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Abstract

Perfectly Matched Layers (PMLs) appear as a popular alternative to non-reflecting boundary conditions
for wave-type problems. The core idea is to extend the computational domain by a fictitious layer with
specific absorption properties such that the wave amplitude decays significantly and does not produce back
reflections. In the context of convected acoustics, it is well-known that PMLs are exposed to stability issues
in the frequency and time domain. It is caused by a mismatch between the phase velocity on which the
PML acts, and the group velocity which carries the energy of the wave. The objective of this study is to
take advantage of the Lorentz transformation in order to design stable perfectly matched layers for generally
shaped convex domains in a uniform mean flow of arbitrary orientation. We aim at presenting a pedagogical
approach to tackle the stability issue. The robustness of the approach is also demonstrated through several
two-dimensional high-order finite element simulations of increasing complexity.

Keywords: Perfectly matched layers, stability, Lorentz transformation, convected Helmholtz equation,
cross flow, high-order FEM

1. Introduction

The Perfectly Matched Layer technique has been introduced by Bérenger for electromagnetics in 1994 [1].
By virtue of its versatility and simplicity, it has gained a large popularity as an alternative to non-reflecting
boundary conditions for a wide range of wave-type problems. Further developments have led to a general
derivation based on a complex coordinate stretching, in which the PML is viewed as an analytic continuation
of the wave equation [2, 3]. The complex stretching approach has been theoretically analyzed and extended
to curvilinear coordinates by Collino and Monk [4]. While the PML is well-understood on the continuous
level, its performance on a discrete level is hard to infer a priori and often cumbersome to optimize [5, 6].
Bermúdez et al. [7] introduced an unbounded stretching function which turns out to be more robust with
respect to the PML parameters for finite element Helmholtz problems. The authors showed that this peculiar
function allows to exactly recover the solution of the acoustic scattering problem [8]. A comprehensive and
concise introduction to the PML developments can be found in [9].

The issue of the PML stability for flow acoustics application has first been raised for the linearized Euler
equations in the time domain [10, 11, 12]. It has been shown that the convection may generate a sign
mismatch between the phase velocity on which the PML acts, and the group velocity carrying the energy
of the wave, which in turn leads to an exponentially growing solution inside the layer. General, theoretical
results have been obtained in [13]. Hu proposed a stable formulation in unsplit physical variables [14] and later
extended it to non-uniform flows [15]. Bécache et al. analyzed a closely related formulation for time-harmonic
applications [16] and mathematically justified the associated convergence properties. Stability issues have
mainly been addressed for uni-axial flows, and/or for Cartesian PMLs with axis-aligned flows. There are
fewer works examining the issue of PML stability in uniform flows of arbitrary orientation. Hagstrom and
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Nazarov [17, 18] and Nataf [19] proposed novel methodologies to include cross flows for the linearized Euler
equations. Dubois et al. [20] used the Lorentz transformation to design a stable absorbing layer. Diaz and
Joly [21] analyzed the effect of a similar transformation based on the slowness curve properties, in the spirit
of [22] for anisotropic media. Parrish and Hu [23] derived the x, y and corner layers independently. Most of
these works are devoted to the linearized Euler equations in the time domain, and the available literature on
the stabilization of PMLs for the convected Helmholtz equation in cross flows is still scarce. This is however
of practical interest, since the convected Helmholtz operator forms the basis of several finite element codes
which are routinely used in industry, e.g. to support the acoustic design of turbofan engines [24, 25]. While
it may be argued that stability issues are less problematic in the frequency domain, they significantly impact
the numerical accuracy, especially at high Mach number flows, as will be demonstrated in this study.

The underlying idea behind a stable formulation relies on the possibility of applying a transformation
to the wave equation that removes the presence of the so-called ‘backward’ or ‘inverse’ waves. Within the
framework of convected acoustics, similarity transformations have been studied by Amiet and Sears [26],
Taylor [27] and later by Chapman [28]. The Lorentz transformation, that is commonly used in special
relativity [29], seems to emerge as a general tool for similarity transformations. Theoretical works have for
instance been carried out using geometric algebra in [30, 31]. The applications of such a transformation in
acoustics has been recently reviewed by Hu et al. [32], where the transformation is referred to as ‘Prandtl-
Glauert-Lorentz’, to highlight the different historical contributions. It has also been successfully used in the
context of boundary element methods, where it allows to account for the convection, while still resorting to
the conventional Green’s function kernel [33, 34].

In this work, we focus on the Lorentz transformation to design general stable convex PML domains for the
convected wave equation in the frequency domain. We aim at providing a clear derivation with illustrative
examples, as well as an implementation strategy for practical purposes. The paper is organized as follows: we
first recall the convected wave equation and introduce the Lorentz transformation, the PML stretching and
carry out a plane wave stability analysis. In a second part, the stability of PMLs for duct propagation in a uni-
axial flow is revisited. The third part examines the stabilization in free field for a two-dimensional Cartesian
PML. Finally, stable PMLs are introduced for generally shaped convex PML domains in the presence of a
general uniform cross flow. Numerical examples are provided throughout the study in order to illustrate the
efficiency of the stabilized formulations.

2. Lorentz transformation, PML and stability analysis

We focus in this paper on the convected wave equation. It is a scalar equation for the acoustic potential
ϕ that describes the propagation of acoustic perturbations in a moving flow. It writes

Lϕ(x, t) =

{
− 1

c20
(∂t + v0 · ∇x)

2
+ ∆x

}
ϕ(x, t) = −f(x, t), (2.1)

where x = (x, y) is the spatial variable, t the time variable, c0 the local speed of sound, v0 = (vx, vy)T the
local mean flow velocity vector and f denotes the distribution of volume sources. The notations ∇x and
∆x respectively denote the spatial gradient and Laplacian operators. We introduce the local Mach number
M = ‖v0‖ /c0, which is the ratio between the local mean flow velocity to the speed of sound. The mean flow
is assumed to be uniform and subsonic. It implies that the mean flow components are constant and that the
condition M < 1 holds. The speed of sound is as well assumed constant. The differential operator L, referred
to as convected Helmholtz operator, can be expanded as

L =

(
1− v2

x

c20

)
∂2
x +

(
1− v2

y

c20

)
∂2
y − 2

vxvy
c20

∂2
xy − 2

vx
c20
∂2
tx − 2

vy
c20
∂2
ty −

1

c20
∂2
t . (2.2)

In the frequency domain, we use the eiωt convention and readily get

L = (1−M2
x)∂2

x + (1−M2
y )∂2

y − 2MxMy∂
2
xy − 2ik0Mx∂x − 2ik0My∂y + k2

0, (2.3)

where we have denoted Mx = vx/c0, My = vy/c0 the mean flow components, ω the angular frequency and
k0 = ω/c0 the free field wavenumber. Note that the acoustic pressure and velocity fluctuations can be
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recovered from the acoustic potential by the relations

p(x, t) = −ρ0 (∂t + v0 · ∇)ϕ(x, t), v(x, t) = ∇ϕ(x, t),

where ρ0 is the fluid density.

