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A STUDY ON PARTIAL DYNAMIC EQUATION ON TIME SCALES INVOLVING DERIVATIVES OF POLYNOMIALS

Let f m (x, b) be a 2m + 1-degree integer-valued polynomial in x, b. Let be a two-dimensional time scale

where σ(x) > x is forward jump operator. In this manuscript we derive and discuss above partial differential equation on time scales and show few polynomial identities. In addition, we discus various derivative operators in context of partial cases of above equation, we show finite difference, classical derivative, q-derivative, q-power derivative on behalf of it.

• Let be a function f : T → R and t ∈ T κ then f ∆ (t) is delta time-scale derivative [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF] of f f ∆ (t) = f (σ(t))f (t) µ(t) , µ(t) = 0, where µ(t) = σ(t)t and σ(t) > t is forward jump operator.

• ∂f (t 1 , . . . , t n ) ∆ i t i , f ∆ i t i (t) is delta partial derivative of f : Λ n → R on n-dimensional time scale Λ n [BG04, AM02, Jac06], defined as a limit

f ∆ i t i (t) = lim s i →t i s i =σ i (t i )
f (t 1 , . . . , t i-1 , σ i (t i ), t t+1 , . . . , t n )f (t 1 , . . . , t i-1 , s i , t t+1 , . . . , t n ) σ i (t i )s i , where σ i (t i ) > t i and σ i (t i )s i = 0. • Z is an integer time scale such that σ(t) = t + 1 and µ(t) = 1. • R is a real time scale such that σ(t) = t + ∆t and µ(t) = ∆t, ∆t → 0.

• q R is a quantum time scale such that σ(t) = qt and µ(t) = qtt, [page 18 [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF]].

• R q is a quantum power time scale such that σ(t) = t q and µ(t) = t qt.

• q R n is a quantum power time scale such that σ(t) = qt n > t, 0 < q < 1, µ(t) = qt n -t and n is positive odd integer [START_REF] Khaled A Aldwoah | The power quantum calculus and variational problems[END_REF].

• D q f (x) is q-derivative [Jac09, Ern00, Ern08, KC01] D q f (x) = f (qx) -f (x) qx -x , x = 0, x ∈ R, q ∈ R • D n,q f (t) is q-power derivative [AMT11] D n,q f (t) = f (qt n ) -f (t) qt n -t ,
where n is odd positive integer and 0 < q < 1. • D q f (x) is q-power derivative, the partial case of q-power derivative operator D n,q f (x), q = 1

D q f (x) = f (x q ) -f (x) x q -x , x q = x, x ∈ R, q ∈ R • f m (x, b) is 2m + 1-degree integer-valued polynomial [Kol16] in x, b, b ≥ 1 f m (x, b) = P m b (x) = b-1 k=0 m r=0 A m,r k r (x -k) r , x ∈ R, m ∈ N,
where A m,r , m ∈ N is a real coefficient defined recursively

A m,r :=      (2r + 1) 2r r , if r = m, (2r + 1) 2r r m d=2r+1 A m,d d 2r+1 (-1) d-1 d-r B 2d-2r , if 0 ≤ r < m, 0, if r < 0 or r > m,
where B t are Bernoulli numbers [Wei]. It is assumed that

B 1 = 1 2 . • x -a n is powered Macaulay bracket [Mac19], x -a n := (x -a) n , x ≥ a, 0, otherwise , a ∈ Z • {x -a} n is powered Macaulay bracket {x -a} n := (x -a) n , x > a, 0, otherwise , a ∈ Z
During the manuscript, the variable a is reserved to be only the condition of Macaulay functions. If the power function xa n or {x -a} n is written without parameter a e.g x n or {x} n means that it is assumed a = 0.

