , has a solution in S.
Theorem 2.4. [START_REF] Hale | Theory of Function Differential Equations[END_REF] (Schauder Fixed Point Theorem) If U is a nonempty closed, bounded convex subset of a Banach space Ω and T : U → U is completely continuous, then T has a fixed point.

Global attractivity with ψ-Hilfer fractional derivative

In this section, we will address the main result of the article, namely, to discuss the attractivity of solutions for the system (1.1) introduced through the ψ-Hilfer fractional derivative. In addition, we will clarify the importance of investigating properties of fractional differential equation solutions with the ψ-Hilfer fractional operator, since they hold a wide class of particular cases preserving their properties.

Before we start investigating the main results of the article, let us assume that f (t, ξ 1 ) satisfies the following condition:

(H 0 ) f (t, ξ 1 (t)
) is Lebesgue measurable with respect to t on [t 0 , ∞), and ∃p 1 ∈

(0, p) (p 1 constant) such that h t0 |f (t, ξ 1 (t))| 1/p1 dt < ∞ for all t 0 < h < ∞ and f (t, ξ 1 (t)) is continuous with respect to ξ 1 on [t 0 , ∞).
Note that, by means of condition (H 0 ), the equivalent fractional integral equation of (1.1) is

(3.1) ξ 1 (t) = N r,ψ (t, t 0 )ξ 0 + 1 Γ (p) t t0 Ψ p,ψ (t, s)f (s, ξ 1 (s)) ds, t > t 0 . where Ψ p,ψ (t, s) := ψ (s) (ψ (t) -ψ (s)) p-1 and N r,ψ (t, t 0 ) := (ψ (t) -ψ (t 0 )) r-1 Γ (r) .
For article development, we will define the following operators

(3.2) Λξ 1 (t) = Λ 1 ξ 1 (t) + Λ 2 ξ 1 (t) ,
where

(3.3) Λ 1 ξ 1 (t) = N r,ψ (t, t 0 )ξ 0 and (3.4) Λ 2 ξ 1 (t) = 1 Γ (p) t t0 Ψ p,ψ (t, s)f (s, ξ 1 (s)) ds.
It is clear that ξ 1 (t) is a solution of system (1.1) if it is a fixed point of the operator Λ, and the operator Λ 1 is a contraction with constant 0.

Before investigating the first result about global attractivity, let's investigate the Lemma 3.1, Lemma 3.2 and Lemma 3.3 and present other Lemmas as direct consequences.

Lemma 3.1. Assume that the function f (t, ξ 1 (t)) satisfies condition (H 0 ) and (ψ (t)) 1 1-p 1 ≤ ψ (t), with t ∈ (t 0 , ∞) and p 1 ∈ (0, p). Consider the following condition:

(H 1 ) |f (t, ξ 1 (t))| ≤ µ (ψ (t) -ψ (t 0 )) -q1 for t ∈ (t 0 , ∞) and ξ 1 (t) ∈ C 1-r;ψ ((t 0 , ∞) , R) , µ ≥ 0 and p < q 1 < 1.
Then the operator Λ 2 is continuous and Λ 2 S 1,ψ resides in a compact subset of R for t ≥ t 0 + T,where (3.5)

S 1,ψ = ξ (t) /ξ (t) ∈ C 1-r;ψ ((t 0 , ∞) , R) , |ξ (t)| ≤ (ψ (t) -ψ (t 0 )) -r1 for t ≥ t 0 + T 1 r 1 = 1 2 (q 1 -p)
, and ψ (T 1 ) satisfies that

(3.6) |ξ 0 | ψ (T 1 ) 1 2 (r-1) Γ (r) + µΓ (1 -q 1 ) Γ (1 + p -q 1 ) ψ (T 1 ) -1 2 (q-p) ≤ 1.
Proof. Λ : S 1,ψ → S 1,ψ , for t ≥ t 0 + T 1 . From the above assumption of S 1ψ , it is easy to know that S 1,ψ is a closed, bounded and convex subset of R.

