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No-slip and Free-slip divergence-free wavelets in
three and higher dimension for the simulation of
incompressible viscous flows

Souleymane Kadri Harouna and Valérie Perrier

Abstract This work concerns divergence-free wavelet based methods for the nu-
merical resolution of Navier-Stokes equations. It generalizes to higher dimension the
approach of [23] that reformulates the projectionmethod using the Helmholtz-Hodge
decomposition in wavelet domain. The solution is searched in a finite dimensional
free-slip divergence-free wavelet space, with time-dependent wavelet coefficients.
We prove and verify the convergence of a first-order time numerical scheme for the
Helmholtz-Hodge based projection method. Numerical simulations on the 3D Lid
driven cavity flow show the accuracy and efficiency of the method.

1 Introduction

The numerical resolution of the time dependent Navier-Stokes equations for an in-
compressible viscous fluid still remains a complex problem. The direct numerical
simulation where all the flows eddies are simulated is very costly in terms of compu-
tational time and memory storage ressources. One reason of such a difficulty is that,
commonly, the velocity field and the pressure are coupled in the numerical discretiza-
tion due to the incompressibility constraint of the velocity field [17, 35]. Moreover,
the numerical methods for the resolution of mixed problems (Stokes problem) re-
quire an inf-sup condition to be satisfied for the velocity and pressure discretization
spaces [17, 36]. In practice, it is difficult to manage both discretizations to obtain
this inf-sup condition. Thus, the conditional number of the arising system is very
high, which increases the numerical cost of the global method.
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By their property of data sparse representation, wavelet based methods have
been introduced in the numerical resolution of the Stokes problem to get robust
and effective numerical schemes, with lower data storage. Principally, wavelet bases
linked by differentiation and integration allows to stabilize the spatial discretizations,
and get the inf-sup condition [2, 32], another interest lies in the ability to provide
adaptive strategies to reduce the algorithm complexity [3, 6, 7, 14, 15, 16, 31, 32, 36].

The projectionmethod initialized byChorin andTemam [4, 34] is an approach that
avoids the difficulties of the Stokes problem: it is based on a time splittingmethod that
uncouples the computation of the velocity field from the pressure. An intermediate
velocity is computed and then, this predicted velocity is projected onto the space of
divergence-free vector fields. The simplicity of the method lies in the fact that the
prediction and the correction steps are elliptic problems, namely Poisson equations.
However, the projection method introduces an additional numerical splitting error,
which must be at worst of the same order as the time discretization error. In addition,
the corrected velocity field does not satisfy the desired boundary condition, and the
projection step imposes an artificial boundary condition on the pressure [12].

A reformulation of the projection method was proposed in [23] consisting in a
change of variable like in the Gauge method [27, 38]. The main idea of [23] is to
replace the classical correction step by a Helmholtz-Hodge decomposition of the
intermediate predicted velocity field, using a divergence-free wavelet basis. This
allows to directly encode the boundary conditions into the divergence-free wavelet
basis and avoids the use of non-physical boundary conditions for the pressure.
The numerical complexity of the divergence-free wavelet based Helmholtz-Hodge
decomposition does not exceed than of the resolution of a Poisson equation, see [21].

The achievements of the present paper is to propose an extension of [23] to the
three-dimensional case, to provide a convergence result and 3D numerical simu-
lations. First we describe a recent construction of divergence-free wavelets, more
easy to handle, satisfying no-slip and free-slip boundary condition on the hypercube
in dimension 3, borrowed from [24]. Then following the approach of [23] for the
2D case, we use these divergence-free wavelets to design a numerical method for
the resolution of Navier-Stokes equations in 3D. As done for the 2D (linear) Stokes
equations in [23], we study here the convergence of the method for the (nonlinear)
3D Navier-Stokes equations, using a first-order time-discretization scheme. Then, a
standard error analysis allows us to prove the convergence of the numerical scheme,
under a CFL type condition. Numerical experiments conducted on benchmark flows
confirm these theoretical results.

This paper is organized as follows. Section 2 summarizes the principle of the
construction of divergence-free wavelet bases. We recall in Section 2.1 the con-
struction of the one-dimensional biorthogonal multiresolution analyses linked by
differentiation and integration that we used to construct divergence-free wavelets
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satisfying physical boundary conditions in Section 2.2. Section 3 present the numer-
ical method, and we investigate the convergence of the time-discretization scheme
in the energy norm. Section 4, describes our fully discrete scheme and presents nu-
merical simulation results on benchmark flow, particularly the 3D lid driven cavity
flow.