2.1. Lorentz transformation

Various transformations are used in the literature for tackling sound propagation in uniform flow, such
as Doppler factors, Lorentz transformations or Prandtl-Glauert coordinates. Motivated by the puzzling
observation that these transformations are sometimes inconsistent, Chapman [28] has proposed a framework
for these similarity variables. It consists in observing a given field ϕ (here an acoustic perturbation), with a
different space and time representation (x, t)→ (x′, t′), yielding a different mathematical function ϕ′

ϕ′(x′, t′) = ϕ(x, t).

The underlying idea is to modify the solution of the convected Helmholtz equation such that ϕ′ is solution
of a classical wave equation with modified, effective properties.

Hu et al. [32] emphasized that such a representation is not unique, which might explain the development
of various methods. One solution arises from the Lorentz transformation in the theory of special relativity
[29, chapter 11]. It turns out that there is a remarkable geometric link between flow acoustics and relativity,
where acoustic waves are seen as fluctuations in a Lorentzian geometry [35]. For example, the connection
is useful to build an analogue model for black holes and observe their properties as a fluid [36], the speed
of sound playing the role of the speed of light. This analogy has been clarified and formalized with tools
from geometry algebra [30]. For our purposes, the relevant representation comes through a combination of a
Lorentz and Galilean transformation. It writes, in its vectorial form

t′ = βt+
(M · x)

βc0
, x′ = x +

(M · x)

β(1 + β)
M , β =

√
1−M2, M =

(
Mx

My

)
, (2.4)

where β can be seen as a frequency factor. The modified spatial coordinates are also known as generalized
Prandtl-Glauert coordinates, which are used to express compressibility effects for steady subsonic flows [37].
We choose to call transformation (2.4) the Lorentz transformation. We would like to mention that the
transformation might be written through hyperbolic rotations and more generally rotors [31]. The partial
derivatives can be computed thanks to the chain differentiation rule. In two-dimensions, one obtains

∂

∂x
=

(
1 +

M2
x

β(1 + β)

)
∂

∂x′
+

MxMy

β(1 + β)

∂

∂y′
+
Mx

βc0

∂

∂t′
,

∂

∂y
=

MxMy

β(1 + β)

∂

∂x′
+

(
1 +

M2
y

β(1 + β)

)
∂

∂y′
+
My

βc0

∂

∂t′
, (2.5)

∂

∂t
= β

∂

∂t′
.

The extension to the three-dimensional case is straightforward, but we will restrict the analysis in two-
dimensions for conciseness. In the frequency domain, we get the relation

Re
(
ϕ(x, ω)eiωt

)
= Re

(
ϕ′(x′, ω′)eiω

′βteik
′
0(M ·x′)

)
, k′0 =

ω′

c0
, ω′ =

ω

β
,

and we may infer

ϕ(x, ω) = ϕ′(x′, ω′)eik
′
0(M ·x′). (2.6)

It means that a translation in the time domain corresponds to a phase shift in the frequency domain. Thanks
to the Lorentz transformation, the convected Helmholtz equation exactly reduces to a Helmholtz equation
with a modified free field wavenumber and right-hand side

L′ϕ′(x′, ω′) =
{
∂2
x′ + ∂2

y′ + k′20
}
ϕ′(x′, ω′) = −f ′(x′, ω′). (2.7)

We recall that this transformation is valid for a uniform mean flow of arbitrary direction, in time or frequency
domain.
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2.2. PML as a complex stretching

At the continuous level, the PML in a given direction can be seen as a stretch of the spatial coordinate
in the complex space by a transformation of the form

x̃(x, ω) = x− i

k0
ζ(x), ζ(x) =

∫ x

L

σ(s) ds, x ∈ [L,Lpml), (2.8)

and the derivative writes

∂x̃ =

(
1− i

k0
σ(x)

)
∂x = γx∂x, (2.9)

where σ(x) > 0 is called the absorbing function or absorbing profile. The choice of σ is fundamental to ensure
the quality of the PML. It is set to zero in the physical domain, denoted Ωphy and assumed to be positive,
smooth and increasing in the PML domain, denoted Ωpml. The global domain is Ω = Ωphy ∪ Ωpml.

In all that follows, we will use Bermúdez et al.’s unbounded function [7]

ζ(x) = −σ0 ln

(
Lpml − x
Lpml − L

)
, σ(x) =

σ0

Lpml − x
, x ∈ [L,Lpml), σ0 ∈ C, (2.10)

where σ0 is a parameter to be selected. It is chosen to be purely real for propagative waves and complex for
evanescent waves. Let us consider a plane wave traveling along the positive x-axis with wavenumber kx. In
Ωpml, the plane wave becomes

ϕ̃(x, ω) = e−ikxx̃ = e−ikxxe−
kx
k0
ζ(x), x ∈ [L,Lpml), (2.11)

and the use of the unbounded function results in

ϕ̃(x, ω) = e−ikxx
(
Lpml − x
Lpml − L

)σ0
kx
k0

, x ∈ [L,Lpml). (2.12)

Since ϕ̃ is zero at the end of the layer, the wave is perfectly absorbed on the continuous level. If we further
choose σ0 = k0/kx, that is the phase velocity of the wave, we get a linear decay in the PML. From a discrete,
finite element point of view, it means that a single linear element can totally cancel out reflections. In
practical computations however, there is no a priori knowledge on the phase velocity of the wave hitting
the PML interface. For example, as soon as the incidence angle of the wave θw is non-zero the propagation
constant becomes kx = k0 cos(θw). While Bermúdez et al.’s function might lead to an ‘exact’ PML, the
decaying function is often not linear nor polynomial, thus leading to interpolation errors by the numerical
scheme. In convected acoustics, the situation is worse because the phase velocity may, in some occasions,
become negative. In that case, the wave blows up exponentially. Such waves are called ‘backward’ and render
the PML ineffective. A Fourier type analysis is now carried out for the convected wave equation in order to
highlight the instability zones.

2.3. Plane wave stability analysis

In free field, we assume the acoustic potential to be expressed as a plane wave of the form

ϕ(x, y, ω) = e−ikxx−ikyy. (2.13)

Plugging this ansatz into the convected wave equation with zero right-hand side and c0 to unity leads to

(M2
x − 1)k2

x + (M2
y − 1)k2

y + 2MxMykxky − 2Mxkxω − 2Mykyω + ω2 = 0, (2.14)

which is the Cartesian equation of an ellipse. The dispersion relation sees the circular frequency ω(k) as a
function of the propagating wavenumber k = (kx, ky)T , which we may write in terms of slowness vector

D(1,S) = 0, S =
k

ω
, S =

(
S1

S2

)
.
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(a) Dispersion relation (2.14)
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(b) After partial transform, eq (2.17)
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(c) After full transform, eq (2.18)
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Figure 1: Slowness diagrams associated to different dispersion relations for a Mach number M = 0.8 oriented at an angle
θ = π/4. Stabilization process from left to right. The instability zones for a PML along the x-direction ( ) and y-direction
( ) are highlighted.

The set of points verifying the dispersion relation can be represented through the slowness diagram [22],
which is shown in Figure 1.