Applying condition (H 1 ), for t ≥ t 0 , we have

|Λ 2 ξ 2 (t)| ≤ 1 Γ (p) t t0 Ψ p,ψ (t, s) |f (s, ξ 2 (s))| ds ≤ µ Γ (p) t t0 Ψ p,ψ (t, s) (ψ (s) -ψ (t 0 )) -q1 ds ≤ µ Γ (p) ψ(t)-ψ(t0) 0 (ψ (t) -ψ (t 0 )) p-1 1 - u ψ (t) -ψ (t 0 ) p-1 u -q1 du ≤ µ (ψ (t) -ψ (t 0 )) p-1 Γ (p) 1 0 (1 -κ) p-1 κ -q1 (ψ (t) -ψ (t 0 )) dκ = µΓ (1 -q 1 ) (ψ (t) -ψ (t 0 )) p Γ (p -q 1 + 1) ≤ µΓ (1 -q 1 ) (ψ (t) -ψ (t 0 )) p-q1 Γ (p -q 1 + 1) (3.7)
and the only restriction for the above inequality is the integrability of (ψ (t) -ψ (t 0 ))

-q1 , namely q 1 < 1.

The procedure to obtain the inequality (3.7), that is, the changes of variables, will be used several times during this paper.

Note that for t ≥ t 0 + T 1 , inequality (3.6) and q 1 > p yield that µΓ (1 -q 1 ) Γ (p -q 1 + 1) (ψ (t) -ψ (t 0 ))

-1 2 (q1-p) ≤ µΓ (1 -q 1 ) Γ (p -q 1 + 1) ψ (T 1 ) -1 2 (q1-p) ≤ 1.
Then, for t ≥ t 0 + T 1 , we obtain

|Λ 2 ξ 2 (t)| ≤ µΓ (1 -q 1 ) (ψ (t) -ψ (t 0 )) p-q1 Γ (p -q 1 + 1) = µΓ (1 -q 1 ) (ψ (t) -ψ (t 0 )) -1 2 (q1-p) Γ (p -q 1 + 1) (ψ (t) -ψ (t 0 )) -1 2 (q1-p) ≤ (ψ (t) -ψ (t 0 )) -1 2 (q1-p) = (ψ (t) -ψ (t 0 )) -r1 (3.8) which implies that Λ 2 S 1,ψ ⊂ S 1,ψ , for t ≥ t 0 + T 1 . Λ 2 is continuous. For any ξ 2,m (t) , ξ 2 (t) ∈ S 1,ψ , m = 1, 2, . . . with lim m→∞ |ξ 2,m (t) -ξ 2 (t)| = 0, we get lim m→∞ ξ 2,m (t) = ξ 2 (t) and lim m→∞ f (t, ξ 2,m (t)) = f (t, ξ 2 (t)) for t ≥ t 0 + T 1 . Now, let ε > 0 be given, fixed T ≥ t 0 + T 1 such that (3.9) µΓ (1 -q 1 ) (ψ (T ) -ψ (t 0 )) -(q1-p) Γ (p -q 1 + 1) < ε 2 .
On the other hand, let ν = p -1 1 -p 1 , then 1 + ν > 0 since p 1 ∈ (0, p). So, for

t 0 + T 1 ≤ t ≤ T, we get |Λ 2 ξ 2,m (t) -Λ 2 ξ 2 (t)| ≤ 1 Γ (p) t t0 Ψ p,ψ (t, s) |f (s, ξ 2,m (s)) -f (s, ξ 2 (s))| ds ≤ 1 Γ (p) t t0 ψ (s) (ψ (t) -ψ (s)) p-1 1-p 1 ds 1-p1 × × t t0 |f (s, ξ 2,m (s)) -f (s, ξ 2 (s))| 1 p 1 ds p1 ≤ 1 Γ (p) (ψ (T ) -ψ (t 0 )) 1 + ν 1+ν 1-p1 f (•, ξ 2,m (•)) -f (•, ξ 2 (•)) C 1-r,ψ × × t t0 (ψ (t) -ψ (s)) r ds p1 ≤ 1 Γ (p) (ψ (T ) -ψ (t 0 )) 1 + ν 1+ν 1-p1 (ψ (T ) -ψ (t 0 )) ψ (T ) (1 + r) r+1 × × f (•, ξ 2,m (•)) -f (•, ξ 2 (•)) C 1-r,ψ → 0 (3.10) as m → ∞.
For t > T , making changes of variables in the (3.7), we have

