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ABSTRACT

The calculated dynamic response of an excited rotating system
can be significantly affected by uncertainties in its mechanical
properties, such as mass, stiffness, geometrical imperfections, or
loadings. For this reason, it is essential to understand and quan-
tify the influence of uncertain parameters on the predicted rotor
response.

This paper aims to optimize the propagation of random input un-
certainties for a rotordynamic problem and assess their influence
on the dynamic behaviour of an unbalanced rotor. The Harmonic
balance method (HBM) and a non-intrusive Polynomial Chaos
Expansion (PCE) are used to evaluate the stochastic response of
a finite element rotor. The proposed stochastic approach is based
on a numerical quadrature calculation of integrals for finding the
coefficients of the PCE.

The method is initially applied to evaluate the stochastic response
of a linear rotodynamic system, leading to the original concept
of stochastic Campbell diagram and further extended to non-
linear rotordynamic problems, using the Asymptotic Numerical
Method (ANM).
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NOMENCLATURE

o, &  frequency,random variable

M.G,K mass,gyroscopic and stiffness matrices
Y, Polynomial chaos basis function

Br  k-th stochastic mode

ANM Asymptotic Numerical Method.

HBM Harmonic Balance Method.

PCE Polynomical Chaos Expansion.

INTRODUCTION

Assessing the influence of uncertainties has become a topic of
great interest in engineering, especially in the robust design of
high technological products. Turbomachines require mathemati-
cal models that are able to precisely describe the real behaviour
of the system, considering all the possible uncertainties of in-
put parameters that can related to uncertainties of the material
properties, the tolerance in the dimensions, uncertain operating
range and errors in modelling. In order to robustly design it is



necessary to be able to quantify the propagation of the uncer-
tainties. These uncertainties, as well as the system response, can
be modelled by random variables, characterized by a some kind
of probabilistic distribution. The most common method to deal
with uncertainties is the Monte Carlo Simulation (MCS), a sta-
tistical sampling technique created in the 1940s [1]. The direct
MCS creates a large sample of stochastic responses, in order to
represent its probabilistic distribution, hence it requires a large
number of repeated solutions of the same deterministic problem
with different parameters.

Although very robust and flexible, MCS is affected by a slow

convergence rate (O(N -3 ), especially for large and complex sys-
tems, but convergence can be always assured [2]. This leads to
expensive simulations, both in terms of time consumption and
computational costs. This study proposes the use of the Polyno-
mial Chaos Expansion (PCE), which is generally more effective
than the MCS due to a substitution of uncertain parameters with
a metamodel [3]. Originally proposed by Wiener [4], the main
idea is to represent a stochastic process as an orthogonal base of
polynomials. Ghanem and Spanos [2] first applied this method
to a finite element (FE) application allowing the stochastic eval-
uation of large scale models. Xiu and Karniadakis [5] added
non-Gaussian distributions by adapting the polynomial basis to
different probabilistic distribution of the input parameters for op-
timal convergence. Subsequently, PCE concepts were extended
to different random spaces, such as rational function series [6],
partitioned random spaces [7] and sparse chaos expansions [8]
which permit improvements in accuracy and the convergence of
the method.

Two major numerical approaches are available to solve a stochas-
tic problem with the PCE. The Galerkin projection [3] uses ana-
lytical expression of the stochastic matrix, which has to be ex-
plicitly implemented in the code. Didier et al. [9] used this
approach to analyse the dynamic response of a rotor under un-
certain parameter. As an alternative the stochastic collocation
method [10] can be used, which does not require system depen-
dent equations, and can consequently be easily adapted for dif-
ferent problems.

This paper focuses on the propagation of uncertainties on the vi-
brational response of a rotor model. The PCE has been applied to
a linear and a nonlinear system, where the considered rotor is in-
tentionally simple, in order to easily implement and validate the
PCE and show its effectiveness. The uncertain system response
has been applied to the Frequency Response Function (FRF)
and the Campbell Diagram. The study is based on the interac-
tion of two open-source software solutions, the FE solver Code
Aster [11] and the stochastic library OpenTURNS [12]. and their
coupling with the help of Python.Newly developed codes call and
manage the interactions between existing software and are also
used to define the system equations.