If the domain is bounded, the dispersion relation can exhibit multiple branches. This occurs for modal
propagation, as we will see in Section 3.1. More complex behaviour, such as band gaps, are observed in
metamaterials. At this point, it is useful to recall the definition of the phase and group velocity vectors
[22, 29]

Vp(ω(k)) =
ω(k)

|k|
k

|k| , Vg(k) = ∇kω(k) = −
(
∂D

∂ω
(1,S)

)−1

∇kD(1,S), (2.15)

so that the phase velocity points in the same direction as the slowness vector. In the slowness diagram, the
group velocity V g is a vector pointing in the orthogonal direction to the slowness curve, and the slowness
vector S points from the origin towards the slowness curve. The instability occurs when the slowness vector
and group velocity are not oriented in the same way with respect to the PML direction. This is shown in
Figure 1. More precisely, the stability condition for a PML in the x-direction is

∀k ∈ R2, (S · ex)(Vg(ω(k)) · ex) ≥ 0, (2.16)

and similarly with ey for a PML in the y-direction. We refer to [22, 38, 39] for additional details. In other
words, the instability occurs when the phase and group velocities of the wave colliding the PML interface
have opposite signs. We now apply the Lorentz transformation for the time variable only. In the Fourier
space, it amounts to the substitution

kx → kx −
ωMx

β2
, ky → ky −

ωMy

β2
,

which removes the convective terms (related to the time-cross derivatives) in the convected Helmholtz equa-
tion. After the substitution, the dispersion relation reduces to

(M2
x − 1)k2

x + (M2
y − 1)k2

y + 2MxMykxky +
ω2

β2
= 0. (2.17)

The relation still describes an ellipse in the slowness diagram, but which is now centered at the origin (see
Figure 1b). Applying the PML on the associated differential equation would still lead to instabilities, due
to the presence of the mixed quadratic term. The second substitution acts on the spatial derivatives. In the
Fourier space we have

kx →
(

1 +
M2
x

β(1 + β)

)
kx +

MxMy

β(1 + β)
ky,

ky →
MxMy

β(1 + β)
kx +

(
1 +

M2
y

β(1 + β)

)
ky,
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which in the slowness diagram, rotates and shrinks the ellipse onto a circle of radius 1/β, see Figure 1c. The
new dispersion relation

−k2
x − k2

y +
ω2

β2
= 0, (2.18)

describes an isotropic medium. By reducing the convected Helmholtz equation into a classical Helmholtz
equation, the Lorentz transformation has removed all possible instabilities.

2.4. Summing up

The classical PML can be unstable due to the anisotropic nature of convected propagation. It occurs when
the phase and group velocities of the wave hitting the PML are of opposite signs. As will be seen further,
such instabilities can be of moderate growth or even insignificant for some specific PML configurations.
However, the technique is not reliable in the general case. Through the Lorentz transformation, the convected
Helmholtz equation is reduced to a classical Helmholtz equation with an effective wavenumber. The idea is
then to apply the usual PML on this modified equation, as one would do for Helmholtz problems. Finally,
the physical variables are retrieved by performing the inverse Lorentz transformation. This leads to a new
PML model, which coincides with the convected Helmholtz equation in the physical domain. The global
procedure is summarized in Figure 2. The derivation of the Lorentz transformed PML is now presented on
several practical examples of increasing complexity.

ϕ(x, ω) ϕ′(x′, ω′)

ϕ̃(x̃, ω) ϕ̃′(x̃′, ω′)

unstable

Lorentz

Inverse Lorentz

PML

Figure 2: Summary of the procedure to derive a stable PML formulation.

3. Stabilized formulation for a uniaxial flow

Let us consider a quasi one-dimensional situation where the mean flow and PML are uniaxial (My = 0).
This model is suitable to describe convected modal propagation in a straight duct. The Lorentz transforma-
tion in the frequency domain takes the simple form

ϕ(x, y, ω) = ϕ′(x′, y′, ω′)eik
′
0Mx′ , (x′, y′) =

(
x

β
, y

)
, k′0 =

k0

β
,

and the partial derivatives are

∂

∂x
=

1

β

(
∂

∂x′
+ ik′0M

)
,

∂

∂y
=

∂

∂y′
. (3.1)

The convected Helmholtz equation becomes a Helmholtz equation in the Lorentz space, where we can apply
the complex stretching as defined in Section 2.2

{
∂2

∂x̃′
2 +

∂2

∂ỹ′
2 + k′0

2

}
ϕ̃′(x̃′, ỹ′, ω′) = −f ′(x′, y′, ω′) in Ω′, (3.2)

where f ′ ∈ Ω′phy. We use the notations Ω′ and Ω′phy to refer respectively to the global and physical domains
in the Lorentz space. Since we consider waves traveling along the x-direction only, we set γy = 1 and develop
the differential operator as

{
γ−1
x

∂

∂x′

(
γ−1
x

∂

∂x′

)
+

∂2

∂y′2
+ k′0

2
}
ϕ̃′ = −f ′ in Ω′. (3.3)

6



We now need to revert to the physical variables (x, y, ω) by using the inverse Lorentz transformation. Doing
so implicitly ensures the continuity of the formulation between Ωphy and Ωpml. Inverting the operators in
(3.1) gives

γ−1
x

∂

∂x′
= γ−1

x β

(
∂

∂x
− ik0M

β2

)
,

∂

∂y′
=

∂

∂y
, (3.4)

and the second order x′-derivative is developed as

∂

∂x′

(
γ−1
x

∂

∂x′

)
= β

∂

∂x′

(
γ−1
x

(
∂

∂x
− ik0M

β2

))

= β2

(
∂

∂x

(
γ−1
x

∂

∂x
− γ−1

x

ik0M

β2

)
− ik0M

β2

(
γ−1
x

∂

∂x
− γ−1

x

ik0M

β2

))

= β2 ∂

∂x

(
γ−1
x

∂

∂x

)
− 2γ−1

x ik0M
∂

∂x
− γ−1

x

k2
0M

2

β2
− ik0M

(
∂xγ

−1
x

)
.

After multiplication by eik
′
0Mx′ and γx, equation (3.3) leads to the stabilized PML model in the physical

variables

(1−M2)
∂

∂x

(
γ−1
x

∂ϕ̃

∂x

)
− 2ik0Mγ−1

x

∂ϕ̃

∂x
+

(
k2

0

(
γx − γ−1

x M2
)

(1−M2)
− ik0M

(
∂xγ

−1
x

)
)
ϕ̃+ γx

∂2ϕ̃

∂y2
= −f in Ω.

(3.5)

When γx = 1, we immediately recover the usual convected equation

(1−M2)∂2
xϕ+ ∂2

yϕ− 2ik0M∂xϕ+ k2
0ϕ = −f in Ωphy. (3.6)

3.1. Modal propagation in a straight two-dimensional duct

A boundary value problem associated to the model (3.5) is formulated. The setup and boundary conditions
are defined in a rectangular domain specified in Figure 3. An acoustic duct mode is injected on Γ1 along the
x-direction and homogeneous Neumann boundary conditions are used on the upper and lower boundaries
denoted Γ2. A PML is appended at the outlet, at the end of which a homogeneous Neumann boundary
condition is prescribed.

wave direction

mean flow, −1 < M < 1

∂nϕ = 0, Γ2

Γ1

∂nϕ = g
Ωpml

Γint

Γ3

∂nϕ = 0

0

Ωphy

H

L Lpml
x

y

Figure 3: Sketch of the numerical case: 2D acoustic duct propagation in a uniform mean flow. The global domain is Ω =
Ωphy ∪ Ωpml and the PML interface is Γint = Ωphy ∩ Ωpml.