|Λ 2 ξ 2,m (t) -Λ 2 ξ 2 (t)| ≤ 1 Γ (p) t t0 Ψ p,ψ (t, s) |f (s, ξ 2,m (s)) -f (s, ξ 2 (s))| ds ≤ 2µ Γ (p) t t0 Ψ p,ψ (t, s) (ψ (s) -ψ (t 0 )) -q1 ds ≤ 2µΓ (1 -q 1 ) Γ (1 + p -q 1 ) (ψ (T ) -ψ (t 0 )) -(q1-p) < ε. (3.11) Then, for t ≥ t 0 + T, Λ 2 ξ 2,m (t) -Λ 2 ξ 2 (t) → 0 as m → ∞, which implies that Λ 2 S 1,ψ is equicontinuous.
Finally, we prove that Λ 2 S 1,ψ is continuous. Let ε > 0 be given. Since lim t→∞ (ψ (t) -ψ (t 0 )) -r1 = 0, there is a T > t 0 + T 1 , such that (ψ (t) -ψ (t 0 )) -r1 < ε/2 for t > T . Let,

t 1 , t 2 ≥ t 0 + T 1 and t 2 > t 1 . If t 1 , t 2 ∈ [t 0 + T 1 , T ] , T 0 |f (s, ξ 1 (s))| 1/p1 ds exists by condition (H 0 ), then |Λ 2 ξ 1 (t 2 ) -Λ 2 ξ 1 (t 1 )| ≤ 1 Γ (p) t2 t0 Ψ p,ψ (t 2 , s) |f (s, ξ 1 (s))| ds + 1 Γ (p) t1 t0 Ψ p,ψ (t 1 , s) |f (s, ξ 1 (s))| ds + 1 Γ (p) t1 t0 Ψ p,ψ (t 2 , s) |f (s, ξ 1 (s))| ds - 1 Γ (p) t1 t0 Ψ p,ψ (t 2 , s) |f (s, ξ 1 (s))| ds ≤ 1 Γ (p) 1 1 + ν 1-p1 (ψ (t 1 ) -ψ (t 0 )) 1+ν -(ψ (t 2 ) -ψ (t 0 )) 1+ν + (ψ (t 2 ) -ψ (t 1 )) 1+ν 1-p1 × × T t0 |f (s, ξ 1 (s))| 1 p 1 ds p1 + 1 Γ (p) 1 1 + ν 1-p1 × (ψ (t 2 ) -ψ (t 1 )) 1+ν 1-p1 T t0 |f (s, ξ 1 (s))| 1 p 1 ds p1 ≤ 1 Γ (p) 1 1 + ν 1-p1 T t0 |f (s, ξ 1 (s))| 1 p 1 ds p1 (ψ (t 2 ) -ψ (t 1 )) p-p1 → 0 (3.12)
as t 2 → t 1 .

If t 1 , t 2 > T , and making changes of variables in the (3.7), we have

|Λ 2 ξ 1 (t 2 ) -Λ 2 ξ 1 (t 1 )| ≤ 1 Γ (p) t2 t0 Ψ p,ψ (t 2 , s) |f (s, ξ 1 (s))| ds + 1 Γ (p) t1 t0 Ψ p,ψ (t 1 , s) |f (s, ξ 1 (s))| ds ≤ M Γ (p) t2 t0 Ψ p,ψ (t 2 , s) (ψ (s) -ψ (t 0 )) -q1 ds + M Γ (p) t1 t0 Ψ p,ψ (t 1 , s) (ψ (s) -ψ (t 0 )) -q1 ds ≤ (ψ (t 1 ) -ψ (t 0 )) -1 2 (q1-p) + (ψ (t 2 ) -ψ (t 0 )) -1 2 (q1-p) = (ψ (t 1 ) -ψ (t 0 )) -r1 + (ψ (t 2 ) -ψ (t 0 )) -r1 < ε (3.13) as t 2 → t 1 . If t 0 + T 1 ≤ t 1 < T < t 2 , note that if t 2 → t 1 , then t 2 →
T and T → t 1 , according to the above discussion in a compact subset of R for t ≥ t 0 + T 1 . Lemma 3.2. Assume that the function f (t, ξ 1 (t)) satisfies condition ( H 0 ) and t q 1-p 1 ≤ t q (q > 0), with t ∈ (t 0 , ∞) and p 1 ∈ (0, p). Consider the following condition:

(F 1 ) |f (t, ξ 1 (t))| ≤ µ (t q -t q 0 ) -q1 for t ∈ (t 0 , ∞) and ξ 1 (t) ∈ C 1-r;t q ((t 0 , ∞) , R), µ ≥ 0 and p < q 1 < 1.

Then the operator Λ 2 is continuous and Λ 2 S 1,t q resides in a compact subset of R for t ≥ t 0 + T , where

S 1,t q = ξ (t) /ξ (t) ∈ C 1-r;t q ((t 0 , ∞) , R) , |ξ (t)| ≤ (t q -t q 0 ) -r1 for t ≥ t 0 + T 1 r 1 = 1 2 (q 1 -
p), and T q 1 satisfies that

|ξ 0 | T q 2 (r-1) 1 Γ (r) + µΓ (1 -q 1 ) Γ (1 + p -q 1 ) T -q 2 (q-p) 1 ≤ 1.
Proof. It follows straight from Lemma 3.1. Lemma 3.3. Assume that the function f (t, ξ 1 (t)) satisfies condition (H 0 ) and t 1 1-p 1 ≤ t, with t ∈ (t 0 , ∞) and p 1 ∈ (0, p). Consider the following condition:

(F 2 ) |f (t, ξ 1 (t))| ≤ µ (t -t 0 ) -q1 for t ∈ (t 0 , ∞) and ξ 1 (t) ∈ C 1-r;t ((t 0 , ∞) , R), µ ≥ 0 and p < q 1 < 1.
Then the operator Λ 2 is continuous and Λ 2 S 1,t resides in a compact subset of R for t ≥ t 0 + T,where

S 1,t = ξ (t) /ξ (t) ∈ C 1-r;t ((t 0 , ∞) , R) , |ξ (t)| ≤ (t -t 0 )
-r1 for t ≥ t 0 + T 1 r 1 = 1 2 (q 1 -p), and T 1 satisfies that

|ξ 0 | T 1 2 (r-1) 1 Γ (r) + µΓ (1 -q 1 ) Γ (1 + p -q 1 ) T -1 2 (q-p) 1 ≤ 1.
Proof. It follows straight from Lemma 3.1.

Note that by choosing the ψ(•) function in the condition of Lemma 3.1, we get some particular cases. Lemma 3.4. Assume that conditions (H 0 ) and (H 1 ) hold, then a solution of system

(1.1) is in S 1,ψ for t ≥ t 0 + T 1 .
Proof. Note that if ξ 1 (t) is a fixed point of Λ if is a solution of system (1.1). To prove this, it remains to show that, for fixed ξ 2 ∈ S 1,ψ and for all

ξ 1 ∈ C 1-r;ψ ((t 0 , ∞) , R), ξ 1 = Λ 1 ξ 1 + Λ 2 ξ 2 =⇒ ξ 1 ∈ S 1,ψ holds. If ξ 1 = Λ 1 ξ 1 + Λ 2 ξ 2 , apply condition (H 1 )
and using the same procedure gives (3.7), we have

|ξ 1 (t)| = |Λ 1 ξ 1 + Λ 2 ξ 2 | ≤ N r,ψ (t, t 0 ) |ξ 0 | + M Γ (p) t t0 Ψ p,ψ (t, s) (ψ (s) -ψ (t 0 )) -q1 ds ≤ N r,ψ (t, t 0 ) |ξ 0 | + µΓ (1 -q 1 ) Γ (p -q 1 + 1) (ψ (t) -ψ (t 0 )) -(q1-p) . (3.14) 
Now, for t ≥ t 0 + T 1 from inequality (3.6) and 0 < p < q 1 < 1, we get