The PCE is combined with the harmonic balance method (HBM)
and the Asymptotic Numerical Method (ANM) [13] to evalu-
ate the vibrational behaviour of a non-linear system with some
uncertain parameters. A non-intrusive approach is used to get
the stochastic response. For multivariate random spaces, the
Smolyak quadrature [14] is used effectively to reduce the number
of required iterations.

A numerical example based on a finite element rotor proposed by
Didier [9] illustrates the method proposed in this paper. Nonlin-
ear elements have been added to this model to test the capability
of the method concerning nonlinear rotordynamics.

POLYNOMIAL CHAOS EXPANSION THEORY

The general idea behind the PCE is to express a generic stochas-
tic output (e.g. amplitude of displacements, frequency, etc.) as
a sum of polynomials. The stochastic variable must be modelled
by an appropriately chosen polynomial, facilitating the calcula-
tions of expectations [10]. The goal is to reduce the infinite-
dimensional random space to a finite-dimensional space that can
be computed. This is accomplished by parametrizing the random
space with a finite number of mutually independent random vari-
ables. Let us consider a random variable & defined in a random
space Q of dimension d, with a cumulative distribution func-
tion F (&) and finite moments. Considering a random variable &
and a stochastic function y(&), the generalised polynomial chaos
(truncated at the order P) expansion of y is:

»
y(&) =Y BW(&) (1)
k=0

where fB; are the coefficients of the basis (or stochastic modes)
that have to be calculated, and W () are the polynomial chaos
basis functions. One considers the cumulative density function
(CDF) such that dFg (§) = p(&)d&, where p(&) is the probability
function (PDF) of the random variable &. The polynomial chaos
basis functions for this distribution are the orthogonal polyno-
mial functions satisfying:

/Q W, (&)W, (€)p(E)dE = %S »)

where W,,(&) are orthogonal polynomials with a weight func-
tion (the PDF p(&)), ¥, are constants and 6, is the Kronecker
delta. This establishes a relationship between the distribution
of the random variable £ and the orthogonal polynomials of its
PCE basis which must be selected accordingly [5, 10, 15]. Given
the random space dimension d and the maximal polynomial de-
gree in the expansion p (also called chaos degree), the number of



terms in the Eqn.(1) is given by:

(d+p)!

Pt =g

3)

The coefficients (stochastic modes), B, of the sum in Eqn.(1)
can be calculated following different intrusive or non-intrusive
approaches. In this paper a non-intrusive collocation method is
used for this purpose.

Non-intrusive collocation method In deterministic nu-
merical analysis, Non-Intrusive Collocation Methods (NICM)
are those that require the residue of the governing equations to be
zero at discrete nodes in the computational domain. These nodes
are called collocation points. The NICM solves a finite num-
ber of deterministic problems obtained from the stochastic prob-
lem by replacing the random variables with deterministic values
where the selected nodes are typically the nodes of a Gaussian
quadrature rule (cubature rule in multidimensional space) [10].
For instance, M collocation points in a one-dimensional random
space are the zeros of the M —th degree polynomial of the basis.

The aim of this method is to conduct discrete projections by us-
ing the definition of orthogonality:

<¥(8),¥i(S) >

b= Ye

“4)

where the symbol <,> indicates the inner product defined in
Eqn.(2), with respect to the PDF. The above relation means that
the stochastic modes can be computed by solving integrals. The
problem is that the expression y(£) is unknown at this stage and
beta can therefore not be computed explicitly. In order to avoid
this problem the integrals must be approximated by cubature for-
mulas. Given a set of M collocation points and the associated
normalized weights (according to the PDF), after calculating M
deterministic solutions y(&) the equation becomes:

1 M

Bi = % i;y(ii)‘f’k(éi)wi 5)

The Gaussian quadrature (5) can be adapted to multivariate ran-
dom spaces (d > 1), i.e. Gaussian cubature [5, 10]. One of the
approaches to calculate the stochastic modes in the entire space
is the tensor product rule. Unfortunately, using the NICM with
the tensor product rule, leads to an exponential increase in the
number of collocation points with the dimension d. A signifi-
cant reduction in the required collocation points can be achieved

4 DoF at each node

FIGURE 1. FE DISCRETIZATION OF THE ROTOR SYSTEM.

with the Smolyak sparse grids cubature. A detailed presentation
of Smolyak grids construction is beyond the scope of this paper
but can be found in [16]. Both collocation methods have been
employed in this analysis to evaluate their effectiveness.