Introduction

Time-scale calculus is quite graceful generalization and unification of the theory of differential equations. Firstly being introduced by Hilger [START_REF] Hilger | kettenkalk ü l m ı t Anwendung auf Zentrumsmann ı gfalt ı gke ı ten[END_REF] in his Ph.D thesis in 1988 and thereafter greatly extended by Bohner and Peterson [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF] in 2001, the calculus on time scales became a sharp tool in the world on differential equations. Various derivative operators like classical derivative d dx f (x), q-derivative D q f (x), q-power derivative D q f (x), finite difference ∆f (x) etc, may be simply expressed in terms of time-scale derivative over particular time scale T. For instance,

f ′ (x) = f ∆ (x), x ∈ T := R, ∆f (x) = f ∆ (x), x ∈ T := Z, D n,q f (x) = f ∆ (x), x ∈ T := q R n , D q f (x) = f ∆ (x), x ∈ T := q R , D q f (x) = f ∆ (x), x ∈ T := R q , . . . etc.
In context of Computer Science, namely object oriented programming paradigm, the time scale calculus may be thought as unified interface of derivative operator. Furthermore, the idea of time-scale calculus was slightly extended in [START_REF] Bayour | A truly conformable calculus on time scales[END_REF][START_REF] Benkhettou | A conformable fractional calculus on arbitrary time scales[END_REF][START_REF] Caputo | Time scales: from nabla calculus to delta calculus and vice versa via duality[END_REF][START_REF] Martins | Calculus of variations on time scales with nabla derivatives[END_REF]. Let be a partial dynamic equation on time scales

∂f m (x, b) ∆x + ∂f m (x, b) ∆b = α m (x, b)(x 2m+1 ) ∆ ,
where α m (x, b) is arbitrary differentiable function. In the next section, we inspect above partial dynamic equation, discussing its partial case for time scale Λ 2 = T 1 × T 2 such that T 1 = T 2 . In addition, a few polynomial identities are shown.

Main results

Theorem 3.1. Let f m (x, b) be a 2m + 1-degree integer-valued polynomial. Let be a twodimensional time scale

Λ 2 = T 1 × T 2 := {t = (x, b) : x ∈ T 1 , b ∈ T 2 }. Let be T 1 = T 2 . For every x, b ∈ Λ 2 , m ∈ N ∂f m (x, b) ∆x (x 0 , σ(x 0 )) + ∂f m (x, b) ∆b (x 0 , x 0 ) = (x 2m+1 ) ∆ (x 0 ),
where σ(x) > x is forward jump operator.

Theorem 3.1 shows an identity between partial time-scale derivatives of f m (x, b) and ordinary time-scale derivative of odd power x 2m+1 , x ∈ R, m ∈ N. However, binomial theorem states that

x t = r t r (x -1) r = r k t r r k (-1) r-k x k = r k t k t -k r -k (-1) r-k x k (3.1) = r k t k t -k t -r (-1) r-k x k
Above identity (3.1) is derived by means of binomial identity [eq. (4.1.9) [START_REF] Gross | Combinatorial methods with computer applications[END_REF]] and further by symmetry of binomial coefficients. Therefore, theorem 3.1 may be rewritten in context of equation (3.1), e.g for every

x, b ∈ Λ 2 , m ∈ N ∂f m (x, b) ∆x (x 0 , σ(x 0 )) + ∂f m (x, b) ∆b (x 0 , x 0 ) = r k t r r k (-1) r-k x k ∆ (x 0 ) = r k t k t -k r -k (-1) r-k x k ∆ (x 0 ) = r k t k t -k t -r (-1) r-k x k ∆ (x 0 )
If we review the theorem 3.1 from another prospective, it opens an opportunity to connect its left part with discrete convolution of odd power x 2m+1 , x ∈ R, m ∈ N. In [page 9 [START_REF] Kolosov | On the link between Binomial Theorem and Discrete Convolution of Power Function[END_REF],] the following relations between odd power x 2m+1 , x ∈ R, m ∈ N and discrete convolutions are stated

x 2m+1 = -1 + r A m,r x r * x r x 2m+1 = 1 + r A m,r {x} r * {x} r
refer to the section definitions, notations and conventions 1 to find out the definitions of polynomials x r , {x} r . Hereof, the theorem 3.1 may express the relation between partial time-scale derivatives of f m (x, b) and ordinary time-scale derivative of discrete convolutions