N r,ψ 1/2 (t, t 0 ) |ξ 0 | + µΓ (1 -q 1 ) Γ (p -q 1 + 1) (ψ (t) -ψ (t 0 )) -1 2 (q1-p) ≤ ψ (T 1 ) 1 2 (r-1) Γ (r) + M Γ (1 -q 1 ) Γ (p -q 1 + 1) ψ (T 1 ) -1 2 (q1-p) ≤ 1, (3.15) where N r,ψ 1/2 (t, t 0 ) := (ψ (t) -ψ (t 0 )) 1 2 (r-1) 
Γ (r) .

Then, for t ≥ t 0 + T 1 , we obtain

|ξ 1 (t)| ≤ N r,ψ 1/2 (t, t 0 ) |ξ 0 | + M Γ (1 -q 1 ) Γ (p -q 1 + 1) (ψ (t) -ψ (t 0 )) -1 2 (q1-p) × (ψ (t) -ψ (t 0 )) -r (3.16) 
≤ (ψ (t) -ψ (t 0 )) -r logo ξ 1 (t) ∈ S 1,ψ for t ≥ t 0 + T 1 .
By means of t 0 Theorem 2.1 and Lemma 3.1, there exists a ξ 2 ∈ S 1,ψ such that ξ 2 = Λ 1 ξ 2 + Λ 2 ξ 2 , i.e., H has a fixed point in S 1,ψ which is a solution of system (1.1) for t ≥ t 0 + T1.

As a direct consequence of Lemma 3.4, we have the following Lemmas.

Lemma 3.5. Assume that conditions (H 0 ) and (F 1 ) hold, then a solution of system

(1.1) is in S 1,ψ for t ≥ t 0 + T 1 .
Proof. Is follows straight from Lemma 3.4.

Lemma 3.6. Assume that conditions (H 0 ) and (F 2 ) hold, then a solution of system (1.1) is in S 1,ψ for t ≥ t 0 + T 1 .

Proof. Is follows straight from Lemma 3.4.

Theorem 3.7. Assume that conditions (H 0 ) and (H 1 ) hold, then the zero solution of system (1.1) is globally attractive.

Proof. Assume that Lemma 3.4, for t ≥ t 0 + T1, the solution of (1.1) exists and is in S 1,ψ . All functions in S 1,ψ tend 0 as t → ∞, then the solution of (1.1) tends to zero as t → ∞.

Theorem 3.8. Assume that conditions (H 0 ) and (F 1 ) hold, then the zero solution of system (1.1) with q → 0 is globally attractive in the Katugampola fractional derivative sense.

Proof. Is follows straight from Theorem 3.7.

Theorem 3.9. Assume that conditions (H 0 ) and (F 2 ) hold, then the zero solution of system (1.1) with q → 0 is globally attractive in the Riemann-Liouville fractional derivative sense.

Proof. Is follows straight from Theorem 3.7.

Theorem 3.10. Assume that the function f (t, ξ 1 ) satisfies condition (H 0 ) and

(H 2 ) |f (t, ξ 1 (t))| ≤ λ (ψ (t) -ψ (t 0 )) -q2 |ξ 1 (t)| for t ∈ (t 0 , ∞) and ξ 1 ∈ C 1-r,ψ ((t 0 , ∞) , R)
and p < q 2 < 1 2 (1 + p). Then the zero solution of system (1.1) is globally attractive.