LINEAR PROBLEM: STOCHASTIC HARMONIC BAL-
ANCE

Presentation of the rotor model

In order to validate the Polynomial Chaos Expansion (PCE) ap-
proach for the dynamic analysis of an uncertain rotor system,
the model presented in figure 1 has been studied (see Refer-
ence [17]). It consists of a rotor shaft, discretized by 10 Tim-
oshenko beam finite elements with two added rigid discs. The
FE code used for this study is the open-source software Code
Aster ([11]), which has a Python interface for scripting.

As shown in Fig.(1), each node holds four degrees of freedom,
denoted by [dydzdrydrz]T, where dy and dz are the translations
along y and z, dry and drz the correspondent rotations (expressed
in the fixed frame). The system is supported at its ends by two
bearings modelled by linear springs in the directions y and z, with
relative stiffness ky, k;). The shaft section is circular and constant
with the dimensions from Tab.1. The Rayleigh viscous damping
model was used for the analysis, with § =0 and o; = z*iw[_, with
i=1,3 and w;, @ being the critical speeds of the first and the
third shaft mode respectively.



Parameters Dimension
Length of shaft 1m
Diameter of shaft 0.04m
Position of disc 1 0.6m
Position of disc 2 0.8m
Outer diameter of disc 1 0.2m
Outer diameter of disc 2 0.4m
Inner diameter of discs 1 and 2 0.04m
Thickness of discs 1 and 2 0.02m
Young modulus of elasticity E 2.1E11Nm?
Shear modulus G 8.0E 10Nm?
Poisson ratio v 0.3
Density p 7800kgm >
Unbalance mass m, 0.05¢
Unbalance mass initial angle ¢, 0
Eccentricity of the unbalance mass d 0.02m
Stiffness 1E6
Damping factor n 0.03

TABLE 1. ROTOR MODEL PARAMETERS.

Matrix definition

The general linear equations of motion of the shaft can be written
in the following form:

M,X (1) + (Cs + 0Gy)x (1) + Kox(r) = £,(1) (6)

where M and G, are the mass and gyroscopic matrices of the
shaft , K and C; the elementary stiffness and damping matrices,
while @ is its rotational speed. The vector f; defines the forces
applied on the shaft, due to an eccentric mass distributed along
the entire shaft length (differently from [17]). Unbalance rotor
is one of the more common issues in rotating systems. Fig.(2)
shows a cross-section of the shaft, with the unbalance mass m,
and its initial angle ¢. The resulting unbalance force f; is given
by:

f, = med,*[cos(ot + @) sin(ot+¢) 0 0] @)
where d, is the eccentricity and the equivalent degrees of free-
dom are [dy dzdrydrz]T.

Regarding the discs, the rigid disc model is given by:

MyX(1) + 0Gax(1) =14(1) ®)

FIGURE 2. UNBALANCE FORCE ON THE SHAFT.

where My and G, are the mass and gyroscopic matrices of the
disc. Finally, discrete stiffness components are placed at both
ends of the shaft. After assembling the shaft elements and the
rigid discs, the equation of motion of the complete rotor system
is:

Mx(7) + (C+ 0G)x(z) + (K+ K, )x(¢) = £(¢) 9)

where K, is the stiffness matrix of the bearings. The expression
of the matrices are given in the reference [17].

Harmonic balance method

A stochastic analysis will require repeated computation of the
dynamic problem, and working in the frequency domain is more
efficient than using time-domain methods. For this reason, the
Harmonic Balance Method is adopted to solve the system from
Eqn.(9). The displacements and the rotation, together with the
forces, are represented as a truncated Fourier series with n har-
monics. In this study only the first harmonic is retained, i.e. the
Fourier basis is simply [cos, sin]. The response vector may then
be assumed to be x(¢) = xe/®. Substituting these expression
into the equation of motion Eqn.(9) and balancing the harmonic
terms, a solution projected into the orthogonal Fourier space can
be obtained, i.e. the components [cos, sin] for each degree of free-
dom. The number of unknowns is 88, as the system from Eqn.(9)
has 44 DOFs (11 nodes with 4 dofs each). The deterministic re-
sponse of the rotor is then obtained by solving the linear system
AX=F where:

A(®) = —0*M + jo(C+ 0G) + K +K,. (10)

Model validation: FRF and Campbell Diagram

Before the deterministic model can be used in a study with un-
certainties, it is necessary to validate it. For this purpose the
Frequency response Function (FRF) and the Campbell Diagram
will be computed.



