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The understanding of probability can be difficult for a few young scientists. Consequently, this
new mathematical symbol, related to binomial coefficients, could be helpful to science education,
and perhaps to other scientific subjects as well, such as computer science.

I. STUDY OF BINOMIAL COEFFICIENTS

A. Reminder

In a set of n elements, the number of combinations of
parts of p elements is the following :

(
n

p

)
=

n!

p! (n− p)!
(1)

With
(
n
p

)
the binomial coefficient, (n, p) ∈ N2 and p ≤ n.

And the exclamation point in equation (1) is named
“factorial” and is defined as, ∀n ∈ N∗ :

n! = n · (n− 1) · (n− 2) ... 3 · 2 · 1

n! =

n∏
i=1

i (2)

For n = 0, by definition : 0 !=1.

B. From factorial to termirial

For its part, the termirial is defined as, ∀n ∈ N∗ :

n |
+

= n + (n− 1) + ... + 3 + 2 + 1

n |
+

=

n∑
i=1

i (3)

The termirial symbol is almost like the factorial symbol,
with just a little difference, however : the dot (·) of
the interrogation point, which could be a reminder
of a multiplication, is replaced by a “plus” (+) sign.
Indeed, instead of multiplying factors of a multiplication
– factorial – one adds terms of an addition, hence the
name of “termirial”. Up to this point, things look quite
basic. However, as the termirial is the nth partial sum
of an arithmetic sequence (Un)n∈N∗ with U1 = 1 as first
term and r = 1 as common difference, one can notice a
first thing, ∀n ∈ N∗ :

n |
+

=
n · (n + 1)

2
=

(
n + 1

2

)
=

(
n + 1

n− 1

)
(4)

One will get back to it later, with the “generalized” ter-
mirial.

C. Intellectual path

At the beginning, I was studying the black body ra-
diation (Max Planck’s law). In this context, suppose one
has n particles to fill up in 2 discrete energy levels de-
termined by quantum mechanics. Suppose that the first
energy level named m1 can contain p particles, and that
the second one (m2) can contain (n − p) particles. The
number of possible combinations is same as equation (1) :

(
n

p

)
=

n!

p! (n− p)!
(5)

Let us start with a simple example : n = 5 and p = 2.
The figure 1 tries to explain the intellectual path which
has led to the termirial. One can see the energy level m1

containing p = 2 particles, with all the ways to fill it
up, for particles particules ranked from 1 to 5. In this
case, as a reminder, it is an unordered sampling without
replacement, the rank order of the particles has no impor-
tance : {1 2} and {2 1} are counted only once. Finally :(
5
2

)
= 4 |

+
= 10.

Let us make things a little bit more complicated, with
n = 5 and p = 3. In terms of binomial coefficients, one
has the same result as before :

(
5
3

)
=
(
5
2

)
= 10. But the

intellectual path is a bit different, see figure 2.
One can see a kind of “termirial of termirials” :

n
(2)

|
+

= n |
+

+ (n− 1) |
+

+ ... + 3 |
+

+ 2 |
+

+ 1 |
+

n
(2)

|
+

=

n∑
k=1

k |
+

=

n∑
k=1

k∑
i=1

i =

n∑
k=1

k(k + 1)

2!
(6)

n
(2)

|
+

=

(
n + 2

3

)
=

(
n + 2

n− 1

)
=

n(n + 1)(n + 2)

3!
(7)

The transition from (6) to (7) can be done with mathema-
tical induction. Indeed, if the following proposition P (n)
is true :

n
(2)

|
+

=

n∑
k=1

k(k + 1)

2!
=

n(n + 1)(n + 2)

3!
(8)



2

Figure 1. This figure represents the intellectual path from
the binomial coefficient

(
5
2

)
to the termirial of 4, through a

classical tree view. Here, only the energy level m1 is represen-
ted, which is sufficient, because one only has 2 energy levels,
not more.

Figure 2. This figure represents the intellectual path from
the binomial coefficient

(
5
3

)
to a sum of termirials, a kind of

“termirial of termirials” or a 2nd termirial. From now, one can
generalize to the 3rd termirial, the 4th termirial, etc.

And, for P (1) :

1
(2)

|
+

=

1∑
k=1

k(k + 1)

2
=

1 · (1 + 1)

2
= 1(

3

3

)
=

1(1 + 1)(1 + 2)

3!
= 1

Finally, with P (n + 1) :

(n + 1)
(2)

|
+

=

n∑
k=1

k(k + 1)

2
+

(n + 1)(n + 2)

2

=
n(n + 1)(n + 2)

3!
+

(n + 1)(n + 2)

2

=
n(n + 1)(n + 2)

6
+ 3

(n + 1)(n + 2)

6

(n + 1)
(2)

|
+

=
(n + 1)(n + 2)(n + 3)

3!
(9)

QED.

From now on, one can generalize to the pth termi-
rial.