x r * x r , {x} r * {x} r , e.g ∂f m (x, b) ∆x (x 0 , σ(x 0 )) + ∂f m (x, b) ∆b (x 0 , x 0 ) = r A m,r x r * x r ∆ (x 0 ) ∂f m (x, b) ∆x (x 0 , σ(x 0 )) + ∂f m (x, b) ∆b (x 0 , x 0 ) = r A m,r {x} r * {x} r ∆ (x 0 )
In order to express convolutions x r * x r , {x} r * {x} r in more convenient form, a two-sided Faulhaber-like formula [START_REF] Barbero | A twosided Faulhaber-like formula involving Bernoulli polynomials[END_REF] may be used, it is

x-1 k=1 k m (x -k) m = x 2m+1 (2m + 1) 2m m + 2(-1) m m k=0 m k B m+k+1 m + k + 1 x m-k
Or, by identity in Riemann zeta function

ζ(1 -N) = -B N N x-1 k=1 k m (x -k) m = x 2m+1 (2m + 1) 2m m -2(-1) m m k=0 m k ζ(-m -k)x m-k ,
where B N are Bernoulli numbers.

Discussion and examples

To understand the nature of equation 3.1, let's discuss an examples of some popular time scales, like integer time scale Z, real time scale R, quantum time scale q R , quantum-power time scale R q . We use the principle Divide et Impera ! in order to understand entire behavior of theorem 3.1.

Time scale

T = Z × Z. Corollary 4.1. (Finite difference.) Let be a two-dimensional time scale Λ 2 = Z × Z := {t = (x, b) : x ∈ Z, x ∈ Z}. For every x, b ∈ Λ 2 , m ∈ N ∆x 2m+1 (x 0 ) = ∂f m (x, b) ∆x (x 0 , σ(x 0 )) + ∂f m (x, b) ∆b (x 0 , x 0 ), where σ(x) = x + 1. Example 4.2. Let be x, b ∈ Λ 2 = Z × Z, m ∈ N and let m = 1, then ∂f 1 (x, b) ∆x = 3b + 3b 2 ∂f 1 (x, b) ∆x (t, σ(t)) = 3t + 3t 2 And ∂f 1 (x, b) ∆b = 1 -6b 2 + 6bx ∂f 1 (x, b) ∆b (t, t) = 1
Summing up above partial time-scale derivatives

∂f 1 (x,b) ∆x (t, σ(t)), ∂f 1 (x,b) ∆b (t, t) in point t ∈ R, we get time scale derivative of odd power x 2m+1 , x, b ∈ Λ 2 = Z × Z, m ∈ N ∆x 3 (t) = ∂f 1 (x, b) ∆x (t, σ(t)) + ∂f 1 (x, b) ∆b (t, t) = 3t 2 + 3t + 1, which is ordinary finite difference ∆f (x). Example 4.3. Let be x, b ∈ Λ 2 = Z × Z, m ∈ N and let m = 2, then ∂f 2 (x, b) ∆x = 5b -30b 2 + 40b 3 -15b 4 + 10bx -30b 2 x + 20b 3 x ∂f 2 (x, b) ∆x (t, σ(t)) = 5t + 10t 2 + 10t 3 + 5t 4 And ∂f 2 (x, b) ∆b = 1 + 30b 4 -60b 3 x + 30b 2 x 2 ∂f 2 (x, b) ∆b (t, t) = 1
Summing up above partial time-scale derivatives ∂f 2 (x,b) ∆x (t, σ(t)), ∂f 2 (x,b) ∆b (t, t) in point t ∈ R, we get time scale derivative of odd power

x 2m+1 , x, b ∈ Λ 2 = Z × Z, m ∈ N ∆x 5 (t) = ∂f 2 (x, b) ∆x (t, σ(t)) + ∂f 2 (x, b) ∆b (t, t) = 1 + 5t + 10t 2 + 10t 3 + 5t 4 ,
which is ordinary finite difference ∆f (x).