Proof. Let (3.17)

S 2,ψ = ξ (t) /ξ (t) ∈ C 1-r,ψ ((t 0 , ∞) , R) , |ξ (t)| ≤ (ψ (t) -ψ (t 0 )) -r2 for t ≥ t 0 + T1
where r 2 = 1 2 (1 -p) , and T 2 satisfies that

(3.18) ψ (T 2 ) 1 2 (r-1) Γ (r) |ξ 0 | + Lr (1 -q 2 -r 2 ) Γ (1 + p -q 2 -r 2 ) ψ (T 2 ) -(q1-p) ≤ 1.
For fixed ξ 2 ∈ S 2,ψ and for all ξ ∈ R,

ξ 1 = Λ 1 ξ 1 + Λ 2 ξ 2 =⇒ ξ ∈ S 2,ψ , holds. If ξ 1 = Λ 1 ξ 1 + Λ 2 ξ 2 ,
from condition (H 2 ) and making the same change of variable from (3.7), we have

|ξ 1 (t)| = |Λ 1 ξ 1 + Λ 2 ξ 2 | ≤ N r,ψ (t, t 0 ) |ξ 0 | + L Γ (p) t t0 Ψ p,ψ (t, s) (ψ (s) -ψ (t 0 )) -q2 |x (s)| ds ≤ N r,ψ (t, t 0 ) |ξ 0 | + L Γ (p) t t0 Ψ p,ψ (t, s) (ψ (s) -ψ (t 0 )) -q2-r2 ds ≤ N r,ψ (t, t 0 ) |ξ 0 | + LΓ (1 -q 2 -r 2 ) Γ (p + 1 -q 2 -r 2 ) (ψ (t) -ψ (t 0 )) -(q2+r2-p) . (3.19) 
Note that (ψ (t) -ψ (s)) -q2-r2 the inequality (3.19) is integrable by means of q 2 < 1 2 (1 + p) and r 2 = 1 2 (1 -p). For t ≥ t 0 + T 2 , from inequality (3.18) and 0 < p < q 2 < 1 2 (1 + p) < 1, we have 

N r,ψ 1/2 (t, t 0 ) |ξ 0 | + λr (1 -q 2 -r 2 ) Γ (p + 1 -q 2 -r 2 ) (ψ (t) -ψ (t 0 )) -(q2+r2-p) ≤ ψ (T 2 ) 1 2 (r-1) Γ (r) |ξ 0 | + λΓ (1 -q 2 -r 2 ) Γ (p + 1 -q 2 -r 2 ) ψ (T 2 ) -(q2+r2-p) ≤ 1. (3.20) Thus, for |ξ 1 (t)| ≤   N r,ψ 1/2 (t, t 0 ) |ξ 0 | + λΓ (1 -q 2 -r 2 ) Γ (p + 1 -q 2 -r 2 ) (ψ (t) -ψ (t 0 )) -(q2+r2-p)   (ψ (t) -ψ (t 0 )) -r2 ≤ (ψ (t) -ψ (t 0 )) -r2 ( 
ξ (t)| ≤ (ψ (t) -ψ (t 0 )) -r2 which leads to Λ 2 S 2,ψ ⊂ S 2,ψ for t ≥ t 0 + T 2 .
Note that, similar to the Lemma 3.1 proof, it is clear that the operator Λ 2 is continuous and Λ 2 S 2,ψ resides in a compact subset of R for t ≥ t 0 + T 2 . By Theorem 2.1 the revision of Krasnoselskiis Theorem, there exists a y ∈ S 2,ψ such that ξ 2 = Λ 1 ξ 2 + Λ 2 ξ 2 i.e., Λ has a fixed point in S 2,ψ , which is a solution of system (1.1). Moreover, all function in S 2,ψ → 0 as t → ∞, which shows that the zero solutions of system (1.1) of globally attractive. Theorem 3.11. Assume that the function f (t, ξ 1 ) satisfies condition (H 0 ) and

(F 3 ) |f (t, ξ 1 (t))| ≤ λ (t q -t q 0 ) -q2 |ξ 1 (t)| (q > 0) for t ∈ (t 0 , ∞) and ξ 1 ∈ C 1-r,t q ((t 0 , ∞) , R)
First, we prove that condition (c) of Theorem 2.1 holds. If ξ 1 = Aξ 1 + Λ 2 ξ 2 , from conditions (H 3 ) and making the same change of variable from (3.7), we have

