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Multisensor Tracking of Lane Boundaries
based on Smart Sensor Fusion

Federico Camarda1,2, Franck Davoine1, Véronique Cherfaoui1, and Bruno Durand2

Abstract— Lane detection plays a crucial role in any au-
tonomous driving system. Currently commercialized vehicles
offer lane keep assist and lane departure warning via integrated
smart cameras, deployed for road markings detection. These
sensors alone, however, do not generally ensure adequate perfor-
mance for higher autonomy levels. In this paper, a multi-sensor
tracking approach for generic lane boundaries is proposed. This
solution is based on well-established filtering techniques and
supports a flexible clothoid spline representation. It relies on
fine-tuned measurement models, tailored on collected data from
both off-the-shelf and prototype smart sensors. The implemen-
tation takes into account real-time constraints and ADAS ECUs
scarcity of resources. The result is finally validated against lane-
level ground truth and experimental data acquisitions.

I. INTRODUCTION

Perception is an essential stage in the development of
autonomous driving systems. It precedes and lays the basis
for path planning and decision making. In this key phase, the
goal is to pursue two main outcomes: an overview of other
users in the driving scene and a solid representation of the
surrounding environment. The latter is tackled in this work
and it is addressed as a lane boundaries estimation problem.
Hereinafter, the term "lane boundary" equivalently identifies
lane markings, barriers and any other road element relevant
to the partition of the roadway into lanes. This environment
modeling approach aims at identifying the edges of these
fundamental travel corridors where vehicles can drive safely
and efficiently. A reliable and accurate characterization of the
roadway and its lanes would enormously benefit a lane-based
navigation and positively support further tasks such as lane
assignment of other vehicles, prediction of their future paths
and smooth lateral control. To achieve this, it is proposed in
this work to exploit multiple sources of smart sensor data,
in an attempt to face the problem in challenging conditions,
e.g. poor lane markings quality or unfavorable weather.
Our methodology focuses on highway scenarios where lanes
exist and supposedly orient and organize the traffic flow.
Some current automotive trends in ADAS development shall
also be considered in this research. Nowadays, in fact,
car manufacturers are used to integrate ready-to-use lane
detection solutions (in the form of so-called smart cameras)
from external suppliers. Therefore, towards higher levels of
autonomy where redundancy and perception diversity will be
essential, a multi off-the-shelf sensor fusion approach is here
presented for tracking and estimating lane boundaries.
This paper is organized as follows. Section II describes the
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Fig. 1: Lane detection pipeline from [3].

related literature. Section III, Section IV and Section V
detail the key points of our solution. Experimental results
are presented in Section VI and commented in Section VII,
together with future works perspectives.

II. RELATED WORK

In the general lane detection problem, the aim is to identify
the number of the surrounding lanes and their geometric
shape. The approaches in the literature differ on the level
of the supposed prior knowledge available. In the case of
precise localization solutions, the work of [1] is a valid
example, the lane detection problem is addressed by precisely
localizing (with centimetre accuracy) the vehicle in the
reference frame a so-called high definition map, a lane-level
representation of the environment. In the mentioned work
and others [2], the lane detection problem finds its solution
accessing the geographic representation of the environment
and querying this prior knowledge (usually stored in the form
of a database).
In our case, however, this prior is not considered to be
available or reliable. The chosen approach is therefore more
similar to the one proposed in [3]. Here, the main steps of the
lane detection problem in general are described. The design
choices made in these steps determine the final result, the
working conditions and the scope of the possible application.
An overview of the process, as proposed in [3] and its
illustration (reported in Fig. 1), can be given as follows:

1) Lane model
2) Feature detection
3) Lane detection and tracking

These three main axes of the problem are taken as guidelines
for the exploration of the literature.

A. Lane model

The choice of the lane model affects which types of lanes
can be represented and the applicable estimation algorithms