Corollary 4.4. For every

x, b ∈ Λ 2 = Z × Z, m ∈ N ∂f m (x, b) ∆x (t, σ(t)) = 2m r=1 2m + 1 r t r Corollary 4.5. For every x, b ∈ Λ 2 = Z × Z, m ∈ N ∂f m (x, b) ∆b (t, t) = 1 4.2. Time scale T = R × R.
Corollary 4.6. (Classical derivative.) Let be a two-dimensional time scale

Λ 2 = R × R := {t = (x, b) : x ∈ R, b ∈ R}. For every x, b ∈ Λ 2 = R × R, m ∈ N d dx x 2m+1 (x 0 ) = ∂f m (x, b) ∂x (x 0 , σ(x 0 )) + ∂f m (x, b) ∂b (x 0 , x 0 ), where σ(x) = x + ∆x, ∆x → 0. Example 4.7. Let be x, b ∈ Λ 2 = R × R, m ∈ N and let m = 1, then ∂f 1 (x, b) ∂x = -3b + 3b 2 ∂f 1 (x, b) ∂x (t, σ(t)) = -3t + 3t 2 And ∂f 1 (x, b) ∂b = lim ∆b→0 6b -6b 2 + 9∆b -18b∆b -14(∆b) 2 -3x + 6bx + 9x∆b = 6b -6b 2 -3x + 6bx, ∂f 1 (x, b) ∂b (t, t) = 3t
Summing up above partial time-scale derivatives

∂f 1 (x,b) ∂x (t, σ(t)), ∂f 1 (x,b) ∂b (t, t) in point t ∈ R, we get time scale derivative of odd power x 2m+1 , x ∈ Λ 2 = R × R, m ∈ N d dx x 3 (t) = ∂f 1 (x, b) ∂x (t, σ(t)) + ∂f 1 (x, b) ∂b (t, t) = 3t 2 , which is classical derivative d dx f (x). Example 4.8. Let be x, b ∈ Λ 2 = R × R, m ∈ N and let m = 2, then ∂f 2 (x, b) ∂x = lim ∆x→0 -15b 2 + 30b 3 -15b 4 + 5b∆x -15b 2 ∆x + 10b 3 ∆x + 10bx -30b 2 x + 20b 3 x = -15b 2 + 30b 3 -15b 4 + 10bx -30b 2 x + 20b 3 x, ∂f 2 (x, b) ∂x (t, σ(t)) = -5t 2 + 5t 4 And ∂f 2 (x, b) ∂b = lim ∆b→0 (30b 2 -60b 3 + 30b 4 + 30b∆b -90b 2 ∆b + 60b 3 ∆b + 10(∆b) 2 -60b(∆b) 2 + 60b 2 (∆b) 2 -15(∆b) 3 + 30b(∆b) 3 + 6(∆b) 4 -30bx + 90b 2 x -60b 3 x -15x∆b + 90bx∆b -90b 2 x∆b + 30(∆b) 2 x -60b(∆b) 2 x -15(∆b) 3 x + 5x 2 -30bx 2 + 30b 2 x 2 -15x 2 ∆b + 30bx 2 ∆b + 10x 2 (∆b) 2 ) = 30b 2 -60b 3 + 30b 4 -30bx + 90b 2 x -60b 3 x + 5x 2 -30bx 2 + 30b 2 x 2 , ∂f 2 (x, b) ∂b (t, t) = 5t 2
Summing up above partial time-scale derivatives

∂f 2 (x,b) ∂x (t, σ(t)), ∂f 2 (x,b) ∂b (t, t) in point t ∈ R, we get time scale derivative of odd power x 2m+1 , x ∈ Λ 2 = R × R, m ∈ N d dx x 5 (t) = ∂f 2 (x, b) ∂x (t, σ(t)) + ∂f 2 (x, b) ∂b (t, t) = 5t 4 , which is classical derivative d dx f (x). 4.3. Time scale T = q R × q R . Corollary 4.9. (Q-derivative [Jac09].) Let be a two-dimensional time scale Λ 2 = q R × q R := {t = (x, b) : x ∈ q R , b ∈ q R }. For every x, b ∈ Λ 2 = q R × q R , m ∈ N D q x 2m+1 (x 0 ) = ∂f m (x, b) ∆x (x 0 , σ(x 0 )) + ∂f m (x, b) ∆b (x 0 , x 0 ),
where σ(x) = qx, q > 1.