In the physical domain, the acoustic field is the homogeneous solution of (3.6), and can be formulated
into right-propagating duct modes as follows

ϕex(x, y) = A cos (kyy)e−ikxx, ky =
nπ

H
, A ∈ C, n ∈ N, (x, y) ∈ Ωphy, (3.7)

where the wavenumber kx is given by the dispersion relation



kx = 1

1−M2

(
−Mk0 +

√
k2

0 − (1−M2)k2
y

)
, if k2

0 > (1−M2)k2
y,

kx = 1
1−M2

(
−Mk0 + i

√
(1−M2)k2

y − k2
0

)
, if k2

0 < (1−M2)k2
y,

(3.8)
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depending on the sign of the square-root term. The values taken by kx describe respectively propagative
(cut-on) and evanescent (cut-off) modes. Since the domain is bounded in the y-direction, the ky values are
discrete. The plane wave (n = 0) is always propagative and the new branches of the dispersion relations,
called modes, propagate when k0 >

√
1−M2ky.

We can use the analysis carried out in Section 2.3 to understand the PML instability issue. Here, the
propagation only occurs along the positive half-plane. For propagating waves, the phase velocity is the inverse
of the slowness vector, which is

Vp =
k0

kx
=

(
1−M2

)
k0

−Mk0 +

√
k2

0 − (1−M2)
(
nπ
H

)2 , (3.9)

and the group velocity is

Vg =
∂k0

∂kx
=

(
1−M2

)√
k2

0 − (1−M2)
(
nπ
H

)2

k0 −M
√
k2

0 − (1−M2)
(
nπ
H

)2 . (3.10)

When M > 0 and n 6= 0, the wave has a positive group velocity but negative phase velocity. This happens
if k0 lies in the range

√
1−M2

(nπ
H

)
< k0 <

nπ

H
.

We then distinguish two types of propagating regimes by increasing values of k0. They will be respectively
referred to as inverse upstream and propagative. The group and phase velocities for three distinct modes are
represented in Figure 4a, where both regimes are emphasized. Note that there is no instability when M < 0.

(a) Physical wave properties
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n = 6

(b) effective PML wave properties
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Figure 4: Adimensional phase Vp (plain lines) and group Vg (dashed lines) velocities for three propagative modes n = {0, 3, 6}
and M = 0.8. The shaded areas highlight the inverse upstream regime.

For high frequencies, i.e. high values of k0, the phase and group velocities tend to be those of the plane
wave

Vg = Vp = (1 +M).

If we now consider the stabilized PML model, it can be shown that

ϕ̃(x, y) = A cos(kyy)e−ikxxe−
k′x
βk0

ζ(x) = A cos(kyy)e−ikxxe−
k̃x
k0
ζ(x), (x, y) ∈ Ω, (3.11)

satisfies equation (3.5). The modified wavenumber k̃x that is seen by the PML

k̃x =
k′x
β

=
1

β

√
k′0

2 − k2
y =

√
k2

0 − (1−M2)k2
y

1−M2
, (3.12)
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is always positive for propagative modes. The convective instability, coming from the shift by −Mk0/β
2 in

relation (3.8), has been removed from the PML point of view, see Figure 4b. We now present how to set up
the weak formulation of this model for a use in a finite element context.

3.2. Weak formulation

In order to build the weak formulation, we start from the transformed Helmholtz-PML equation (3.3).
For conciseness, we omit the ·̃ notation when writing weak formulations. We set f ′ = 0 since the source is
coming from the boundary condition on Γ1. After multiplying the equation by γx and integrating by parts,
one obtains for ϕ′ ∈ H1(Ω′)

∀ψ′ ∈ H1(Ω′),
∫

Ω′

(
γ−1
x ∂x′ϕ

′ ∂x′ψ′ + γx∂y′ϕ
′ ∂y′ψ′ − γxk′0

2
ϕ′ ψ′

)
dΩ′

=

∫

∂Ω′

(
γ−1
x ∂n′xϕ

′ ψ′ + ∂n′yϕ
′ ψ′
)
ds′,

(3.13)

where n′x and n′y are the normal unit vectors with respect to the x- and y-axes. The x′-derivative product of
the trial and test functions becomes

∂x′ϕ
′ ∂x′ψ′ =

(
β∂xϕ−

ik0M

β
ϕ

)
eik
′
0Mx′

(
β∂xψ +

ik0M

β
ψ

)
e−ik

′
0Mx′

= β2∂xϕ∂xψ − ik0Mϕ∂xψ + ik0M∂xϕψ +
k2

0M
2

β2
ϕψ.

(3.14)

The coordinates in the Lorentz space are stretched by the Jacobian matrix of the transformation from Ω′ to
Ω as

L =

(
∂x′

∂x
∂x′

∂y

∂y′

∂x
∂y′

∂y

)
=

(
1/β 0

0 1

)
,

so that dΩ′ = det(L)dΩ = 1
βdΩ. The formulation (3.13) can be rewritten in the physical variables, for

ϕ ∈ H1(Ω), as

∀ψ ∈ H1(Ω),

∫

Ω

γ−1
x

(
β2∂xϕ∂xψ − ik0Mϕ∂xψ + ik0M∂xϕψ +

k2
0M

2

β2
ϕψ

)
1

β
dΩ

+

∫

Ω

γx

(
∂yϕ∂yψ −

k2
0

β2
ϕψ

)
1

β
dΩ =

∫

∂Ω

(
γ−1
x β∂nxϕψ − γ−1

x

ik0M

β
ϕψ + ∂nyϕψ

)
ds.

The boundary integral in the y-direction vanishes because homogeneous Neumann boundary conditions are
imposed on y = 0 and y = H. After multiplication by β, we obtain on the input boundary Γ1 the same
boundary integral that one would derive for the usual convected Helmholtz problem without PML

∫

Γ1

(
−β2∂nxϕψ − ik0Mϕψ

)
ds =

∫

Γ1

(
−β2gψ − ik0Mϕψ

)
ds.

Finally, the stable weak formulation for the boundary value problem from Figure 3 states





Find ϕ ∈ H1(Ω) such that, ∀ψ ∈ H1(Ω),

β2

∫

Ω

γ−1
x ∂xϕ∂xψ dΩ + ik0M

∫

Ω

γ−1
x

(
∂xϕψ − ϕ∂xψ

)
dΩ− k2

0

β2

∫

Ω

(
γx − γ−1

x M2
)
ϕψ dΩ

+

∫

Ω

γx∂yϕ∂yψ dΩ = −ik0M

∫

Γ1

ϕψ ds− β2

∫

Γ1

gψ ds.

(3.15)

When γx = 1, we retrieve the volume terms from the usual convected Helmholtz problem. On the interface
between the physical and PML domain we have the continuity requirements

ϕ, γ−1
x ∂nxϕ continuous at x = L.
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The continuity of ϕ in Ω is ensured by construction of the weak formulation. The same can be said for the
normal derivative if we set γx = 1 at x = L. With finite elements, the continuity of ϕ is implicitly enforced
by considering one coincident nodal value (i.e. by merging nodes) at the interface vertices. In this PML
model, the integrals involved for the construction of the mass matrix are coupled with the function γx. Note
that an additional integration by parts allows to exactly recover the terms of equation (3.5).