to fit it. Lane and road models can be categorized into
three classes: parametric models, non-parametric models, and
semi-parametric models.
1) Parametric models: a finite number of parameters maps
into simple geometric curves. Common representations are
straight lines, parabolic curves, circumferences arcs and
hyperbolas. This first category has limited degrees of rep-
resentation but it is suitable for efficient fitting algorithms
such as RANSAC, Hough transform and vanishing point [4].
This enables simple applications but strong outlier and noise
resistance, as in [5] where RANSAC and Kalman Filter are
exploited along with a straight line model. On the other hand,
if the intended application is more complex than a LKA
(Lane Keep Assist), more flexibility is needed and strictly
parametric solutions are not viable.
2) Non-parametric models: without an a priori specified
structure the result is determined by the data. It may consist
of a continuous representation (e.g. continuous pixels), but
it might not contemplate any smoothness or differentiability.
This paradigma is preferred in all of those applications where
features are extracted directly from the image, still in the
camera point of view. The most interesting implementations
of this kind are generally based on deep learning [6].
3) Semi-parametric models: in the presence of both para-
metric and non-parametric components, these models do not
assume any specific global path geometry. This category
primarily includes different declinations of piece-wise de-
fined functions, so-called splines. [7] presents a generic lane
model, which also implements constraints and priors between
lanes (parallelism, minimal lane width, etc.) as form of edges
in a Graph-SLAM approach.

B. Feature detection

Sensor data is processed to extract environmental features
useful for the actual estimation. Accordingly with the nature
of the sensor, there is a variety of possible features to
consider and extract.
For cameras and vision-based sensors, several existing works
focus on extracting features based on colours, shapes and
textures. The classic work [8] bases its lane detection module
on the horizontal brightness variation of the input stereo-
image, after the application of an Inverse Perspective Map-
ping (IPM) transformation. Nowadays instead, [6] represents
the state of the art for lane detection, according to the
TuSimple Benchmark Lane Detection Challenge [9]. Its deep
neural network approach takes into account wide spatial
relationships and results effective on extended objects with
few appearance clues, i.e. traffic lanes, poles, and walls.
Different data-related attributes are considered for sensors of
different nature, such as reflectivity of the material for Lidars
[10] and echoes coming from road barriers for radars [11].
In [12], lane marking features are detected according to the
intensity of the laser reflection, transformed into an intensity
image and classified by the means of a Convolutional Neural
Network. [13] bases his work on the same feature, with a
simple straight line model in order to enhance the cross track
localization of the vehicle.

C. Lane detection and tracking

Selected features are processed in the detection step to
infer the presence of one or more lanes, or lane boundaries
as in our case. Features are fit into the chosen lane model
and an initial estimate is generated. If these detections are
successively confirmed by fresh measurements, they are
validated as actual tracks and at tracking stage we can
exploit spatial and temporal continuity constraints to update
the estimates as the vehicle moves and new observations
are available. The algorithm resistance to outliers is tested,
as well as its reaction to false positives. Additionally, new
observations of already detected lane boundaries have to be
correctly associated to existing tracks and contribute to their
estimate and update. In these steps, the representation of
uncertainties plays a crucial role when classical association
techniques are applied. [14] estimates the geometry of a
railway track using a spline model and localization samples
from GNSS receivers installed on the trains. Each point of
the curve has an associated uncertainty, which is taken into
account in the estimate update.

In view of the existing literature and the selected focus
of our research, our contributions are located in the lane
detection pipeline (Fig. 1) as subsequent to the feature
detection step. The solution presented in the following, in
fact, is suitable for any kind of sensor technology or feature
detection method (potentially including the previously men-
tioned state of the art techniques) if properly characterized
in the measurement model introduced in Section II-B.

III. LANE BOUNDARY MODEL

A semi-parametric model is preferred to assure a more
general representation for the tracked lane boundaries. The
chosen model for each track Ti ∈ x̂t (track collection at
instant t) is the clothoid spline, each curve is composed
of a variable finite number of clothoid segments defined as
follows:

Sj = [x0, y0, ψ0, κ0, κ1, l,ΣS ] ∈ Ti (1)

where the continuous description of each segment is given
at curvilinear abscissa s by the Fresnel integrals [15]:

x(s) = x0 +

∫ s

0

cos

(
1

2
κ1τ

2 + κ0τ + ψ0

)
dτ, s ∈ [0, l]

(2)

y(s) = y0 +

∫ s

0

sin

(
1

2
κ1τ

2 + κ0τ + ψ0

)
dτ, s ∈ [0, l]

(3)
The uncertainty on this representation is given by the co-
variance matrix ΣS with respect to each parameter of each
segment. This transcendental functions require approxima-
tion methods to be handled but they accurately reflect the
techniques used for road infrastructure design [15]. This
representation is also immediately suitable for curvature-
based control of the vehicle.
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Fig. 2: Lane boundary model.