For the (FRF), the Amplitude is calculated at every HBM input
frequency as:

A(®) = [, (0)% + 33, (0)? ()

where i = 0,...,88 spans the degrees of freedom in the system,
while x;,,, and x;, are the solution of Eqn.(9) projected onto the
Fourier basis previously defined.

Another widely used plot in rotor dynamics is the Campbell di-
agram, that represents the evolution of the critical speeds, cor-
responding to the natural frequencies, versus different operating
speeds. This is possible by calculating the eigenvalues of the
problem:

[—@0’M+ joG +KJA =0 (12)

assuming the solution X = Ae/®’. Only the first three modes will
be considered in this study.

Formulation of the linear stochastic system

In order to formulate a stochastic system, the first step is to iden-
tify the uncertain parameters. These are treated as independent
random variables (for example using the Karhunen-Loeve Ex-
pansion KLE, see [10]). This study will consider the following
configurations (see Fig.(3)) with a maximum of two uncertain
variables (N = 2):

Case A : N =2, Normal distributions .4 (ut, o) with the mean
and the standard deviation ¢ = 0.05 * u for the Young mod-
ulus and the spring stiffness E, K, (not bounded in ). The
metamodel is created by projecting the model into a basis of
Hermite polynomials (optimal polynomials for Normal dis-
tributions);

Case B : N = 1, Uniform distribution % (a,b), where a = 1 —
0.05* u and b = p +0.05 * u for the variable K, (bounded
distribution in Q). The metamodel is created by project-
ing the model into a basis of Legendre polynomials (optimal
polynomials for uniform distributions);

Case C : N =1, Beta distribution #(r,t,a,b), where r =2.5,1 =
4 define the shape of the distribution and a = u — 0.07 *
uand b = p +0.03 x u the spread of the bearing stiffness
K,. The metamodel is created by projecting the model into
a basis of Jacobi polynomials (optimal polynomials for Beta
distributions);

Case D : N =2, Betadistribution #(r,t,a,b), where r =2.5,t =
4 define the shape of the distribution witha =y —0.07 x u
and b = u +0.03 * u for the the bearing stiffness K, and

N(u, o)

H—o pu p+o a b a b

FIGURE 3. INPUT DISTRIBUTIONS FOR CASE A, B AND C.

a Uniform distribution % (a,b), where a = u — 0.05 % 4 and
b= +0.05x u for the density p. The metamodel is created
by projecting the model into a basis of Legendre and Jacobi
polynomials.

The standard deviations in these cases have been chosen arbitrar-
ily but in the manner that they permit to validate the method. To
achieve this goal they have been chosen enough large to spread
the input parameter range.

Once the random input vectors have been defined, the chosen
stochastic analysis can be carried out. To prove the accuracy of
the suggested PCE approach, its results will be compared to the
results of a Monte Carlo Sampling simulation.

NON-LINEAR PROBLEM: STOCHASTIC ASYMPTOTIC
NUMERICAL METHOD

Asymptotic numerical method

In this work the method used to solve the deterministic non-
linear problem is a combination of Harmonic Balance method
(HBM) and Asymptotic Numerical Method (ANM). The later
technique has been proposed by Damil and Potier-Ferry [18]
and improved by Cochelin [13] for calculating the post-buckling
branches of plates and shells. The technique was then coupled
to HBM by Cochelin and Vergez [19]. Because of the analyti-
cal representation of the solution branch in the ANM, some ro-
bust path-following technique can be used, instead of the classi-
cal predictor-corrector method [20], to get a continuous response
branch.