Example 4.10. Let be x, b

∈ Λ 2 = q R × q R , m ∈ N and let m = 1, then ∂f 1 (x, b) ∆x (t, σ(t)) = -3qt + 3q 2 t 2 And ∂f 1 (x, b) ∆b = 3b -2b 2 + 3bq -2b 2 q -2b 2 q 2 -3x + 3bx + 3bqx, ∂f 1 (x, b) ∆b (t, t) = 3qt + t 2 + qt 2 -2q 2 t 2
Summing up above partial time-scale derivatives ∂f 1 (x,b) ∆x (t, σ(t)), ∂f 1 (x,b) ∆b (t, t) in point t ∈ R, we get time scale derivative of odd power

x 2m+1 , x, b ∈ Λ 2 = q R × q R , m ∈ N D q x 3 (t) = ∂f 1 (x, b) ∆x (t, σ(t)) + ∂f 1 (x, b) ∆b (t, t) = t 2 + qt 2 + q 2 t 2 , which is q-derivative D q f (x), x ∈ Λ 2 = q R × q R .
For every x, b ∈ Λ 2 = q R × q R , m ∈ N the following polynomial identity holds as q tends to zero

lim q→0 ∂f 1 (x, b) ∆b (t, t) = t 2
However, for some m ∈ N and x, b ∈ Λ 2 = q R × q R it would be concluded Corollary 4.11. For every x, b

∈ Λ 2 = q R × q R , m ∈ N lim q→0 ∂f m (x, b) ∆b (t, t) = t 2m .
Example 4.12. Let be x, b ∈ Λ 2 = q R × q R , m ∈ N and let m = 2, then

∂f 2 (x, b) ∆x = -15b 2 + 30b 3 -15b 4 + 5bx -15b 2 x + 10b 3 x + 5bqx -15b 2 qx + 10b 3 qx, ∂f 2 (x, b) ∆x (t, σ(t)) = 5qt 2 -10q 2 t 2 -15q 2 t 3 + 15q 3 t 3 + 10q 3 t 4 -5q 4 t 4 And ∂f 2 (x, b) ∆b = 10b 2 -15b 3 + 6b 4 + 10b 2 q -15b 3 q + 6b 4 q + 10b 2 q 2 -15b 3 q 2 + 6b 4 q 2 -15b 3 q 3 + 6b 4 q 3 + 6b 4 q 4 -15bx + 30b 2 x -15b 3 x -15bqx + 30b 2 qx -15b 3 qx + 30b 2 q 2 x -15b 3 q 2 x -15b 3 q 3 x + 5x 2 -15bx 2 + 10b 2 x 2 -15bqx 2 + 10b 2 qx 2 + 10b 2 q 2 x 2 , ∂f 2 (x, b) ∆b (t, t) = -5qt 2 + 10q 2 t 2 + 15q 2 t 3 -15q 3 t 3 + t 4 + qt 4
+ q 2 t 4 -9q 3 t 4 + 6q 4 t 4

Summing up above partial time-scale derivatives ∂f 2 (x,b) ∆x (t, σ(t)), ∂f 2 (x,b) ∆b (t, t) in point t ∈ R, we get time scale derivative of odd power

x 2m+1 , x, b ∈ Λ 2 = q R × q R , m ∈ N D q x 5 (t) = ∂f 2 (x, b) ∆x (t, σ(t)) + ∂f 2 (x, b) ∆b (t, t) = t 4 + qt 4 + q 2 t 4 + q 3 t 4 + q 4 t 4 , which is q-derivative D q f (x), x ∈ Λ 2 = q R × q R . 4.4. Time scale T = R q × R q . Corollary 4.13. (Q-power derivative [AMT11].) Let be a two-dimensional time scale Λ 2 = R q × R q := {t = (x, b) : b ∈ R q , x ∈ R q }. For every x, b ∈ Λ 2 = R q × R q , m ∈ N D q x 2m+1 (x 0 ) = ∂f m (x, b) ∆x (x 0 , σ(x 0 )) + ∂f m (x, b) ∆b (x 0 , x 0 ),
where σ(x) = x q , q > 1.