IV. MEASUREMENT MODEL

The sensor set of the target architecture is supposedly
composed of smart sensors, capable of extracting meaningful
features for lane detection. Independently of the sensor
nature, their measurements are detection of lane boundaries
in the driving scene. Measures Mi ∈ zt at each iteration are
represented in the body frame and modeled with polynomial
curves, as follows:

Mi = [c0, c1, c2, c3, xmin, xmax,ΣM ] ∈ zt (4)

where the continuous description of the measurement is
given by:

P (x) = c0 + c1x+ c2x
2 + c3x

3, x ∈ [xmin, xmax] (5)

This polynomial model for measurements reflects a standard
output provided by off-the-shelf devices adopted in the
automotive industry. The measurement uncertainty is given
by the covariance matrix ΣM with respect to each parameter.
However, no guarantee is given that the sensor will be able
and willing to indicate the uncertainty for each detection.
Therefore, a measurement noise evolution is modeled as
follows:

ΣM (d) = exp(αMd)ΣM (0) (6)

where:

ΣM (0) =

 σ2
xx 0 0
0 σ2

yy 0
0 0 σ2

θθ

 (7)

In this model, the measurement noise scales an initial co-
variance matrix ΣM (0) by a factor that grows exponentially
with the euclidean distance d from the sensor to the sample
(x, P (x)). A graphical representation is given in Fig. 3,
where measurements and corresponding covariance ellipses
are shown in red. The model coefficients have been empiri-
cally tuned and adapted for different sensors.
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Fig. 3: Measurement model.

V. DETECTION AND TRACKING

This section describes the core of the proposed fusion
architecture. The basic idea is that a set of ordered control
points jointly with an appropriately chosen interpolation
method can completely describe a geometric curve, rep-
resenting lane bounding elements, defined on the clothoid
spline model of Section III. In our framework, these control
points are tracked and referred to as features. A curve Ci
consists of a finite number of features Fj defined as:

Fj = [xj , yj , θj ,ΣF ] ∈ Ci (8)

This representation describes a curve specifying abscissa
xj , ordinate yj and heading θj of its control points. Con-
sidering the application domain and the uncertain nature
of the described entity, these values constitute a random
vector and ΣF is its covariance matrix. In order to track
and cumulatively refine the estimation of a feature set, the
adopted procedure consists of the following steps:

• Initialization
• Prediction
• Association
• Update

For each detected and initialized feature, a filtering process
is carried on using a traditional Kalman filter. This method
is selected for its low computational cost and optimality
under Gaussian noise assumption, which is supposed to be
our case. Ultimately, the above mentioned spline represen-
tation is attained at each iteration interpolating the curve
between two consecutive features by means of the algo-
rithm proposed in [16]. This procedure builds the clothoid
spline by determining the appropriate initial curvature κ0,
curvature rate κ1 and clothoid segment length l for each
given couple of Fj and Fj+1. This method guarantees a G1

degree of continuity of the spline, which is a mandatory
requirement for an exploitable result. Therefore, for two
consecutive clothoid segments Sj and Sj+1, it is verified that
xj(lj) = xj+1(0), yi(lj) = yj+1(0) and ψj(lj) = ψj+1(0).
Attaining G2 (curvature) continuous curves would require
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Fig. 4: Feature set initialization. Measurement in orange and
sampled features in blue.

more computationally expensive algorithms [17] exceeding
our working hypotheses.

A. Initialization

Whenever no curve is being tracked or the measurements
delivered by the sensor have not been associated to any
existing track, a new curve is initialized. Samples are
extracted from the continuous measurement in order to
initialize a new feature set. These samples are located at
constant inter-distance (in term of curvilinear abscissa) and
they define the initial conditions of each state variable. For
a given xj ∈ [xmin, xmax]:

yj = P (xj) = c0 + c1xj + c2x
2
j + c3x

3
j (9)

θj = atan(P ′(xj)) (10)

ΣF is set in accordance with the measurement model in
Section IV also taking into account which sensor is providing
the measurement.