3.3. Alternative formulation

The model presented above is not the only way to obtain a stable PML. Another possibility, described by
Bécache et al. [16], consists in transforming the convected Helmholtz equation in the PML domain only. The
procedure is shown in Figure 5. The transformation is slightly different from the Lorentz transformation. It
is based on the analysis of the dispersion relation (3.8), and corresponds to the substitution

∂x → ∂x∗ − i
k0M

1−M2
, (3.16)

to remove the presence of unstable modes. It gives two different weak statements:

• in the physical domain, the weak formulation associated to the usual convected Helmholtz problem

∀ψ ∈ H1(Ωphy), (1−M2)

∫

Ωphy

∂xϕ∂xψ +

∫

Ωphy

∂yϕ∂yψ + ik0M

∫

Ωphy

(
∂xϕψ − ϕ∂xψ

)

− k2
0

∫

Ωphy

ϕψ = −ik0M

∫

Γ1

ϕψ + (M2 − 1)

∫

Γ1

g ψ,

(3.17)

• and in the PML domain, the problem in the transformed space

∀ψ∗ ∈ H1(Ωpml), (1−M2)

∫

Ωpml

γ−1
x ∂x∗ϕ

∗ ∂x∗ψ∗ +

∫

Ωpml

γx∂y∗ϕ
∗ ∂y∗ψ∗

− k2
0

1−M2

∫

Ωpml

γxϕ
∗ ψ∗ = 0.

(3.18)

Here, we note that the transformation does not ‘stretch’ the space. We may associate to equation (3.18) the
strong form

(1−M2)∂2
x∗ ϕ̃
∗ + ∂2

y∗ ϕ̃
∗ +

k2
0

1−M2
ϕ̃∗ = 0, in Ωpml. (3.19)

In comparison to the stabilized exact solution (3.11), we obtain

ϕ̃ = e
i
k0M

1−M2 xϕ̃∗ in Ωpml, (3.20)

and remark that the solutions differ by a phase factor in Ωpml. This is summarized in Table 1, which provides
the continuous (exact) solutions of the plane wave mode in Ωphy and Ωpml for each PML formulation. It
turns out that the Lorentz and alternative formulations coincide if one imposes the jump condition defined
in [16, eq. (3.13)] on the PML interface. However, the jump condition acts on the normal derivative and is
thus impractical and usually not enforced in conventional finite elements. Although such a condition can be
used in the time domain [21], we will see that it is not a strict requirement in the frequency domain.

ϕ(x, ω) ϕ∗(x∗, ω) ϕ̃∗(x̃∗, ω)
Transformation PML

Figure 5: Summary of the alternative stable procedure in Ωpml. Note that the two steps of the procedure are independent.
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Table 1: Summary of the x-dependence of the exact solutions ϕ̃ for the three PML formulations.

Model Ωphy Ωpml

Classical e−ikxx e−ikxxe−
kx
k0
ζ(x)

Alternative e−ikxx e−ik̃xxe−
k̃x
k0
ζ(x)

Lorentz e−ikxx e−ikxxe−
k̃x
k0
ζ(x)

3.4. Numerical illustrations

In this section, we present the numerical properties of the introduced models for a broadband frequency
range, and illustrate their convergence properties. The numerical results have been obtained with the mesh
generator Gmsh [40] and an in-house Matlab finite element implementation. We use a high-order finite element
scheme equipped with a basis of integrated Legendre polynomials [41] to discretize the weak formulations. The
p-FEM is less sensitive to dispersion errors and has shown to provide substantial reductions in memory and
CPU time when compared to conventional low-order FEM on both Helmholtz [42] and convected Helmholtz
[25] applications. The integration on the reference element is computed by a tensorised Gauss quadrature
rule with (p+ 1)2 points, where p is the order of the integrated Legendre polynomial shape functions.

As a reference solution, the solution obtained from the exact non-reflecting boundary condition at the
duct output boundary is used. It is given by the Dirichlet-to-Neumann (DtN) operator, which may write for
a single mode

∂xϕref = −ikxϕref, at x = L. (3.21)

It follows the discretization of a one-dimensional mass matrix. The relative L2-error is recorded in Ωphy as

EL2 = 100
‖ϕex − ϕh‖L2(Ωphy)

‖ϕex‖L2(Ωphy)

, (3.22)

where ϕh refers to the discretized solution and ϕex to the exact solution (3.7). For convected applications,
the resulting global error shares the same features as Helmholtz problems [43], and exponential convergence
is expected under p-refinements for smooth solutions. The rectangular duct is chosen to be of size L = 0.5
and H = 0.25. Linear quadrangle elements Q4 are used to mesh the physical domain Ωphy. The domain
Ωpml is automatically extruded with 4 layers of Q4 elements. The width of each layer is equal to the mesh
size of the physical domain, chosen as

h =
1

20

√
LH.

We use the unbounded function (2.10) as absorbing function. The parameter σ0 could be selected, for
instance, to match the phase velocity seen by the PML in the high frequency approximation

σ0 = (1 +M) classical PML,

σ0 = (1−M2) = β2 stable PML.

Here, it is not clear how to choose σ0 because the phase velocity seen by the PML depends directly on
the input frequency, and becomes large close to cut-off (see Figure 4). More precisely, one can notice from
equation (2.12) that the amplitude of ϕ̃ behaves in the layer as

(1− x)α, x ∈ [0, 1],

{
α > 1, if σ0 > Vp,

α < 1, if σ0 < Vp,

where we emphasize that Vp differs whether the classical or stable PML is used. As a result, our method is
expected to converge exponentially under p-refinement only if σ0 > Vp, and will be algebraic otherwise [44],
driven by the ratio between σ0 and Vp. In the experiments, we fix σ0 = 4β2 to ensure a good convergence
rate for all models in the selected frequency range. Here, we do not aim to optimize the discrete properties,
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but rather focus on the formulations. More details on the optimization of the PML in discrete contexts can
be found in [5, 6]. Note that a precise tuning of the PML mesh can largely improve its efficiency. Some
guidelines can be found for instance in [45, 46, 47] and a promising approach based on hp-adaptivity has
been studied in [48].

Let us consider two frequencies k0 = 30 and k0 = 70, respectively in the inverse upstream and propagative
regimes, for the third mode n = 3 and a mean flow M = 0.8. The propagation occurs along the positive
x-direction. Figures 6 and 7 illustrate the differences between the three PML models. When the wave
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(a) Classical
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(b) Alternative
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Figure 6: Inverse upstream mode: k0 = 30. Real part of the numerical solution for the three formulations. Reference L2-error:
9.1 × 10−5 %. Mach number M = 0.8, input mode n = 3, shape function order p = 4. The dashed line ( ) is the PML
interface.
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Figure 7: Propagative mode: k0 = 70. Real part of the numerical solution for the three formulations. Reference L2-error:
1.3 × 10−3 %. Mach number M = 0.8, input mode n = 3, shape function order p = 4. The dashed line ( ) is the PML
interface.

is inverse upstream, the classical PML shows an exponential growth in the layer. Both stable formulations
correct this unsought growth by making the mode evanescent in the PML, and the L2-error is close to the
one from the reference solution. When the wave is propagative, the alternative and Lorentz models show a
different absorption behaviour in Ωpml. As seen by the analysis at the continuous level, there is a phase shift
mismatch between Ωphy and Ωpml for the alternative formulation: the frequency is higher in Ωpml than in
Ωphy, thus leading to a higher discretization error and numerical reflections. This confirms the results from
Table 1.