Example 4.14.

Let be x, b ∈ Λ 2 = R q × R q , m ∈ N and let m = 1, then ∂f 1 (x, b) ∆x (t, σ(t)) = -3t q + 3t 2q And ∂f 1 (x, b) ∆b = 3b -2b 2 + 3b q -2b 2q -2b 1+q -3x + 3bx + 3b q x ∂f 1 (x, b) ∆b (t, t) = t 2 + 3t q -2t 2q + t 1+q
Summing up above partial time-scale derivatives ∂f 1 (x,b) ∆x (t, σ(t)), ∂f 1 (x,b) ∆b (t, t) in point t ∈ R, we get time scale derivative of odd power

x 2m+1 , x, b ∈ Λ 2 = R q × R q , m ∈ N D q x 3 (t) = ∂f 1 (x, b) ∆x (t, σ(t)) + ∂f 1 (x, b) ∆b (t, t) = t 2 + t 2q + t 1+q , which is q-power derivative D q f (x), x ∈ Λ 2 = R q × R q . Example 4.15. Let be x, b ∈ Λ 2 = R q × R q , m ∈ N and let m = 2, then ∂f 2 (x, b) ∆x = -15b 2 + 30b 3 -15b 4 + 5bx -15b 2 x + 10b 3 x + 5bx q -15b 2 x q + 10b 3 x q ∂f 2 (x, b) ∆x (t, σ(t)) = -10t 2q + 15t 3q -5t 4q + 5t 1+q -15t 1+2q + 10t 1+3q And ∂f 2 (x, b) ∆b = 10b 2 -15b 3 + 6b 4 + 10b 2q -15b 3q + 6b 4q + 10b 1+q -15b 2+q + 6b 3+q -15b 1+2q + 6b 2+2q + 6b 1+3q -15bx + 30b 2 x -15b 3 x -15b q x + 30b 2q x -15b 3q x + 30b 1+q x -15b 2+q x -15b 1+2q x + 5x 2 -15bx 2 + 10b 2 x 2 -15b q x 2 + 10b 2q x 2 + 10b 1+q x 2 , ∂f 2 (x, b) ∆b (t, t) = t 4 + 10t 2q -15t 3q + 6t 4q -5t 1+q + t 3+q + 15t 1+2q + t 2+2q -9t 1+3q
Summing up above partial time-scale derivatives

∂f 2 (x,b) ∆x (t, σ(t)), ∂f 2 (x,b) ∆b (t, t) in point t ∈ R, we get time scale derivative of odd power x 2m+1 , x, b ∈ Λ 2 = R q × R q , m ∈ N D q x 5 (t) = ∂f 2 (x, b) ∆x (t, σ(t)) + ∂f 2 (x, b) ∆b (t, t) = t 4 + t 4q + t 3+q + t 2+2q + t 1+3q , which is q-power derivative D q f (x), x ∈ Λ 2 = R q × R q .
Another polynomial identity, that is exponential sum holds Corollary 4.16. For every

x, b ∈ Λ 2 = R q × R q , t ∈ R, m ∈ N lim q→0 ∂f m (x, b) ∆b (t, t) = 2m k=0 t k 4.5. Time scale T = q R n × q R n .
In this subsection we discuss a pure quantum power time scale q R j provided by Aldwoah, Malinowska and Torres in [START_REF] Khaled A Aldwoah | The power quantum calculus and variational problems[END_REF], among with the q-power derivative operator D n,q f (t) defined by

D n,q f (t) = f (qt n ) -f (t) qt n -t ,
where n is odd positive integer and 0 < q < 1.