If some localized non-linearities are added to the rotor system,
the Eqn.(9) becomes:

Mk (1) + (C + 0G)X(t) + (K+ K, )x(r) = £(¢) + Fu (1,x(1))
13)
where Fy(¢,x(¢)) stands for the vector of non-linear forces. The
first step for the use of ANM is to reduce the system in Eqn.(13)
to a first-order ordinary derivative equations (ODE) system by
introducing a variable (v(¢)) representing the velocity.

In order to apply the ANM for the calculation of non-linear re-
sponses, one needs to have a continuous system. For this pur-



pose it is necessary to write each equation from (13) as the sum
of constant, linear, and quadratic terms. The conversion of dif-
ferent kinds of non-linearity to quadratic form can be found in
the literature: cubic [21], contact [22, 23, 24], friction [23, 24]
and vibro-impact [23]. Using the quadratic form the system of
equations can be rewritten:

m(S) = c+1(S)+¢(S,S) (14)

where c is a constant vector m and [/ is a linear function and ¢ is
a quadratic (bilinear) function. S is the vector containing all the
unknowns. It should be noted that the gyroscopic effect alone
(wGx(t)) in Eqn.(13) produces a quadratic term versus the fre-
quency @ without the presence of any other non-linearity in the
system.

The next step is the application of the harmonic balance method
to the equation14, which leads to the final form of the system:

R(U)=Ly+L(U)+QU,U)=0 (15)

where U is a vector containing all the Fourier coefficients for all
the DOFs and the excitation frequency, and Ly, L(U), Q(U,U)
are respectively a constant, a linear, and a quadratic map. With
the system in this form, the asymptotic numerical method can be
applied.

The first step of the ANM is to find a solution of the non-linear
system in Eqn.(15) by using a corrector method (e.g. Newton’s
method). After calculating the first solution, the goal is to track
the evolution of the system behaviour while one of the parame-
ters (@ in our case) varies.

In order to find the next solutions, the unknown vector U is ex-
panded to a Taylor finite series (with order T usually between
10 and 20), starting from the first solution, Uy, which has been
found with an iterative process.

Ul(a) = Uy +aUj(a) +a*Us(a) + ... +a" Ur(a)  (16)

where a is the step length that has to be calculated and
Uy,Us,...,Ur are the terms of the Taylor series. Since R(U) is a
quadratic operator, the calculation of these terms is simplified (as
shown by Cochelin [13]). The derivatives of U (used in equation
(16)) can be calculated by solving a set of linear systems with the
same stiffness matrix (i.e. the Jacobian matrix, see Cochelin [13]
for more details).

The path parameter a is defined as an arc length measure, i.e. it
is identified as the orthogonal projection of the unknown vector
increment U(a) — Uy on the tangent vector U;. The definition

ensures that in a region of low curvature, the arc-length can be
great due to a small variation in the amplitude, while in regions of
high curvature the arc-length is reduced to minimise the number
of correction steps, making the method very efficient in compari-
son to classical predictor-corrector method. A simple criterion to
adapt the arc-length [13] is to require that the difference between
two consecutive order solutions remains smaller than a tolerance

(€):
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Stochastic formulation of the problem

The non-intrusive collocation method is used to calculate the
stochastic response.

In order to be able to apply the method to heavily nonlinear sys-
tems with turning points a special technique has been developed
where the deterministic parameter used in the calculation of the
stochastic modes is not the frequency which is stochastic in this
case, but the arc length ratio. In this way convergence at the re-
turning points can be ensured and the Gibbs phenomenon [10],
which can appear and affect the stochastic response by introduc-
ing spurious oscillations, can be avoided. After the calculation of
the deterministic solution in N collocation points, the stochastic
modes are calculated by integrating the scalar product either via
Gaussian quadrature or Smolyak cubature (for the multivariate
random spaces):

<Wo(§),¥o(E) > Bo ‘1’0(51) ‘Po(flv)
S E)TE) > Br) W) o Br(E)
(18)
)’(éla/Tl)Wl

(&N, “N)

where f" is the arc length ratio and w; is the weight of the
quadrature (or cubature) used for integrating the scalar product.
The values of the weights depends on the number of collocation
points and the cubature technique [10]. y represents the deter-
ministic solution in the collocation points.