|ξ 1 (t)| = |Λ 1 ξ 1 + Λ 2 ξ 2 | ≤ N r,ψ (t, t 0 ) |ξ 0 | + 1 Γ (p) t t0 Ψ p,ψ (t, s) |f (s, ξ 2 (s))| ds ≤ N r,ψ (t, t 0 ) |ξ 0 | + k Γ (p) t t0 Ψ p,ψ (t, s) (ψ (s) -ψ (t 0 )) -q3 |ξ 2 (s)| η ds ≤ N r,ψ (t, t 0 ) |ξ 0 | + k Γ (p) t t0 Ψ p,ψ (t, s) (ψ (s) -ψ (t 0 )) -q3-ηr3 ds ≤ N r,ψ (t, t 0 ) |ξ 0 | + kΓ (1 -q 3 -ηr 3 ) Γ (p + 1 -q 3 -ηr 3 ) (ψ (t) -ψ (t 0 )) -(q3+r3η-p) . (3.23) Note that (ψ (t) -ψ (t 0 )) -q3-r3η in inequality (3.23) is integrable because q 3 < 2 + ηp 2 + η and r 3 = 1 2 (q 3 -p) lead to q 3 + r 3 η < 1.
For t ≥ t 0 + T 3 , from inequality (3.22) and 0 < p < q 3 < 2 + ηp 2 + η < 1, we get N r,ψ 1/2 (t, t 0 ) |ξ 0 | + kΓ (1 -q 3 -ηr 3 ) Γ (p + 1 -q 3 -ηr 3 ) (ψ (t) -ψ (t 0 ))

-1 2 (q3-p) ≤ ψ (T 3 ) 1 2 (r-1) 
Γ (r) |ξ 0 | + kΓ (1 -q 3 -ηr 3 ) Γ (p + 1 -q 3 -ηr 3 ) ψ (T 3 )

-1 2 (q3-p) ≤ 1.

Thus, for t ≥ t 0 + T 3 , |ξ 1 (t)| ≤ N r,ψ 1/2 (t, t 0 ) |ξ 0 | + kΓ (1 -q 3 -ηr 3 ) Γ (p + 1 -q 3 -ηr 3 ) (ψ (t) -ψ (t 0 ))

-(q3+r3η-p)

≤ N r,ψ 1/2 (t, t 0 ) |ξ 0 | + kΓ (1 -q 3 -ηr 3 ) Γ (p + 1 -q 3 -ηr 3 ) (ψ (t) -ψ (t 0 ))

-(q3-p) ≤ N r,ψ 1/2 (t, t 0 ) |ξ 0 | + kΓ (1 -q 3 -ηr 3 ) Γ (p + 1 -q 3 -ηr 3 ) (ψ (t) -ψ (t 0 ))

-(q3-p) × (ψ (t) -ψ (t 0 )) -r3
≤ (ψ (t) -ψ (t 0 )) -r3 (3.24) which implies that ξ 1 (t) ∈ S 3,ψ for t ≥ t 0 + T 3 . Meanwhile combining (3.23) and (3.24) also implies that |Λ 2 ξ 2 (t)| ≤ (ψ (t) -ψ (t 0 )) -r3 which leads to that Λ 2 S 3,ψ ⊂ S 3,ψ for t ≥ t 0 + T 3 .

Since the rest of the test is similar to Theorem 3.10, and we omit it.

Theorem 3.17. Assume that the function f (t, ξ 1 ) satisfies conditions (H 0 ) and (F 7 ) |f (t, ξ 1 (t))| ≤ k (t q -t q 0 ) -q3 |ξ 1 (t)| η for t ∈ (t 0 , ∞) and ξ 1 (t) ∈ C 1-r,t q ((t 0 , ∞) , R), k ≥ 0, η ≥ 0 and p < q 3 < 2+ηp 2+η . Then the zero solution of system (1.1) with q → 0 is globally attractive in the Katugampola fractional derivative sense.

Proof. Is follows straight from Theorem 3.16.

Then the zero solution of system (1.1) with q → 0 is globally attractive in the Riemann-Liouville fractional derivative sense.

Proof. Is follows straight from Theorem 3.19.

Note that when investigating the overall attractive of system solutions (1.1), we always seek to highlight two particular cases of the a priory results investigated at any given time, highlighting the importance of the ψ-Hilfer fractional operator, as well as the conservation of their properties. Moreover, it should be noted that by choosing other functions ψ(•), it is possible to obtain all the results investigated here.