Corollary 4.17. (Quantum power derivative [START_REF] Khaled A Aldwoah | The power quantum calculus and variational problems[END_REF].) Let be a two-dimensional time scale

Λ 2 = q R j × q R j := {t = (x, b) : b ∈ q R j , x ∈ q R j }. For every x, b ∈ Λ 2 = q R j × q R j , m ∈ N D n,q x 2m+1 (x 0 ) = ∂f m (x, b) ∆x (x 0 , σ(x 0 )) + ∂f m (x, b) ∆b (x 0 , x 0 ),
where σ(x) = qt n , σ(x) > x.

Example 4.18. Let be x, b

∈ Λ 2 = q R j × q R j , m ∈ N and let m = 1, then ∂f 1 (x, b) ∆x (x, b) = -3b + 3b 2 ∂f 1 (x, b) ∆x (t, σ(t)) = -3qt j + 3q 2 t 2j And ∂f 1 (x, b) ∆b = 3b -2b 2 + 3b j q -2b 1+j q -2b 2j q 2 -3x + 3bx + 3b j qx ∂f 1 (x, b) ∆b (t, t) = t 2 + 3qt j -2q 2 t 2j + qt 1+j
Summing up above partial time-scale derivatives ∂f 1 (x,b) ∆x (t, σ(t)), ∂f 1 (x,b) ∆b (t, t) in point t ∈ R, we get time scale derivative of odd power

x 2m+1 , x, b ∈ Λ 2 = q R j × q R j , m ∈ N D n,q x 3 (t) = ∂f 1 (x, b) ∆x (t, σ(t)) + ∂f 1 (x, b) ∆b (t, t) = t 2 + q 2 t 2j + qt 1+j ,
which is q-power derivative D n,q f (x), x ∈ Λ 2 = q R j × q R j .

Another polynomial identity, that is exponential sum holds Corollary 4.19. For every x, b

∈ Λ 2 = q R j × q R j , t ∈ R, m ∈ N lim j→0 lim q→1 ∂f m (x, b) ∆b (t, t) = 2m k=0 t k
An identity in even polynomials holds too Corollary 4.20. For every x, b

∈ Λ 2 = q R j × q R j , t ∈ R, m ∈ N lim j→0 lim q→0 ∂f m (x, b) ∆b (t, t) = t 2m Example 4.21. Let be x, b ∈ Λ 2 = q R j × q R j , m ∈ N and let m = 2, then ∂f 2 (x, b) ∆x (x, b) = -15b 2 + 30b 3 -15b 4 + 5bx -15b 2 x + 10b 3 x + 5bqx j -15b 2 qx j + 10b 3 qx j ∂f 2 (x, b) ∆x (t, σ(t)) = -10q 2 t 2j + 15q 3 t 3j -5q 4 t 4j + 5qt 1+j -15q 2 t 1+2j + 10q 3 t 1+3j
And ∂f 2 (x, b) ∆b = 10b 2 -15b 3 + 6b 4 + 10b 1+j q -15b 2+j q + 6b 3+j q + 10b 2j q 2 -15b 1+2j q 2 + 6b 2+2j q 2 -15b 3j q 3 + 6b 1+3j q 3 + 6b 4j q 4 -15bx + 30b 2 x -15b 3 x -15b j qx

+ 30b 1+j qx -15b 2+j qx + 30b 2j q 2 x -15b 1+2j q 2 x -15b 3j q 3 x + 5x 2 -15bx 2 + 10b 2 x 2 -15b j qx 2 + 10b 1+j qx 2 + 10b 2j q 2 x 2 , ∂f 2 (x, b) ∆b (t, t) = t 4 + 10q 2 t 2j -15q 3 t 3j + 6q 4 t 4j -5qt 1+j + qt 3+j + 15q 2 t 1+2j + q 2 t 2+2j -9q 3 t 1+3j
Summing up above partial time-scale derivatives ∂f 1 (x,b) ∆x (t, σ(t)), ∂f 1 (x,b) ∆b (t, t) in point t ∈ R, we get time scale derivative of odd power

x 2m+1 , x, b ∈ Λ 2 = q R j × q R j , m ∈ N D n,q x 5 (t) = ∂f 1 (x, b) ∆x (t, σ(t)) + ∂f 1 (x, b) ∆b (t, t) = t 4 + q 4 t 4j + qt 3+j + q 2 t 2+2j + q 3 t 1+3j , which is q-power derivative D n,q f (x), x ∈ Λ 2 = q R j × q R j .