B. Prediction

Before being allowed to compare the existing tracks with
the latest measurements, they both have to be defined in the
same reference frame. At this step, the appropriate rotation
and translation is applied to each curve in such a way that
tracks are temporally and spatially coherent with the freshest
sensor delivery. Where this would usually be handled with an
ordinary geometric transformation, in this context it consists
of a prediction. In fact, the actual parameters required for
this operation are as well outcome of an estimation process.
In the case of state prediction, an evolution model is gener-
ally introduced and its definition strongly impacts the final
outcome. Within this context, however, the evolution model
of our targets is perfectly known and trivial: control points
of lane boundaries do not (in our scope) evolve in time,
exclusively the reference frame is moving. This movement
is separately estimated and defined at each iteration as:

∆Egot = [dx, dy, dθ,ΣE ] (11)

In view of this, the affine transformation (operator ⊕) of the
state vector t−1x̂t−1 is firstly performed:

x̂t−1 = tT t−1 ⊕ t−1x̂t−1 (12)

where tT t−1 describes the translation applied along with a
rotation of dθ:

tT t−1 =

 cos(dθ) −sin(dθ) dx
sin(dθ) cos(dθ) dy

0 0 1

 (13)

The prediction step of our Kalman filter follows, according
to the simple evolution model:

xt = xt−1 + wt (14)

The prediction of the state variables is here subject to
the uncertain estimation of the ego-movement, accordingly
appearing in the filter prediction step, given that:

wt ∼ N (0,ΣE) (15)

C. Association

The association between measurements and tracks is cru-
cial to successively integrate fresh upcoming information. In
order to do this, an appropriate metric to express the distance
between a feature set Ci and a measurement M has been
defined. It is supposed that, between t − 1 and t, the ego-
motion is sufficiently small to allow at least the orthogonal
projection of one feature on the measure, if they represent
the same lane boundary. Under this assumption, each feature
is projected on each measure. Each successful projection of
Fj ∈ Ci appoints to a correspondent feature p⊥(Fj) sampled
along the measure M at (x⊥, y⊥). The Mahalanobis distance
between the two can be computed as:

d(p⊥(Fj), Fj) =√
(p⊥(Fj)− Fj)T (ΣM (x⊥, y⊥) + ΣF )−1(p⊥(Fj)− Fj)

(16)

The distance between a measure and a track is finally defined
selecting the highest value, where multiple projections exist:

d(M,Ci) = max
Fj∈Ci

d(p⊥(Fj), Fj) (17)

A distance matrix built on these values allows the use of a
Global Neighrest Neighbourd (GNN) algorithm to finalize
the association.

D. Update

Once the association between the measure M and the
feature set Ci is confirmed, the aim is to update the state
of existing features and to possibly extend the track with
newly discovered elements. Existing features are updated
in the filter update step with their projection p⊥(Fj) on
the associated measurement. Where available, the remaining
length of the measurement is exploited to initialize, as in
Section V-A, newly discovered features and extend Ci. Fig.
5 shows unchanged, updated and new features respectively
displayed in grey, green and blue.
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Fig. 5: Feature set update. Unchanged, updated and new
features respectively displayed in grey, green and blue.

VI. EXPERIMENTAL RESULTS

The aim of the following experiments is to test the
effectiveness of the proposed solution, using smart sensors
as input. The feasibility of the on-board fusion also has
been verified, targeting highway scenarios in fluid traffic at
low medium speed (up to 60 km/h). The specificity of our
research focus did not allow for an evaluation on public well-
known datasets. For this reason, we collected custom-tailored
data to be replayed in the framework described hereinafter.

A. Setup

The presented method is implemented in a proprietary
environment for ADAS design. On this platform, the de-
velopment is carried out mostly in C language, following
MISRA C [18] guidelines for safe, reliable and portable code
for embedded systems. Additionally, a proper management
of message timestamps (measure dates, buffer dates and
meaningful instants of the process) allows the monitoring of
effective execution time. The presented solution is, in fact,
specifically designed to comply with real-time constraints
and low resources availability typical of ADAS ECUs. An
interface example of the platform is reported in Fig. 6. The
video stream shows a view of the driving scene at each
instant and it can be used for a qualitative evaluation of
the results, accordingly displayed. Data fusion algorithms
are here designed and tested off-line, replaying recordings
of data obtained on different prototype vehicles, where they
can finally be exported for on-board testing.

