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In this paper, we try to solve the infinite square well problem by using the Bohr model. We first discuss 1 r and r 2 potentials, then we generalize these results to the power potential of type r β . After yielding correct Virial theorem results for the partitioning of the total energy between kinetic and potential, we treat the infinite square well potential as a limiting case of power-law potential. Our result differs at the numerical level but has the correct dependence on all constants and parameters.

The Bohr Model, from its original success describing Hydrogen spectrum, to more recent prediction of Charmonium level, has been a valuable tool of physics [START_REF] Greiner | Quantum Mechanics: Symmetries, Classical theoretical physics[END_REF]. To our knowledge, there is no treatment of the infinite square well problem in the framework of the Bohr Model.

In the historical Bohr Model of hydrogen, an electron of mass m and charge -e is orbiting a very massive proton of charge +e leading to the Coulomb potential

V (r) = -e 2 4πǫ0 1
r where ǫ 0 is the permittivity of free space. Then the total energy is given by

E(r, v) = mv 2 2 - e 2 4πǫ 0 1 r (1) 
Using Planck's constant , the speed of light in vacuum c, and the fine structure constant α = e 2 4πǫ0 1 c to eliminate the universal, but not very popular e 2 4πǫ0 , the energy expression becomes

E(r, v) = mv 2 2 - α c r (2) 
Bohr's first radical idea was to postulate circular orbits despite the classical electromagnetic theory result: An electron in a circular orbit accelerates, therefore radiates and cannot be stable. The second idea was to postulate the angular momentum quantization [START_REF] Eisberg | Fundamentals of Modern Physics[END_REF] 

L = mvr = n (3) 
Since the system has no angular dependence, we can write the total energy as a function of position only The equivalence between a scalar and a vectorial equation stems from the fact that v appearing in equations is the tangential velocity [START_REF] Landau | Mechanics and Electro-dynamics[END_REF].

E(r) = L 2 2mr 2 - α c r = n 2 2 2mr 2 - α c r (4) 
Setting dE(r) dr = 0, which is equivalent to F = ma, we obtain a set of quantized radii

r n = n 2 αmc (6)
Substituting these r n into E(r) we obtain the correct quantized energy spectrum

E n = - α 2 2n 2 mc 2 (7) 
Checking the second derivative, we see that E n are indeed minima.

The Bohr model may also be applied to simple harmonic oscillator with V (r) = mω 2 r 2 2 and the total energy

E(r, v) = mv 2 2 + mω 2 r 2 2
. We obtain Eq.8 by using the same argument as in Eq.4,

E(r) = n 2 2 2mr 2 + mω 2 r 2 2 (8)
and setting dE(r) dr = 0, we obtain quantized radii

r n = n mω (9) 
Substituting r n into Eq.8, we obtain the energy spectrum as

E n = n ω (10) 
which is a result used with success earlier than the Bohr model, by Planck (1900) and Einstein (1905). The second derivative again shows that E n are indeed minima. Now, we generalize this method to determine the discrete energy spectrum for a system under the power-law potential V (r) = Ar β , where A and β are constants. The energy as a function of position is

E(r) = L 2 2mr 2 + Ar β = n 2 2 2mr 2 + Ar β (11) 
and we set dE(r) dr = 0 to obtain quantized radii

r n = n 2 2 mAβ 1 β+2 (12)
For r n to be real, the product Aβ needs to be positive. Substituting r n into Eq.11, we obtain the total energy that manifestly displays the Virial theorem [START_REF] Clausius | On a mechanical theorem applicable to heat[END_REF].

E n = Aβ 2 n 2 2 mAβ β β+2 + A n 2 2 mAβ β β+2 (13) so that K = β β + 2 E , V = 2 β + 2 E ( 14 
)
where the brackets represent the time average of the enclosed quantities. Rearranging the terms gives the analytical expression of the total energy as

E n = A β 2 + 1 n 2 2 mAβ β β+2 (15) 
In addition to Aβ > 0, requiring E n to be local minima, i.e. d 2 E dr 2 > 0, leads to β > -2. Thus, the parameter space consists of two disjoint regions:

1. -2 < β < 0 and A < 0 2. β > 0 and A > 0 for which the expression (15) holds

We check that the previously obtained results agree with Eq.15 and Eq.14 by substituting the corresponding values of β and A in these equations.

• Coulomb potential (β = -1, A = -α c):

E n = - α 2 2n 2 mc 2 (16) K = -E, V = 2E (17) 
• Simple harmonic oscillator (β = 2, A = mω 2 2 ):

E n = n ω (18) 
K = V = E 2 (19) 
We now attempt to generalize the aforementioned method to an infinite square well potential. Although it is not strictly a power function, it can be expressed as

V (r) = V 0 ( r a ) β (20) 
in the limit as β → ∞. Here, a is the length of the potential well.

Virial theorem gives K = E and V = 0, compatible with the physical intuition. Hence, with β → ∞ and A = V0 a β the energy spectrum is given by

E n = lim β→∞ V 0 a β β 2 + 1 n 2 2 a β mβV 0 β β+2 (21) 
Without resorting to sophisticated limiting procedures and just recognizing that as β tends to infinity

β 2 + 1 → β 2 and β 2 β + 2 -β → -2
and consequently, the energy spectrum becomes

E n = n 2 2 2ma 2 (22) 
The full quantum mechanical treatment in two dimensions involves the zeros of Bessel functions of the first kind, and the exact result is E nm = 2 2ma 2 Z 2 nm , where the Z nm replacing our n is the n th root of J m (x) [START_REF] Arfken | Mathematical Methods For Physicists International Student Edition[END_REF]. Although we can not acquire the exact result of this problem, the solution for energy spectrum has correct dependence on all constants and variables. The method we propose reproduces the already known results differently, and it can provide undergraduate students with an unusual way of approaching the problems in modern physics.

  Conservation of energy dE(r) dt = 0 and F (r) = -dV dr imply dE dr dr dt = (ma -F )