Proof of main theorem

By [Lemma 3.1 [START_REF] Kolosov | On the link between Binomial Theorem and Discrete Convolution of Power Function[END_REF]], for every x ∈ R, m ∈ N it is true that

f m (x, x) = x 2m+1 (5.1) Proof of theorem 3.1. Let be x, b ∈ Λ 2 = T 1 × T 2 := {t = (x, b) : x ∈ T 1 , b ∈ T 2 }. Let be T 1 = T 2 , then (x 2m+1 ) ∆ = lim b→x lim t→x f m (σ(x), σ(b)) -f m (t, b) σ(x) -t , (5.2) 
where σ(x) > x is forward jump operator. However, equation (5.2) is not a timescale derivative of f m (x, b) over x how it might seem because of denominator σ(x)t. Parameter b of f m (x, b) is implicitly incremented as well. Let's try to express nominator of (5.2) in terms of partial derivative ∂fm(x,b) ∆b on timescales. Let be the following equation

f m (x, σ(b)) -f m (x, b) = f m (x, b) ∆ b • ∆b Assume that nominator of (5.2) equals to, as t → x f m (σ(x), σ(b)) -f m (x, b) = f m (x, σ(b)) -f m (x, b) + A
where A is yet implicit term. Let's now collapse the terms f m (x, b) from both sides of above equation, such that This completes the proof.

f m (σ(x), σ(b)) = f m (x, σ(b)) + A Therefore, A = f m (σ(x), σ(b)) -f m (x, σ(b)) = f m (x, b) ∆ x (x,

Mathematica scripts

To fulfill our study, we attach here a link to the set of Mathematica programs, designed to verify the results of current manuscript. To reach these programs follow the link [START_REF] Kolosov | Supplementary Mathematica Programs[END_REF].

Conclusion and future research

In this manuscript we have discussed partial time scale differential equation involving derivatives of polynomials in context of time scale Λ 2 = T 1 × T 2 where T 1 = T 2 . Future research can be conducted to study the case T 1 = T 2 , which makes the theorem 3.1 to be generalised where α m (x, b) is arbitrary differentiable function. Also, it is worth to discuss the theorem 3.1 in context of high order derivatives on time scales. We have established a few power identities, and shown the theorem 3.1 for different 2-dimensional time scales Λ 2 like integer time scale Z × Z, real time scale R × R, quantum time scale q R × q R and quantum power time scale R q × R q .

  σ(b)) • ∆x Now, let's express the nominator of (5.2) as followsf m (σ(x), σ(b))f m (x, b) = f m (x, b) ∆ x (x, σ(b)) • ∆x + f m (x, b) ∆ b (x, b) • ∆b f m (σ(x), σ(b))f m (x, b) = f m (x, b) ∆ x (x, σ(b)) • (σ(x)x) + f m (x, b) ∆ b (x, b) • (σ(b)b)We can collapse the terms (σ(x)x), (σ(b)b) in above expressions, as b → x. Therefore,f m (σ(x), σ(x))f m (x, x) σ(x)x = f m (x, b) ∆ x (x, σ(x)) + f m (x, b) ∆ b (x, x)Finally, by the identity (5.1) we can express timescale derivative ofx 2m+1 , x ∈ Λ 2 = T 1 × T 2 , m ∈ N as ∂f m (x, b) ∆x (x 0 , σ(x 0 )) + ∂f m (x, b) ∆b (x 0 , x 0 ) = (x 2m+1 ) ∆ (x 0 ).

  ∂f m (x, b) ∆x + ∂f m (x, b) ∆b = α m (x, b)(x 2m+1 ) ∆ ,