The deployed vehicle for our experiments (an ad-hoc
configured Renault Espace) is equipped for the perception
of its surroundings with:
• Smart FrontCam, 30Hz, FoV: 53◦ × 120 m
• Smart AVM (4 cameras), 20Hz, FoV: 360◦ × 20 m

These sensors implement device-specific data processing
algorithms and issue measurements in the format specified
in Section IV. Our solution processes asynchronous sources
equivalently and updates the lane boundaries state estimate at
each delivery. Detections from the AVM sensor, however, are

Fig. 6: On the left, tracking results (blue) and measurements
(orange for FrontCam, brown for AVM) are displayed in a
bird-eye view. On the right, the context cameras.

not allowed to initialize new tracks. Being a smart sensor still
in its early stage of development, this limitation is necessary
to minimize false detections. Its contribution is anyway taken
into account for existing tracks, narrowing our analysis focus
to the FrontCam (which is not dissimilar to a mass-produced
device) and to the impact of the fusion process. A lane-
level ground truth is essential to achieve this evaluation.
The vehicle has been additionally equipped with a GNSS-
RTK precise positioning system and sensor data has been
recorded on the French A86 (Créteil-Versailles). An HD-
map of this highway (section of approximately 20 km long)
has been specifically realized for the purpose of self-driving
applications testing.

B. Results

A prior qualitative analysis of the fusion result has been
done through the development platform output interface
(Fig. 6) and with the aid of context cameras, confirming
the soundness of the result on highway scenarios. In fact,
the deployed association criteria can robustly discriminate
measurements and tracks that refer to different lane
boundaries (covering also close together road edges and
markings). It has also been reasonably observed that,
processing the two data sources, a fresher estimation is
available at an higher rate. This corresponds in average to
the sum of the sensors frequency, namely 50 Hz in our
experiment.

The quantitative evaluation follows and assumes the
topological information in the map to be accurately geo-
referenced. Jointly with the RTK pose estimation and ex-
pressed in the body frame, it accounts for the ground-
truth representation xt of our lane boundaries estimation x̂t.
Under these conditions, the FrontCam error eFC

t (accounting
for our baseline) and fusion error eFusiont are described by:

eFC
t = xt − zFC

t (18)

eFusiont = xt − x̂t (19)

where appropriate format transformations are applied to
perform these comparisons. In the scope of this work,



Fig. 7: Superposed, normalized error distributions eL0 for
FrontCam (blue) and Fusion (see-throught, red)

the analysis focus has been limited to the following error
indicators:

et = [eL0 , e
L
1 , e

R
0 , e

R
1 ] (20)

where, for left L and right R markings, a separated lateral
error is considered for different interval ranges of longitudi-
nal distance (specifically, in [0,10] m and [10,20] m). These
range intervals cover the FoVs intersection, where the multi-
sensor fusion occurs.
At first, a characterization of the sensor set has been carried
on. In Fig. 7, the histogram in blue shows an indicator
of the FrontCam error distribution. On the one hand, the
reported error density supports the Gaussian hypothesis on
the measurement noise and the model presented in Section
IV. This analysis also guided the fine-tuning of the model’s
covariance matrix and αM coefficient. On the other hand, we
can observe that this result does not appear to be zero mean
as supposed. This offset (in the centimeter magnitude) can
be attributed to the relative mismatching between the lane-
level ground truth and our global positioning system. In fact,
this gap occurs likewise in the error distribution of the fusion
result which is presented in red, always Fig. 7. This lightly
narrower density shows the smoothing effect of the filtering
process and the contribution of the complementary AVM
sensor. More precisely, a comparison in term of mean, vari-
ance and Root Mean Square Error (RMSE) of the selected
indicators has been finalized. The produced benchmark is
presented in Table I and confirms previous observations.

FrontCam only FrontCam + AVM fusion
µ[m] σ2 [m2] RMSE [m] µ σ2 RMSE

eL0 -0.0638 0.0020 0.0781 -0.0620 0.0019 0.0755
eL1 -0.0875 0.0027 0.1018 -0.0773 0.0022 0.0906
eR0 -0.1277 0.0039 0.1421 -0.1018 0.0024 0.1131
eR1 -0.1393 0.0044 0.1543 -0.1254 0.0037 0.1394

TABLE I: Lateral error benchmark

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, a multi-sensor tracking approach for generic
lane boundaries is proposed. Although the experimental fu-
sion of two smart sensors reported only a slight improvement

in term lateral RMSE, the solution confirmed its validity and
coherency w.r.t. the lane-level ground truth. Its real-time im-
plementation can support potentially any multi-modal smart
sensor set, providing redundancy and perception diversity in
the overall lane geometry estimation.
In future works, the integration of additional a priori from
navigation maps is planned, along with a closer focus on
road curvature estimation which remains a major challenge.
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