Pre-soaking of semitendinosus graft with vancomycin does not alter its biomechanical properties. A biomechanical in-vitro controlled study using graft from living donors

Running title: Vancomycin Pre-soaking does not alter Hamstring Biomechanical Properties

MD Maxime Jaubert MD

Christophe Jacquet, Maxime Jaubert, Charles Pioger, Abderahmane Sbihi, Martine Pithioux, Marie Le Baron, Akash Sharma, Matthieu Ollivier

To cite this version:

HAL Id: hal-02556210
https://hal.science/hal-02556210
Submitted on 27 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pre-soaking of semitendinosus graft with vancomycin does not alter its biomechanical properties.

A biomechanical in-vitro controlled study using graft from living donors

Running title: Vancomycin Pre-soaking does not alter Hamstring Biomechanical Properties

Christophe Jacquet * MD
Maxime Jaubert * MD
Charles Pioger * MD
Abderahmane Sbihi * MD
Martine Pithioux * PhD
Marie Le Baron * MD, PhD
Akash Sharma * MBBS, FRCS
Matthieu Ollivier * MD, PhD

* Institute of movement and locomotion, Department of Orthopedics and Traumatology St. Marguerite Hospital
270 Boulevard Sainte Marguerite, BP 29 13274 Marseille

* Institut de Chirurgie Orthopédique et Sportive, Rue Paradis 13008 Marseille

Investigation performed at Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopedics and Traumatology, Marseille, France.

The study has been performed in accordance with the ethical standards in the 1964 Declaration of Helsinki. All patients provided written consent, and the study was approved by our hospital’s ethics committee (No. 2016-015724-11; 26 November 2016 and included with the form.
Correspondence: Matthieu Ollivier
Institute of movement and locomotion, Department of Orthopedics and Traumatology, St. Marguerite Hospital, 270 Boulevard Sainte Marguerite, BP 29 13274 Marseille, France
Phone : +33491745001
Fax : +33491745011
Email : matthieu.ollivier@ap-hm.fr
Pre-soaking of semitendinosus grafts with vancomycin does not alter their biomechanical properties.

A biomechanical in-vitro controlled study using graft from living donors

Blinded Manuscript
Abstract

Purpose:
The aim of this study was to compare the biomechanical properties of human semitendinosus graft pre-soaked with or without vancomycin under a load to failure tensile test.

Methods:
Thirty semitendinosus grafts harvested during ACL reconstruction were included. These were dissected equally into two halves and subsequently randomly allocated to a vancomycin group and to a control group. A digital caliper was used in order to precisely measure each samples thickness, length and width. For the vancomycin group; samples were pre-soaked in a solution of 5mg/ml of vancomycin for a duration of ten minutes and the control group samples were pre-soaked in a physiological serum equally for ten minutes. Mechanical testing was performed on a universal testing machine (Instron 5566-A) after a pre-conditioning of 10 cycles of 1 mm extension and a progression of 10 mm/min to failure for each sample. The stress-strain curve was obtained to determine the elastic modulus, the Ultimate Tensile Stress (UTS), the Ultimate Tensile Elongation (UTE) before failure and the elasticity limit.

Results:
For the control group, the average Young’s modulus value was 4.8 ± 0.8, the average UTS 25.2 ± 5.2 Mpa, the average percentage of UTE $78 \pm 17\%$ and the average elasticity limit value 17.3 ± 5.3 Mpa. For the vancomycin group, the average young’s modulus value was 4.7 ± 0.9, the average UTS 24.1 ± 6.1 Mpa, the average percentage of UTE $82 \pm 14\%$ and the average elasticity limit value 18.5 ± 5.9 Mpa. No significant difference was observed between the two groups for all investigated parameters.
Conclusion

Pre-soaking of human semitendinosus graft with vancomycin does not alter its biomechanical properties.

Clinical relevance:
This study demonstrates that vancomycin pre-soaking used in order to prevent post ACL reconstruction septic arthritis does not affect immediate biomechanical properties of semitendinosus tendons.

Key Terms: vancomycin, hamstring, ACL reconstruction, mechanical properties, tensile test, septic arthritis, pre-soaking
INTRODUCTION

Septic arthritis following an anterior cruciate ligament (ACL) reconstruction is a serious complication, with the incidence rate ranging from 0.14 to 3.8% \(^1\). The treatment of this complication required in 33.3% of the cases a graft removal with adjuvant antibiotic (on average 35.4 days) with disastrous functional consequences for the patient \(^5\).