We further report the L2-error for a broadband frequency range in Figure 8. The results are shown for the
third and sixth modes. For both modes, the Lorentz model is close to the reference solution. The classical
PML suffers from instability in the inverse upstream regime and the alternative PML from discretization
errors since the frequency is higher in Ωpml. This phenomenon increases for high-order modes, as the number
of oscillations grows in the y-direction.

As mentioned above, exponential p-convergence is expected for smooth solutions. Figure 9 reports the
influence of the shape function polynomial order p on the L2-error. When the wave is inverse upstream, at
k0 = 30, the usual PML is unstable and the convergence is hampered. Both stable formulations fit the error
from the exact non-reflecting condition when p increases, thus confirming their effectiveness in this regime.
At k0 = 70, the errors from the classical and Lorentz methods are close to the one from the reference solution.
The alternative formulation has a comparable convergence rate, although the discretization error is higher.
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Figure 8: L2-error (in %) for the classical ( ), alternative ( ) and Lorentz ( ) PMLs. Parameters: M = 0.8, p = 4
and σ0 = 4β2. The shaded areas highlight inverse upstream propagation. Reference solution ( ).

An optimal convergence rate is observed for both stable PMLs, regardless of the accuracy of the formulation.
As stated earlier, if the parameter σ0 is not properly tuned, a singularity may arise at the end layer. The
convergence rate of all PMLs would be immediately affected, in the sense that the error would deviate from
the reference solution for high values of p.
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Figure 9: L2-error (in %) for fixed frequencies as a function of the shape function order p for the classical ( ), alternative
( ) and Lorentz ( ) PMLs. Parameters: n = 3, M = 0.8 and σ0 = 4β2. Reference solution ( ).
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4. Cartesian PML for a flow of arbitrary direction

Cross flows are characterized by the presence of a spatial cross derivative in the convected equation.
Thereby, treating only the convective terms does not lead to a stable formulation (see Figure 1b). As
mentioned in Section 2.1, different choices are possible to cancel the cross derivative. Instead of the Lorentz
transformation, Diaz and Joly [21] used a different space-time transformation, which is

t∗ = t+
Mx

βc0
x+

My

βc0
y, x∗ = x, y∗ = y +

M1M2

(1−Mx)2
x. (4.1)

The chain rule yields the partial derivatives

∂x = ∂∗x +
MxMy

(1−Mx)2
∂y +

Mx

βc0
∂∗t , ∂y = ∂∗y +

My

βc0
∂∗t , ∂t = ∂∗t . (4.2)

In the frequency domain, it leads to the modified equation in the transformed space

(
1−M2

x

) ∂2ϕ̃∗

∂x∗2
+

(
1− M2

y

1−M2
x

)
∂2ϕ̃∗

∂y∗2
+
k2

0

β2
ϕ̃∗ = −f∗, (4.3)

which differs from a Helmholtz-type equation. It is the natural extension of the alternative model from
Section 3.3. The transformation relies on the analysis of the dispersion relation and does not ‘stretch’ the
physical space. The slowness diagram describes an ellipse, whose principal axes are the (x, y)-directions.
For that reason, the resulting PML is stable, but the absorption might not be equally effective in the x-
and y-directions. In order to avoid a jump condition issue at the PML interface, we follow the stabilization
procedure explained in Figure 2, which is designed for the entire domain Ω.

4.1. Point source in free field - weak formulations

In this example, we consider the acoustic radiation of a point source in a square domain. The problem is
specified in Figure 10. We remind that we impose a homogeneous Neumann condition on the outer boundary.
We do not apply any specific treatment in the PML corner regions and simply let γx 6= 0 and γy 6= 0.

(xs, ys)

M

Ωphy

Ωpml

Γint

∂nϕ = 0

x

y

Figure 10: Sketch of the numerical case: 2D point source radiation in a cross flow with straight boundaries. The global domain
is Ω = Ωphy ∪ Ωpml and is delimited by respectively L and Lpml.

The derivation of the weak formulation is similar to Section 3.2, but the calculations are more complex.
It can be written as





Find ϕ ∈ H1(Ω) such that, ∀ψ ∈ H1(Ω),
∫

Ω

(
γy
γx
∂−1
x′ ϕ∂

−1
x′ ψ +

γx
γy
∂−1
y′ ϕ∂

−1
y′ ψ −

k2
0

β2
γxγy ϕψ

)
dΩ =

∫

Ω

fψ dΩ,
(4.4)
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where the notations ∂−1
x′ and ∂−1

y′ stress that the operators should be understood as inverse operators to the
physical variables. From Lorentz’s transformation (2.5), we can switch the role of the partial derivatives and
obtain

∂−1
x′ = β

((
1 +

M2
y

β(1 + β)

)
∂x −

MxMy

β(1 + β)
∂y −

k0Mx

β2

)
, (4.5)

∂−1
y′ = β

((
1 +

M2
x

β(1 + β)

)
∂y −

MxMy

β(1 + β)
∂x −

k0My

β2

)
. (4.6)

In practice, the inverse transformation is written as is in the finite element routine, and there is no need
to develop the stabilized model explicitly. We detail in the next Section how to write a general equation in
terms of matrix transformations. For comparison, the alternative inverse transformation associated to (4.1)
and domain equation (4.3) takes a simpler form

∂−1
x∗ = ∂x −

MxMy

(1−Mx)2
∂y −

k0Mx

β2
, ∂−1

y∗ = ∂y −
k0My

β2
. (4.7)

The difference with the Lorentz model lies in the way the cross derivatives are handled.

4.2. Point source in free field - numerical setup and results

The point source is defined as a single monopole. In free field, the analytical solution is naturally defined
in the transformed Lorentz variables as

ϕex(x′, y′, ω′) = − i

4β
H

(2)
0 (k′0r

′)eik
′
0Mxx

′
eik
′
0Myy

′
, r′ =

√
(x− xs)′2 + (y − ys)′2, (4.8)

where H
(2)
0 is the Hankel function of the second kind and xs = (xs, ys)

T is the source position. The solution
ϕex is then implemented in the physical variables (x, y, ω) through the initial transformation (2.4). For the
computations, we define the number of degrees of freedom per shortest wavelength as [43]

dλ =
2πp

ωh
(1−M). (4.9)

Unless explicitly mentioned in the numerical results, we fix the shape function order to p = 6, the frequency
to ω = 6π and choose a meshsize h = 0.07. The Mach number is M = 0.8, leading to dλ ≈ 5.7. The flow is
defined at an angle θ ∈ [0, 2π]. We surround the physical domain by two PML layers of size h. The PML
parameter is set to σ0 = β, which is later justified by the simulations. Linear triangular elements T3 are
used to generate an unstructured mesh in both Ωphy and Ωpml.