2 Free-slip divergence-free wavelet bases on [0, 1]d

Since the seminal works of Lemarié-Rieusset and collaborators [20, 26], several
constructions of divergence-free (and curl-free) wavelet bases on [0,1]d have been
provided in the literature [10, 22, 32, 33, 36, 37]. The free-slip boundary condition
case was treated by several methods in [22, 32, 33]. In this section, we follow the
construction principle of [22, 24], which we extend to general dimension. We begin
with our construction of biorthogonal multiresolution analyses of L2(0,1) linked by
differentiation and integration.

2.1 Multiresolution analyses linked by differentiation and integration

Divergence-free wavelet constructions on the hypercube require the use of multires-
olution analyses on the interval linked by differentiation and integration [20, 22, 32].
Specifically, we would like to have at hand two biorthogonal multiresolution analyses
of L2(0,1), denoted by (V1

j , Ṽ
1
j ) and (V

0
j , Ṽ

0
j ) satisfying:

d
dx

V1
j = V0

j . (1)

The construction of the biorthogonal spaces Ṽ1
j and Ṽ0

j is of the utmost importance.
A suitable choice would provide the commutation of the multi-scale projectors with
the derivation operator. Such a choice was suggested in [20, 22]:

Ṽ0
j =

{∫ x

0
f (t)dt : f ∈ Ṽ1

j

}
∩ H1

0 (0,1)1 ⇒
d
dx

Ṽ0
j ⊂ V0

j . (2)

In this case, we have:
d
dx
◦ P1

j = P
0
j ◦

d
dx
, (3)

1 For m ∈ N∗, Hm(0, 1) denotes the Sobolev space of order m:

• Hm(0, 1) = {u ∈ L2(0, 1) : u′ ∈ L2(0, 1), . . . , u(m) ∈ L2(0, 1)}.
• Hm

0 (0, 1) = {u ∈ H
m(0, 1) : u(0) = u(1) = 0, . . . , u(m−1)(0) = u(m−1)(1) = 0}.

• H s (0, 1) = {u ∈ Hm(0, 1) : m < s < m + 1 and
∫ 1
0

∫ 1
0
|u(m)(x)−u(m)(y)|2

|x−y |2(s−m)+1 dxdy < +∞}.
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where P1
j is biorthogonal projector onto V1

j and P0
j the biorthogonal projector onto

V0
j . A significant property of such a construction is that the spaces Ṽ0

j provide
a multiresolution analysis for H1

0 (0,1) (and not for L2(0,1)). However, the edge
wavelets of [22] do not satisfy a diagonal differentiation relation. A remedy to
this was proposed in [32, 33], where the commutation property of the multi-scale
projectors and the derivation operator is lost. Another construction proposed in [24]
consists in setting:

d
dx

Ṽ0
j = Ṽd

j , (4)

where Ṽd
j is the biorthogonal space of the space satisfying homogeneous Dirichlet

boundary conditions Vd
j = V1

j ∩ H1
0 (0,1), and Ṽd

j 1 H1
0 (0,1). This choice preserves

the commutation property and leads to a diagonal differentiation relation for the
wavelet bases even for edge wavelets.

The constructions of [20, 22] are based on multiresolution analyses of L2(0,1)
reproducing polynomials at boundaries [5, 28, 29]. Each space is spanned by a
scaling functions basis:

V1
j = span{ϕ1

j ,k ; 0 ≤ k ≤ Nj − 1} and Ṽ1
j = span{ϕ̃1

j ,k ; 0 ≤ k ≤ Nj − 1},

and

V0
j = span{ϕ0

j ,k ; 0 ≤ k ≤ Nj − 2} and Ṽ0
j = span{ϕ̃0

j ,k ; 0 ≤ k ≤ Nj − 2},

with dimension parameter Nj = 2j + c, for c ∈ Z. For ε = 0,1, the scaling functions
ϕε
j ,k

can be written as ϕε
j ,k
= 2j/2ϕε(2j x − k) inside the interval [0,1], where ϕε

is a compactly supported scaling function on R, but this is no more true near the
boundaries 0 and 1 (idem for ϕ̃ε

j ,k
). In practice, the scale index j must be greater

than some index jmin, to avoid boundary effects [29]. The biorthogonality between
bases writes:

〈ϕεj ,k, ϕ̃
ε
j ,k′〉 = δk ,k′ .