Staphylococci are the most important causative agents in up to 90% of cases with approximately half of those being identified as coagulase-negative staphylococci (CNS) \(^3,6\). Some authors relate this high rate of infections by CNS to skin microbial flora contamination during graft harvesting \(^3\).

Recent studies advocate the pre-soaking of ligament autografts with vancomycin to prevent postoperative septic arthritis. These series discovered a significant reduction in the risk of infection in the group relying on this protocol (ten minutes of pre-soaking with 5mg/ml of vancomycin)\(^9,10\).

Vancomycin seems to be an ideal choice for prophylactic antibiosis when used topically. It demonstrates a low rate of bacterial resistance on gram positive bacteria \(^11\) and has low toxicity on local tissues \(^12,13\).

Only one animal study in the literature has evaluated the impact of pre-soaking tendons with vancomycin and the possible consequences on their mechanical properties \(^14\). The immediate impact on the biomechanical properties by pre-soaking human ligament autografts with vancomycin has not been not been studied thus far.

The aim of this present study was to compare the biomechanical properties of human semitendinosus graft pre-soaked with or without vancomycin under a load to failure tensile test. The hypothesis was that pre-soaking semitendinosus grafts with vancomycin did not alter their elastic modulus (Young's modulus), Ultimate Tensile Stress (UTS), Ultimate Tensile Elongation (UTE) before failure and elasticity limit.
MATERIAL AND METHODS

Biomechanical testing was carried out with 30 semitendinosus tendon grafts harvested during ACL reconstruction surgery with a four stranded hamstring graft (semitendinosus + gracilis) between September 2017 and December 2018. All patients provided written consent, and the study was approved by our hospital’s ethics committee.

After tunnel drilling and estimating the minimal length of the final graft, samples for testing were obtained by using distal portions of semitendinosus distal part (tibial insertion), if semitendinosus excess was longer than 6 cm. This allowed them to be equally split in two identical samples of at least 3 cm which was the minimal length required to conduct mechanical testing.

The demographic characteristics (age, gender, height, weight, the sporting level evaluated by the University of California and Los Angeles (UCLA) score of the patients included are summarized in Table 1.

The semitendinosus grafts deemed suitable for testing were stored at -20°C for a maximum duration of 15 days before being prepared into samples to go through the mechanical test. It has been shown that this storage protocol does not alter the biomechanical properties of tendons.

Preparation of the samples

After 8 hours thawing at ambient temperature (21°C) each semitendinosus was prepared into parallelepipeds and then cut in half to obtain two samples of equal length width and thickness. Subsequently each sample was randomly allocated to either a vancomycin group or a saline solution control group (30 samples in each group).

To minimize the bias in the preparation of the specimen, a digital caliper (Absolute Digimatic®, Mitutoyo™, Kanagawa, Japan) with a precision of U=0.001 mm was used in order to measure each samples thickness, length and width. These measurements allow section’s size calculation for each sample thus permitting stresses and strains estimation.
during load to failure tests. Each measurement was carried out by two different operators and the average of the two values was recorded. The control group samples were pre-soaked in a physiological serum (NaCl 0.9%) for a duration of ten minutes. Equally the vancomycin group samples were pre-soaked in a solution of 200ml of physiological serum and 1g of vancomycin for duration of ten minutes (5mg/ml concentration). This protocol has already proven it's efficacy in both clinical trials and in vitro studies.9,10,17

Tensile tests (figure 1)

Mechanical testing was performed on a universal testing machine (Instron 5566-A, Instron®, Norwood MA, USA) (Fig. 1). The ends of each specimen were placed in two jaws (1 cm from each end was placed in the two jaws) from previously published method.18 The mechanical properties were determined within the tissue between the two jaws again using a similarly validated protocol.19 The length between the two jaws was measured using a digital caliper (Absolute Digimatic®, MitutoyoTM, Kanagawa, Japan). This length (L0) was used to determine the elongation during the test. Specimens were pre-conditioned with 10 cycles of 1 mm extension. The interface of each specimen/jaw was marked with China ink to monitor potential sliding. All specimens were subjected to a tensile test with a progression of 10 mm/min to failure.20 The elongation and the tensile force applied was measured using an acquisition software Bluehill 3 (Instron®, Norwood, MA, USA). The stress-strain curve was then calculated. The following parameters were analysed to compare the samples:

- Young's modulus (Mpa)
- The Ultimate Tensile Stress before failure (Mpa)
- The Ultimate Tensile Elongation (UTE) before failure defined as the length variation from the initial length (L0) to failure, it was expressed as a percentage.
- The Elasticity Limit (Mpa) defined by the stress from which a sample stops deforming
elastically and in essence demonstrates irreversible deformity.