The analytical solution is singular at xs and special attention is required to compute the domain L2-error.
We use the strategy suggested in [49], which consists in excluding the one-ring neighbourhood elements to
the point source. In that way, the authors have shown that the usual finite element convergence properties
are recovered. The L2-error is defined in seminorm as

EL2 = 100
‖ϕex − ϕh‖L2(Ωρ)

‖ϕex‖L2(Ωρ)

, Ωρ = Ωphy\Bρ(xs), (4.10)

where Bρ(xs) is the ball of radius ρ centered at xs. In the simulations, the source is set at the origin where
the mesh is refined by a factor 2. Using a finer mesh close to the source allows to confine the singularity
errors in a more compact region. The ball radius should be of the order of the meshsize: it is set to ρ = 2h.

In addition to the domain L2-error, we measure the interface L2-error on Γint, defined as

EIL2 = 100
‖ϕex − ϕh‖L2(Γint)

‖ϕex‖L2(Γint)

, Γint = Ωphy ∩ Ωpml, (4.11)

and the computational mesh is constrained to have nodes along the control line Γint.
The real part of the numerical solution is shown in Figure 11 for the three models at θ = π/4. The local

interface error is plotted along Γint in Figure 12. This immediately highlights a stronger symmetry property
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Figure 11: Real part of the numerical solution at ω = 6π, M = 0.8 and θ = π/4 for the three PML models with σ0 = β.

of the Lorentz stabilization. The error pattern repeats itself after a 180◦ rotation for the alternative model,
while this reduces to 90◦ for Lorentz’s model.

The same conclusion follows in Figure 13 where the flow angle is varied in the range [0, 2π]. With
Lorentz’s model, the error is always maximal when θ = π/4 ± π/2 (when the flow is oriented towards the
corner). This accuracy difference between the two stable formulations is most likely linked to the equations
in the transformed space, respectively (4.3) and (2.7) for the alternative and Lorentz models. Note that if
the flow orientation is orthogonal to one of the PML layers, both models are equivalent.
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Figure 13: Domain and interface L2-errors (in %) as a
function of the flow angle θ for M = 0.8 with σ0 = β.

Since the Lorentz PML acts on a Helmholtz problem, it should inherit from the same discrete properties.
Because the wave propagates in free field, we could choose by extension σ0 ≈ c′0 = c0/β as recommended by
Bermúdez et al. [7]. This choice is confirmed in Figure 14, where the domain L2-error is shown as a function
of the normalized parameter σ0/β. One remarks that, for a small parameter range, the classical PML gives
a solution with a reasonable accuracy. This hides the unstable nature of the formulation, a slight variation
of σ0 would completely deteriorate the solution. In Figure 15, both unstable and stabilized models converge
towards the physical solution when the number of PML layers increases. This property has been proven
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in [16]. One must be careful when using the unstable formulation. Unlike in time-domain acoustics, it is
possible to tune the PML and obtain a rather good accuracy if the instabilities are not ‘too strong’. A similar
conclusion was drawn for an unstable PML applied to the Schrödinger equation, where the phenomenon is
referred to as conditional stability [50].
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Figure 14: L2-error (in %) with the unbounded PML profile (2.10) as a function of σ0 for M = 0.8 and ω = 6π.
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Figure 15: Influence of the number of PML layers N on the L2-error (in %) at θ = π/4, M = 0.8, ω = 6π and σ0 = β.

We would like to study the robustness of the stable PML with respect to the Mach number. While doing
so it is helpful to maintain an equivalent discretization accuracy when M varies. We resort to the a priori
error indicator proposed in [51], which adjusts the order across the mesh so as to achieve a given, user defined
L2-error target accuracy ET . In practice, the edge orders are first determined based on a 1D error indicator,
which accounts for the local in-flow dispersion relation properties and possible edge curvature. In a second
step, the element interior (directional) orders are assigned through a set of simple element-type dependent
conformity rules. Note that this approach does not account for the pollution effect. The orders are here
defined to be in the range p ∈ [1, 15]. To serve as a reference, we measure the relative L2-error between the
exact solution and its L2-projection Pϕex onto the high-order finite element space,

Ebest
L2 = 100

‖Pϕex − ϕex‖L2(Ωρ)

‖ϕex‖L2(Ωρ)
.

This error corresponds to the best numerical solution that can be achieved in the physical domain by a given
approximation basis, regardless of the chosen formulation (see e.g. [52, section 5]).

Figure 16 presents the dependence of the domain L2-error when the Mach number varies, for two different
target errors ET . Results are shown for θ = 0 and θ = π/4. The usual PML shows decent performance but
deteriorates when the flow is strong or not aligned with the PML. When θ = 0, both approaches exhibit
similar accuracy except for M = 0.9. When θ = π/4, the instability emerges for lower values of M since
the non-zero cross flow strengthens the instability. It is worth mentioning that the best L2-error remains
constant on the full Mach number range, which indicates that the a priori error indicator appropriately
selects the order distribution for each configuration, which varies significantly between low and high Mach
number values.
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When θ = π/4, the convergence rate of the stable PML seems slightly affected for high Mach numbers.
Numerical experiments have shown that it is mostly imputable to the PML reflections, which may come from
a corner effect.
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Figure 16: L2-error (in %) as a function of the Mach number for two target errors with σ0 = β. Legend: classical - ET = 3%
( ), Lorentz - ET = 3% ( ), classical - ET = 0.5% ( ), Lorentz - ET = 0.5% ( ), best interpolation for ET = 3%
( ) and ET = 0.5% ( ).

5. Stable PML of arbitrary convex shape

We now extend the approach to a PML domain of arbitrary convex shape. The basic idea consists in
formulating the PML in curvilinear coordinates as described by Collino and Monk [4], but in the Lorentz
space. Then, we apply the inverse Lorentz transformation to obtain the stabilized PML model. In curvilinear
coordinates, it is possible to recast the PML formulation in Cartesian coordinates as follows

∇x · (Λpml∇xϕ̃) + αpmlk
2
0ϕ̃ = −f, (5.1)

where

Λpml = αpmlJ
−1
pmlJ

−T
pml, αpml = detJpml, Jpml =

∂x̃

∂x
. (5.2)

The matrix Λpml is symmetric and couples the metric of Ωpml with the complex stretching parameters. It
encodes all the information related to the PML. For the following development, we write

Λpml =

(
Λ11 Λ12

Λ21 Λ22

)
, Λ12 = Λ21. (5.3)

If for instance the PML domain is rectangular, the entries are Λ11 = γy/γx, Λ22 = γx/γy, Λ12 = Λ21 = 0.
Note that one could use a more complicated tensor that accounts for the discrete properties of the mesh such
as, but not limited to, the locally-conformal PML technique [53, 54].