  3.21) logo ξ 1 (t) ∈ S 2,ψ for t ≥ t 0 + T 2 . Meanwhile, from inequalities (3.19) and (3.21) also implies that |Λ 2

(q3-p) ≤ 1.
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and p < q 2 < 1 2 (1 + p). Then the zero solution of system (1.1) with q → 0 is globally attractive in the Katugampola fractional derivative sense.

Proof. Is follows straight from Theorem 3.10. Theorem 3.12. Assume that the function f (t, ξ 1 ) satisfies condition (H 0 ) and (F 4 ) |f (t, ξ 1 (t))| ≤ λ (t -t 0 )

-q2 |ξ 1 (t)| for t ∈ (t 0 , ∞) and ξ 1 ∈ C 1-r,t ((t 0 , ∞) , R) and p < q 2 < 1 2 (1 + p). Then the zero solution of system (1.1) with q → 0 is globally attractive Riemann-Liouville fractional derivative sense.

Proof. Is follows straight from Theorem 3.10. Corollary 3.13. Admit that the functions f (t, ξ 1 ) satisfies conditions (H 0 ) and

Then the zero solution of system (1.1) is globally attractive.

Proof. Using the condition (H 2 ), we obtain

which implies that condition (H 2 ) holds. The global attractive result can directly be obtained by Theorem 3.10.

Corollary 3.14. Admit that the functions f (t, ξ 1 ) satisfies conditions (H 0 ) and

Then the zero solution of system (1.1) with q → 0 is globally attractive Katugampola fractional derivative sense.

Proof. Is follows straight from Corollary 3.13.

Corollary 3.15. Admit that the functions f (t, ξ 1 ) satisfies conditions (H 0 ) and

Then the zero solution of system (1.1) with q → 0 is globally attractive in the Riemann-Liouville fractional derivative sense.

Proof. Is follows straight from Corollary 3.13. Theorem 3.16. Assume that the function f (t, ξ 1 ) satisfies conditions (H 0 ) and

k ≥ 0, η ≥ 0 and p < q 3 < 2+ηp 2+η . Then the zero solution of system (1.1) is globally attractive.

where, r 3 = 1 2 (q 3 -p) , and ψ(T 3 ) ≥ 1 and satisfies

Theorem 3.18. Assume that the function f (t, ξ 1 ) satisfies conditions (H 0 ) and

k ≥ 0, η ≥ 0 and p < q 3 < 2+ηp 2+η . Then the zero solution of system (1.1) with q → 0 is globally attractive in the Riemann-Liouville fractional derivative sense.

Proof. Is follows straight from Theorem 3.16.

From the proof of Theorem 3.7, we find that the term r 3 η is actually out of work in the proof, the attractive result many be attained if we consider a weaker condition than condition (H 3 ) . Then it follows the next theorem.

Theorem 3.19. Assume that the function f (t, ξ 1 ) satisfies conditions (H 0 ) and

Then the zero solution of system (1.1) is globally attractive.

Proof. Let

Since η > 1, for t ≥ t 0 + T 3 , similar to (3.24) we have

which implies that ξ 1 (t) ∈ S 3,ψ for t ≥ t 0 + T 3 . The remaining part of the proof is similar to that of Theorem 3.16, and we omit it.

Theorem 3.20. Assume that the function f (t, ξ 1 ) satisfies conditions (H 0 ) and

Then the zero solution of system (1.1) with q → 0 is globally attractive in the Katugampola fractional derivative sense.

Proof. Is follows straight from Theorem 3.19.

Theorem 3.21. Assume that the function f (t, ξ 1 ) satisfies conditions (H 0 ) and (F 8 ) |f (t, ξ 1 (t))| ≤ k (t -t 0 )

-r3 |ξ 1 (t)| η for t ∈ (t 0 , ∞) and ξ 1 (t) ∈ C 1-r,t ((t 0 , ∞) , R), k ≥ 0, η > 1 and p -(η -1) (1 -p) < q 3 < p.