- The level of the failure was also collected for each test: jaw-specimen interface or inside the specimen

Statistical analysis
The Kolmogorov-Smirnov's test was used to determine the data's normality distribution. Parametrical tests were used to compare the normally distributed variable (demographical data's and mechanicals properties) between the groups. Non-parametrical tests were used to compare elongation at failure, since this data was not normally distributed.

Two-tailed tests were carried out using PASW Statistics version 20 (SPSS, IBM Inc., Chicago, Illinois). The significance threshold was set at $P < 0.05$. Sample size calculations were based on results of the Ollivier et al study 20. These calculations showed that at least 25 samples were needed in each group to show a clinically significant difference of 5 Mpa in UTS value before failure between the groups ($\alpha= 0.05; \beta= 0.8$ for a mean UTS value before failure of 13± 7 Mpa 20 for the control group.). Consequently, we included 30 patients per group, which allowed for 5 specimens to be excluded if necessary.
RESULTS

No specimen slippage occurred and the calculations could be performed on all 60 samples tested. Four failures at the jaw-specimen interface for the control group and three for the vancomycin group (p=0.6) were observed. The other failures were observed inside the specimen.

The average Young's modulus value for the control group was 4.8 ± 0.8 and for the vancomycin group 4.5 ± 0.9.

The average Ultimate Tensile Stress value before failure for the control group was 21.2 ± 5.2 Mpa and for the vancomycin group 22.3 ± 6.1 Mpa.

The average percentage of Ultimate Tensile Elongation before failure for the control group was 78 ± 17% and for the vancomycin group 82 ± 14%. No significant difference was observed between the two groups for all three parameters (respectively p= 0.8, p=0.7, p=0.8. (table 2)

Analysis of the stress-strain curves confirmed that the samples possessed a ductile behaviour demonstrating 2 distinct phases, a phase of linear elastic deformation and a phase of plastic deformation (figure 2). The average elasticity limit value for the control group was 18.3 ± 5.3 Mpa and for the vancomycin group 17.5 ± 5.9 Mpa. No significant difference was observed between the two groups (p=0.4)
DISCUSSION

The main finding of this study is that pre-soaking human semitendinosus grafts with vancomycin does not alter its biomechanical properties. The hypothesis was accepted as no significant change was observed for the Young’s modulus, UTS, UTE and elasticity limit between the vancomycin group and the control group.

Septic arthritis occurring after an ACL reconstruction is a serious complication, with a reported incidence rate of 0.14% to 1.8%. Recent results of Sonnery-cottet et al study demonstrated that this rate could reach 3.8% in a specific population of professional athletes. In a recent meta-analysis, 86.9% of the population required a further surgical procedure for the treatment of septic arthritis post ACL reconstruction, and strikingly in 33.3% of the cases the graft required removal, furthermore adjuvant antibiotic therapy lasted on average 35.4 days.

Some in vitro studies have shown significant efficacy of vancomycin pre-soaking to eradicate bacteria in cases of septic arthritis post anterior cruciate ligament reconstruction. In their animal study on staphylococcus epidermidis infected tendons, Schuttler et al demonstrated that pre-soaking for 20 minutes with high concentration vancomycin solution (5mg/ml) reduced bacterial growth after 7 days of culture from 85.7% to 0%.

In another study, Perez-prieto et al showed that for samples contaminated after harvesting and manipulation/preparation, no bacteria was detected after 14 days in culture in a solution of vancomycin (5mg/ml).

The results of in vivo studies are also encouraging. In two controlled studies, Phegan et al and Péres-prieto et al have compared 285 and 810 patients respectively receiving intravenous antibiotic prophylaxis without topical graft pre-soaking to 1300 and 734 patients receiving the same antibiotic prophylaxis with pre-soaking the graft with vancomycin for 10 minutes (5mg/ml). The postoperative septic arthritis rate decreased from 1.4% to 0% and from 1.85% to 0% for the first and second study respectively. Furthermore, Phegan et al, included only hamstrings grafts whilst Péres-prieto et al included both hamstrings (84%) and patellar tendon (16%).
The mechanical properties of ligaments and tendons are related to various morphological parameters (age, living donor vs cadaveric, preservation methods etc), and the method used to induce failure. These reasons would explain the important variability in the values obtained in mechanical testing from previously published series20–23. However, the results of the control group of this study are similar to those obtained by Ollivier et al20 who used an identical mechanical test protocol.