Independently of the technique used, we shall apply the inverse Lorentz transform to the Helmholtz-PML
equation in the Lorentz space

∇−1
x′ ·

(
Λpml∇−1

x′ ϕ̃
)

+ αpmlk
′
0
2
ϕ̃ = −f, (5.4)

where ∇−1
x′ is the modified gradient from the inverse Lorentz transformation

∇−1
x′ = L−1∇x −

ik0

β
M , Lij = δij +

MxiMxj

β(1 + β)
, δij =

{
1, if i = j,

0, if i 6= j.
(5.5)
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A simple calculation shows that det(L) = 1/β. We can now develop the previous equation (5.4) to get a
general stabilized model in free field

(
L−1

)2∇x · (Λpml∇xϕ̃)− 2
ik0

β
(L−1M) · (Λpml∇xϕ̃)− ik0

β
(L−1M) · ∇x(Λpml)ϕ̃

− k2
0

β2
(M · (ΛpmlM)− αpml) ϕ̃ = −f, (5.6)

where ∇x(Λpml) is a 2× 2 matrix given by

∇x(Λpml) =

(
∂x(Λ11) ∂y(Λ12)
∂x(Λ21) ∂y(Λ22)

)
. (5.7)

This is a generalization of model (3.5). The weak formulation is obtained similarly by starting from Equation
(5.4). This approach leads by construction to a symmetric bilinear formulation. In terms of PML Jacobian
matrix [3, 55], we may express





Find ϕ ∈ H1(Ω) such that, ∀ψ ∈ H1(Ω),
∫

Ω

[
(J−Tpml∇−1

x′ ϕ) · (J−Tpml∇−1
x′ ψ)− k2

0

β2
ϕψ

]
det(Jpml L) dΩ =

∫

Ω

f ψ det(L) dΩ.
(5.8)

Since det(L) 6= 0, it can here be simplified. This term is however important to recover non-homogeneous
boundary conditions in the physical variables. Let us develop the integrand related to the inverse transfor-
mation

(J−Tpml∇−1
x′ ϕ) · (J−Tpml∇−1

x′ ψ) =

(
(JpmlL)−T∇xϕ−

ik0

β
(J−TpmlM)ϕ

)
·
(

(JpmlL)−T∇xψ +
ik0

β
(J−TpmlM)ψ

)

= (JpmlL)−T∇xϕ · (JpmlL)−T∇xψ +
k2

0

β2
(J−TpmlM)ϕ · (J−TpmlM)ψ

+
ik0

β
(JpmlL)−T∇xϕ · (J−TpmlM)ψ − ik0

β
(J−TpmlM)ϕ · (JpmlL)−T∇xψ.

Each term is a 2×1 vector and resemble the uni-axial situation (3.15). The expanded weak statement directly
follows. To sum up, the method consists in three steps:

1. set up the bilinear form associated to the modified Helmholtz equation in the Lorentz space,

2. apply the curvilinear PML through the Jacobian matrix Jpml or the matrix Λpml,

3. modify the definition of the usual gradient thanks to the inverse Lorentz transformation.

This process only involves metric transformations, the rest being automatically handled by the finite element
code. It is also worth emphasizing that although the construction of the stabilized formulation is based on
the entire domain Ω, it does not change the convected Helmholtz equation in the physical domain.

5.1. Illustration for a circular PML

For a circular boundary, the PML Jacobian matrix in polar coordinates (r, φ) is

J−Tpml =

(
cosφ/γ sinφ/γ

− sinφ/γ̂ cosφ/γ̂

)
, γ̂ = 1 +

i

rk0
ζ(r), γ = 1− i

k0
σ(r), (5.9)

where ζ and σ are defined in (2.10) for the radial variable r ∈ [R,Rpml]. For the illustrations, we choose a
flow magnitude M = 0.8 and a running frequency ω = 20π. The mesh size is h = 0.03 and the shape function
orders are given by the anisotropic order assignement with an error target ET = 0.5% [51]. The physical
domain is composed of T3 elements. Two PML layers of Q4 elements are extruded with extrusion length h
from the physical domain, of size R = 1. The PML parameter is σ0 = β, and the mesh is refined by a factor
2 around the origin.
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We present in Figure 17 the result of the stabilization process for a multiple point sources configuration.
The setup can be assimilated to a lateral quadrupole: four equally spaced monopoles with alternating phase
are positioned at the corners of a square of size δ = 5e-3. Note that the frequency in the physical domain
spans from ωmin = ω/(1 + M) to ωmax = ω/(1 − M). As expected the flow has also a large impact on
the radiation pattern of the quadrupole. The four directivity lobes are not symmetric anymore, and the
sound is refracted upstream. Interestingly, the upstream silence cone is found to be narrower, while the one
downstream is significantly enlarged.

The classical PML formulation is affected by the instability of the upstream wave and does not yield an
accurate solution for this configuration, with an error measured at EL2 = 35%, as shown in Figure 17a. The
Lorentz formulation on the other hand, presented in Figure 17b is well behaved, and delivers a solution with
an error close to the target accuracy. Note that the typical shape function order for this approximation, as
determined by the a priori error indicator is p = 7. The full discrete model involves approximately 350 000
degrees of freedom and 17 million non-zeros entries, of which approximately 6% originate from the PML.
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Figure 17: Real part of the numerical solution at ω = 20π, M = 0.8 and θ = π/2 for the unstable and stable PML models with
σ0 = β.

Figure 18a presents the domain and interface errors when the flow angle varies, for the monopole and
lateral quadrupole configurations. By contrast to the Cartesian case, the error is almost independent of the
flow direction, and the behaviour does not appear to be altered by the complexity of the source. Note that
a slightly lower error is observed for the quadrupole at θ = 0 ± π/2, when the flow is oriented along the
non-convected quadrupole zone of silence. The formulation is robust with respect to the Mach number in the
sense that the error follows the trend of the best interpolation, which holds even for high Mach numbers.

5.2. Additional remarks for more complex problems

Under certain assumptions for the mean flow, extensions to the Lorentz transformation could be used for
non-uniform flows. Taylor [27] proposed an extension to potential flows, which was further proven in [31] to be
valid for all frequencies. The impact of the Taylor-Lorentz transformation would be interesting to investigate
for a non-uniform mean flow on the PML interface. Hu [15] noticed that for a certain category of non-uniform
flows, the modes follow a peculiar pattern on the dispersion relation diagram, and that convective instabilities
could still be handled.

The present work could not a priori be extended to the linearized Euler equations for cross flows, because
there is currently no space-time transformation that can treat the instabilities simultaneously for acoustic,
vorticity and entropy waves [23]. Lorentz transformation is no exception to it, but seems to be applicable if
the linearized Euler equations are written in terms of momentum instead of velocity perturbations [20].
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Figure 18: L2-error (in %) for the circular PML as a function of the flow angle and Mach number.

6. Conclusion

Following the pioneer work from Bécache et al. [16] and Hu [14, 15], we have proposed a practical procedure
to design a stable curvilinear PML for the convected Helmholtz equation with a flow of arbitrary orientation.
The heart of the method lies in the Lorentz transformation. By reducing the convected Helmholtz equation
into a classical Helmholtz equation, the proposed Lorentz PML is clearly stable and shares the same features
as usual PMLs. The analysis was conducted in two-dimensions but the extension to the three-dimensional
case is direct. Numerical investigations pointed out the stability limit of the classical PML and justified the
use of Lorentz’s PML over existing stable formulations in terms of numerical accuracy. The efficiency of the
method was illustrated for both modal and free field problems. Extension to the linearized Euler equations
and application as a transmission condition for domain decomposition will be investigated in the future.

Acknowledgments

This work was performed as part of CIFRE contract No. 2018/1845 funded by Siemens Industry Software
SAS and Association Nationale de la Recherche et de la Technologie (ANRT). This research was also funded
in part through the ARC grant for Concerted Research Actions (ARC WAVES 15/19-03), financed by the
Wallonia-Brussels Federation of Belgium. The authors would like to thank Prof. Gwénaël Gabard for his
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