Several different nonlinear uncertain cases have been considered.
The first one (case E) is the original linear case, but by using the
ANM for its solution a one non-linear term is present due to the
gyroscopic effects. For case F,G,H a nonlinear cubic stiffness
(Fu(t) = —kyy(1)?) is added on the first node along y axis.



Case E : N =2, Normal distributions .4 (i, 0) with a mean p
and a standard deviation ¢ = 0.05 * u for Young’s modulus
E, and the bearing K, stiffness (not bounded in Q). K; = K.
The selected random variables do not introduce any asym-
metries in the system. The metamodel is created by pro-
jecting the model into a basis of Hermite polynomials. The
Smolyak cubature rule is used to reduce the number of col-
location points;

Case F : N = 2. Similar to case E except for the nonlinear stiff-
ness k,; = lel4Nm™3;

Case G : N = 1, Uniform distribution % (u(1 —o),u(1 + o))
with a mean p and o = 0.05 for the variable K, (unbounded
in Q). The nonlinear stiffness is k,; = 1e6Nm 3.

Case H : N =2, Uniform distributions % (1(1 — o), u(1+4 o))
with a mean p and o = 0.05 for the variables K and K.
The nonlinear stiffness is k,; = le14Nm 3. In this case the
random variable introduces an asymmetry in the system (K,
can be bigger or lower than K;). The effect of the random
variable on the asymmetry and on the responses is analysed.

In this study only forward travelling excitation is considered.

NUMERICAL STUDIES
Linear model

This section presents the results of the Monte Carlo Simulation
and the Polynomial Chaos Expansion for the linear rotor model.
The obtained results in the Fig.(4)-(6) will all use a similar legend
approach to make the results more comparable. Plotted in grey
are all the FRFs that have been computed with the Monte Carlo
Method. At each frequency, the MC distribution is characterized
by the 5 and 95 percentile envelopes (white dots).

The PCE provides a stochastic metamodel for each frequency
value. The output distribution has been analysed using the fol-
lowing statistical parameters:

Mean and standard deviation : mean p (turquoise), standard
deviation o for the envelopes [+ 1.960, it —1.960] (green,
useful when the response is Gaussian);

Min/max envelopes : the minimum and maximum values, ob-
tained by sampling the metamodel with an optimized algo-
rithm in OpenTURNS (blue);

95% envelopes : the 5 and 95 quantiles envelopes, calculated
after the optimized sampling (red).

Fig.(4) shows the Deterministic (a) and the Stochastic (b) Camp-
bell Diagrams of the rotor model for the case A. The first three
modes are presented, i.e. 6 eigenvalues for each frequency. In
this study only the excitation caused by an unbalance mass is

200 e

ency (Hz)

OS50 T500T500 2006 25003000 o <65 1656 505 00 =550
Speed (RPM) Speed (RPM)
(b)

FIGURE 4. CASE A: DETERMINISTIC (a) AND STOCHASTIC
(b) CAMPBELL DIAGRAMS.

considered and hence just the first engine order is traced on the
Campbell Diagrams (Fig.(4) ). The size of the MC sampling is
10000 and a metamodel with a chaos order equal to 2 has been
used. Both methods, MCS and PCE converge to the same so-
lution with symmetric output distributions. The 95% envelopes
and the u £1.96 % ¢ of the PCE envelopes are matching and the
95 quantile points of the Monte Carlo Simulation (white points
and stars) follow these envelopes as well. The minimum and
maximum envelopes contain all the MC samples highlighting the
capability of the Min/Max metamodel to capture the dynamic re-
sponse correctly for the linear case. One interesting aspect of
this plot is that the intersection between the envelopes and the
engine order line is no longer a single point, i.e. one singular
critical speed, but a critical interval, where each rotation speed
has a probability to become critical. For example, the intersec-
tion of the first engine order and the third forward mode has a
critical speed interval 2100 to 2500 RPM (orange segment in
Fig. 4). This means that, for an engine, the nominal speed has to
be not only far enough away from the deterministic critical speed
(~ 2300RPM), but from the whole critical interval, in order to
avoid possible damage to the system. The relatively large critical
interval in this test case is mainly caused by the use of a rela-
tively wide Gaussian distributions .4 (1,0.051) of the Young’s
modulus E and the bearing stiffness Ky, and it can be expected to
be smaller in a real shaft assembly. Only a stochastic treatment
of the problem will be able to highlight potential problems with
the shaft design due to the critical interval.