II. GENERALIZATION OF THE TERMIRIAL

A. The pth termirial

Obviously, the the pth termirial will be defined as,
∀(n, p) ∈ N∗ × N∗ :

n
(p)

|
+

=

n∑
m=1

m∑
l=1

...

k∑
j=1

j∑
i=1

i (10)

n
(p)

|
+

=

n∑
k=1

k
(p−1)
|
+

=

n∑
k=1

1

p!

p−1∏
i=0

(k + i) (11)

n
(p)

|
+

=

(
n + p

p + 1

)
=

(
n + p

n− 1

)
(12)

n
(p)

|
+

=
1

(p + 1)!

p∏
i=0

(n + i) (13)

With, for the equation (10), a number of sigmas (
∑

)
symbols equal to p.
For p = 0, one can define the 0th termirial as :

n
(0)

|
+

= n =

(
n

1

)
The proof to go from (11) to (12) (or from (11) to (13))
can be done with mathematical induction as well. Indeed,
admitting that the following P (n) propositionis true :

n∑
k=1

1

p!

p∏
i=0

(k + i) =
1

(p + 1)!

p∏
i=0

(n + i) (14)
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On a, pour P (1) :

1
(p)

|
+

=
1

p!

p−1∏
i=0

(1 + i) =
p!

p!
= 1

1

(p + 1)!

p∏
i=0

(1 + i) =
(p + 1)!

(p + 1)!
= 1 (15)

Et, pour P (n + 1) :

(n + 1)
(p)

|
+

=

n∑
k=1

1

p!

p−1∏
i=0

(k + i) +
1

p!

p−1∏
i=0

(n + 1 + i)

=
1

(p + 1)!

p∏
i=0

(n + i) +
(p + 1)

(p + 1)!

p∏
i=1

(n + i)

=
(n + p + 1)

(p + 1)!

p∏
i=1

(n + i)

(n + 1)
(p)

|
+

=
1

(p + 1)!

p+1∏
i=1

(n + i) =

(
n + p + 1

p + 1

)
(16)

QED.

B. Pascal’s rule

Let us remind you on Pascal’s rule :(
n

p

)
+

(
n

p + 1

)
=

(
n + 1

p + 1

)
It is possible to adapt it to termirials :

(n + 1)
(p)

|
+

+ (n)
(p+1)

|
+

= (n + 1)
(p+1)

|
+

III. PRATICAL APPLICATIONS

A. Computational complexity

In computer science, the termirial can be used to
calculate the complexity of computer programs with
intricated “for” loops as follows : for example, with 4
“for” loops, with :
- for i from 1 to n=100 ;
- for j from 1 to i ;
- for k from 1 to j ;
- for l from 1 to k.

The complexity will be :

100
(4−1)
|
+

=

(
100 + 3

3 + 1

)
=

(
103

4

)
=

(
103

99

)
= 4 421 275

So, approximatey 4,4 millions of operations.
More generally, the complexity of this kind of pro-
gram will be, according to equation (13) and ∀(n, p) ∈

N∗ × N∗ : n
(p−1)
|
+

= Θ(np).

B. Pseudo-fractal aspect

Figure 3. This figure tries to convert pth termirial of 4 into
fractal figures, for p=0, p=1 and p=2. Only the grey squares
are counted.

The figure 3 tries to convert pth termirial of 4 into
fractal figures, for p=0, p=1 and p=2. Only the grey

squares are counted. For example, for 4
(2)

|
+

, 20 squares

are in grey, which corresponds to 4
(2)

|
+

= 20. For each

incrementation of p, the side of each square is divided
by 2, and the same basic pattern is repeated :
- 4 |

+
when the 4 previous squares are in grey ;

- 3 |
+

when the 3 previous squares are in grey ;

- 2 |
+

when the 2 previous squares are in grey ;

- 1 |
+

when only 1 previous square is in grey.

But the Hausdorff dimension (D) of this presumed
fractal is not constant, and the limit of D as p approaches
infinity is 2. Indeed, let a the side length of each square
related to the pth termirial. The total surface Sp of the
squares in grey will be :

Sp = a2 · n
(p)

|
+

= a2 · 1

(p + 1)!

p∏
i=0

(n + i)

And for the Sp−1 surface, related to the (p − 1)th

termirial, for a side length of each square doubled in
size :

Sp−1 = 4a2 · n
(p−1)
|
+

= 4a2 · 1

(1)!

p−1∏
i=0

(n + i)
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Hence, for p > 0 :

Sp−1

Sp
= 4 · p + n

p + 1
= 4 · 1 + n/p

1 + 1/p

Finally, this surface ratio, as p approaches infinity, is 4 :

lim
p→∞

Sp−1

Sp
= 4

Consequently, the Hausdorff dimension (D) is 2, as 2D =
4, when p approaches infinity. To conclude, as D is not
constant, even if figure 3 looks interesting, termirials do
not seem to be related to fractals.

IV. CONCLUSION

The termirial is a symbol which could be helpful to
scientific students, for the understanding of probability.
As well, it could be perhaps helpful in other subjects than
science education, that are out of this pré-publication.
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