Only one animal study in the literature has evaluated the impact of pre-soaking tendons with vancomycin and the possible consequences on their mechanical properties14. This study of porcine flexor tendons mirrors the finding of this study and shows no alterations were demonstrable in terms of their biomechanical properties after antibiotic soaking.

This study has some strengths that are important to highlight. It is one of the only study in the literature which investigates the impact of vancomycin on the mechanical properties of a human graft. Secondly the design of the study avoids the bias of inter-individual variability by using 2 groups with grafts from the same individual placed into each group. Lastly, donor grafts were used from living subjects, whilst in comparison previous published series report using either animal or cadaveric specimens14,23,24.

Limitations

Some limitations can be attributed to this study. Firstly, semitendinosus was the only graft to be evaluated, therefore these results cannot represent all grafts used in common practice for ACL reconstruction.

Secondly, the tensile test was performed on frozen grafts, but it is important to note that it has been shown that the mechanical properties of tendons are not affected by freezing if less than 3 cycles of freezing – thawing are performed25,27.

Thirdly, the fixation can influence the results of these tensile tests27. Jaws made from resin or cryoclamps are difficult to use and their use has not been validated28,29. Shi and al.18 validated the use of serrated jaws for ligament autograft fixation after comparing them to
other type of jaws. It is this type of jaw that has been used in this study.

Despite these limitations, this study demonstrates that vancomycin pre-soaking does not affect immediate biomechanical properties of semitendinosus tendon. Finally, the in-vitro time zero analysis on non-vascularized specimens didn’t analyse the remodelling phase of the ligamentization process and therefore these results must be completed by further histological studies to confirm the safe use of vancomycin pre-soaking at mid and long term time points.

CONCLUSION

Pre-soaking of human semitendinosus graft with vancomycin does not alter its biomechanical properties.
REFERENCES

doi:10.1177/0363546519869326

doi:10.1177/0363546511417567

doi:10.1007/s00167-015-3558-z

doi:10.1007/s00402-018-3006-x

...
Figure 1: Tensile testing machine

Figure 2: Examples of stress-strain curves for a vancomycin sample group (A) and a control sample group (B). The red line corresponds to the elastic limit and the green line to the ultimate tensile stress.

TABLES

Table 1: Demographic characteristics of patients included

<table>
<thead>
<tr>
<th></th>
<th>Control Group</th>
<th>Vancomycin Group</th>
<th>Absolute value of mean difference</th>
<th>IC-95%</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>30 ± 8 (19-42)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex ratio (F/M)</td>
<td>11/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>69 ± 9 (55-85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>172 ± 7 (163-184)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sporting level (UCLA score)</td>
<td>9 ± 1 (8-9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Mean difference for the four analysed parameters between the control group and the vancomycin group

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control Group</th>
<th>Vancomycin Group</th>
<th>Absolute value of mean difference</th>
<th>IC-95%</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young's modulus (Mpa)</td>
<td>4.8 ± 0.8</td>
<td>4.5 ± 0.9</td>
<td>0.3</td>
<td>[-0.5-0.6]</td>
<td>0.8</td>
</tr>
<tr>
<td>Ultimate tensile stress (Mpa)</td>
<td>21.2 ± 5.2</td>
<td>22.3 ± 6.1</td>
<td>1.1</td>
<td>[-1.3-1.5]</td>
<td>0.7</td>
</tr>
<tr>
<td>Ultimate tensile elongation (%)</td>
<td>78 ± 17</td>
<td>82 ± 14</td>
<td>4</td>
<td>[-6-8]</td>
<td>0.8</td>
</tr>
<tr>
<td>Elasticity limit (Mpa)</td>
<td>18.3 ± 5.3</td>
<td>17.5 ± 5.9</td>
<td>0.8</td>
<td>[-1.4-1.3]</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Figure 1 Tensile testing machine
Figure 1 Examples of stress-strain curves for a vancomycin sample group and a control sample group. The red line corresponds to the elastic limit and the green line to the ultimate tensile stress.