In order to evaluate the influence of an uncertain shaft density
on the Campbell diagram, Case D was studied. In this case the
density is uncertain; the mass and gyroscopic matrices become
consequently uncertain. The applied bounded Beta and Uniform
distributions led to a less “’spread” output distribution when com-
pared to Case A, making it easier to observe a variation from the
deterministic case (where the mass matrix was constant). Fig.(5)
shows the stochastic Campbell Diagram up to S000RPM (a) and
a zoom from 3000 to 4500RPM (b). The higher speed range was

30
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FIGURE 5. CASE D:STOCHASTIC CAMPBELL DIAGRAMS (a)
AND ZOOM (b).
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FIGURE 6. CASE B: FRF FOR DOF y DISPLACEMENT, NODE 2.

selected after observing a very close second forward mode and
third backward mode in Fig. 4.

In the stochastic case, the distributions of the second forward
and the third backward modes intersect in a relatively large fre-
quency interval, compared to the deterministic case where the
coincidence occurs at 4000RPM. In this interval two modes can
be in resonance at the same time, which may lead to an unex-
pected very high amplitude response of the system. The mean
values of the stochastic analysis perfectly match the determinis-
tic case ( x and o on the plot), which means that a variation of
10% of the shaft density does not modify the eigenvalues of the
system.

For the computation of the FRF node 2 is used, where resonance
and anti-resonance are well defined. Fig.(6) shows the frequency
response of case B, for a single random parameter K, with a
bounded Uniform distribution.

With just one uncertain input parameter, the output distribution
dy is relatively narrow and the 95% envelopes for both MCS and
PCE are in good agreement. This is mainly due to the fact that
the input Uniform distribution is bounded in Q.

Given the good agreement between the MCS and PCE in predict-

Stochastic method | Parameter Case A | Case B
MCS 10000samples | 1324’ | 12h28'
PCE metamodel 2nddegree 1Al 15
PCE metamodel 3rddegree 3n16" | 36
PCE metamodel Sthdegree 15010 | —

TABLE 2. SIMULATION TIMES CASE A AND B: MCS vs PCE.
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— Mean Monte Carlo
— Mean PCE degree 2
—  95pc PCE envelops degree 2

— Mean +/- 1.96std PCE degree 2
Min/Max PCE envelops degree 2
o 95pc MC envelops
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FIGURE 7. CASE C: FRF FOR DOF y DISPLACEMENT, NODE 2.

ing the uncertain Campbell and FRF plots the main advantage of
the PCE lies in its computational cost. Tab.2 presents CPU times
for the FRF computation of case A and B. The simulation were
run on a standard PC based on an Intel core i7 CPU at 3.1Ghz
with 8GB RAM. Only one core was used during the simulation.
As long as the number of samples remains constant, the MCS
time does not change greatly between the two cases. In contrast
to the MCS, the sensitivity of the PCE to the number of input
parameters (higher in case A than B) and also to the metamodel
degree is much stronger (the 5th degree takes as long as a MCS).
All the results shown in this section were obtained with a 2nd
chaos order, highlighting the accuracy of the low order model.

Fig.(7) shows the results of case C with a beta distribution of the
bearing stiffness K. The output distribution is limited around the
mean value, as it was for case B. The results of the PCE match
the MCS results closely, even if the envelope t — 1.96u shows
some problems in the resonance zones caused by the Gibbs phe-
nomenon. The conclusions are thus the same as in Case B.

Non-linear model

The effect of the uncertain parameters on the linear system re-
sponse has already highlighted several issues, but even more im-
portant is the influence of the uncertainties on a nonlinear dy-
namics problem, since a large amount of nonlinearities can be
present in turbomachinery. They are caused by the nonlinear
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behavior of the components: contact in bearings, bolted joints,
nonlinear dampers, impact... A important of uncertainties ex-
ist concerning the parameters of these nonlinear components. In
Fig.(8) some deterministic FRFs of the displacement at node 1
for the linear and nonlinear system are shown. When the system
is symmetric, the modes corresponding to the non excited direc-
tion of rotation (backward or forward) are not present, but when
the system is asymmetric there is a coupling between the modes
and additional peaks can be observed in the FRF. This energy
transfer must be taken into account for the stochastic response
since it can be strongly enhanced by uncertainty in the system.

The response of the linear case E that has been calculated with
the stochastic ANM can be seen Fig.(9). In this case the gyro-
scopic effects introduce a quadratic non-linearity, but since the
system is symmetric only the forward modes are excited.

The case F introduces a cubic stiffness along the y-axis on node
1, representing a potential nonlinear behaviour of the bearing.
The value of the cubic stiffness has been chosen in order to ob-
serve nonlinear frequency responses with returning points. The
introduction of a non-linear stiffness along one axis generates an
asymmetry in the system. For this reason the backward modes
are excited as well and a little peak appears around 125Hz in
Fig.(10). The other peaks are shifted slightly because of the
hardening effect of the non-linearity, but the general stochastic
distribution of the FRFs is very similar to case E.

The stochastic FRF of the case G is shown in Fig.(11). In this
case the asymmetry is amplified by the random distribution of
one of the two bearing spring Ky, in addition to a weaker nonlin-
ear spring. To provide a good stochastic FRF the following ap-

95% and 5% percentiles
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FIGURE 9. CASEE: FRF FOR DOF y DISPLACEMENT, NODE 1.
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FIGURE 10. CASE F: FRF FOR DOF y DISPLACEMENT, NODE
1.

proach is being proposed; the random space has been partitioned
in two subspaces (K, > K and K, < K; thus K, = u(1+ oup)
and K, = u(1+ ouy) with uy,u; uniform distributions respec-
tively % (—1,0) and % (0,1)). The PCE has then been applied
separately in the two subspaces and the resulting FRFs combined
in Fig. (11). The backward modes are excited more strongly in
this configuration due to the amplified asymmetry in the system.

For case H in Fig.(12) the uncertainties are introduced on the lin-
ear bearing stiffness along the y and z direction. The resulting
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2D square random space (two uniform distributions) was divided
into two triangular uniform subspaces (K, > K; and K, < K;) to
reduce problems with the response calculation due to Gibbs phe-
nomenon. An uncertainty in both directions of the linear bearing
springs excites the backward modes much more than in the pre-
vious case, which is probably due to the stronger asymmetry of
case H.

All above results show, that the suggested combination of HBM,
ANM, PCE and Smolyak cubature permits to reproduce the
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stochastic response of a nonlinear rotor, and highlights the im-
portance of including uncertainty in a rotor dynamic analysis.

CONCLUSION

In this study, a numerical implementation of the general PCE ap-
proach is proposed in order to evaluate the stochastic response
of a linear and non-linear dynamic rotor model with uncertain
linear input parameters. A Non-Intrusive approach has been pro-
posed to calculate the stochastic frequency response functions
and stochastic Campbell Diagrams for a simple rotor model. The
obtained results show that Polynomial Chaos basis is an effective
way to assess the propagation of uncertainties in a mechanical
systems, offering a series of benefits over the traditional sam-
pling methods.

The PCE shows a major advantages over the MCS for the linear
rotor analysis with uncertainties, allowing the calculation of the
uncertain bounds in a much more efficient way without the loss
of accuracy. The stochastic Campbell Diagram obtained by the
linear analysis is of great interest, since it introducing the concept
of a critical speed interval, where each Q has a probability to
become critical.

The proposed non-intrusive method shows its robustness also for
the non-linear dynamic analysis. Of special interest is the ap-
pearance of modes from the non-excited direction due to the
breaking of the symmetry once uncertainty is applied to the linear
bearings, or an additional nonlinear term is being added. These
modes can influence the dynamic response of the system and lead
to an additional accumulation of fatigue in areas that are nor-
mally considered safe to operate.

It could be shown, that the PCE approach can be used to improve
the robustness of the dynamic design of turbomachines, also fur-
ther improvements may be necessary to allow the inclusion of
higher order polynomials. Future study will be carried on the
effects of the uncertain nonlinearities on the stochastic response.
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