The advantage of using multiresolution analyses reproducing polynomials at
boundaries is that homogeneous boundary conditions can be easily incorporated.
It suffices to remove the scaling functions that do not satisfy the desired condition at
edges 0 and 1, prior to biorthogonalization [28, 29]. This writes:

Vd
j = V1

j ∩ H1
0 (0,1) = span{ϕ1

j ,k ; 1 ≤ k ≤ Nj − 2}, (5)

and
Vdd
j = V1

j ∩ H2
0 (0,1) = span{ϕ1

j ,k ; 2 ≤ k ≤ Nj − 3}. (6)

Again, for the construction of the biorthogonal spaces Ṽd
j and Ṽdd

j , we proceed
similarly by removing edge scaling functions, to ensure the equality of dimensions
and this leads to (Vd

j , Ṽ
d
j ) and (V

dd
j , Ṽdd

j ), biorthogonal multiresolution analyses of
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H1
0 (0,1) and H2

0 (0,1) respectively [28]. Notice that the spaces Ṽd
j and Ṽdd

j provide
multiresolution analyses of L2(0,1), see [24, 28].

Following the standard constructions [5, 18], the wavelets in the biorthogonal
multiresolution analysis (V1

j , Ṽ
1
j ) are defined as the bases of the biorthogonal spaces:

W1
j = V1

j+1 ∩ (Ṽ
1
j )
⊥ and W̃1

j = Ṽ1
j+1 ∩ (V

1
j )
⊥.

These spaces are finite dimensional [5]:

W1
j = span{ψ1

j ,k ; 0 ≤ k ≤ 2j − 1} and W̃1
j = span{ψ̃1

j ,k ; 0 ≤ k ≤ 2j − 1},

with:
〈ψ1

j ,k, ψ̃
1
j′,k′〉 = δj , j′δk ,k′ and 〈ψ1

j ,k, ϕ̃
1
j′,k′〉 = 0.

Then working in H1
0 (0,1), a first possibility is to construct the wavelet spaces as in

[28, 29]:
Wd

j = Vd
j+1 ∩ (Ṽ

d
j )
⊥ and W̃d

j = Ṽd
j+1 ∩ (V

d
j )
⊥.

This possibility was at the origin of the construction [22]. But unfortunately the
diagonal relation with the derivation is lost for edge wavelets. To overcome this
difficulty another approachwas proposed by [24] and consists in first using a standard
construction for the wavelet bases of W0

j = V0
j+1 ∩ (Ṽ

0
j )
⊥ and W̃0

j = Ṽ0
j+1 ∩ (V

0
j )
⊥[5,

18, 28, 29], denoted by {ψ0
j ,k
}j≥ jmin and {ψ̃0

j ,k
}j≥ jmin . In a second step, the wavelets

of Wd
j and W̃d

j are defined by:

ψd
j ,k = 2j

∫ x

0
ψ0
j ,k and 2−j(ψ̃0

j ,k)
′ = −ψ̃d

j ,k . (7)

As remarked before, this definition is different from this of [20, 22] where the
wavelets ψd

j ,k
and ψ̃d

j ,k
were defined first and second one set: ψ0

j ,k
= 2−j(ψd

j ,k
)′ and

ψ̃d
j ,k
= −2j

∫ x

0 ψ̃d
j ,k
.

Now, due to the vanishing moments of ψ0
j ,k
, it is easy to see that definition (7) implies

ψd
j ,k
∈ H1

0 (0,1) and for any j > jmin:

Vd
j = Vd

jmin
⊕Wd

jmin
⊕ · · · ⊕Wd

j−1. (8)

Decomposition (8) is stable in H1
0 (0,1), i.e. the system {ψd

j ,k
}j≥ jmin ∪ {ϕ

d
jmin ,k

} is
a Riesz basis for H1

0 (0,1), see [24].

For each basis, a fast wavelet transform algorithm exists with a linear complexity
and the approximation order of each multiresolution analysis space is linked to the
number of vanishing moments of its biorthogonal wavelets [5, 22, 28, 29]. Precisely,
if ϕ1 allows to reproduce polynomials up to degree r −1 inV1

j , thus the biorthogonal
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wavelet ψ̃1 has r vanishing moments :∫ +∞

−∞

x`ψ̃1(x)dx = 0 for 0 ≤ ` ≤ r − 1.

Then, due to the differentiation and integration relations (1) and (4), the wavelet ψ̃0

has (r − 1) vanishing moments and ψ0 has (r̃ + 1) vanishing moments.

2.2 Free-slip and no-slip divergence-free wavelet construction

In this section, we recall the construction of free-slip divergence-free wavelets on
the hypercube [0,1]3 as proposed in [21, 24]. Then we outline the construction of
no-slip divergence-free wavelets. Next section will sketch the general form of no-slip
divergence-free wavelets to higher space dimension d > 3.

The divergence-free function space with free-slip boundary conditions is:

Hdiv(Ω) = {u ∈ (L2(Ω))3 : ∇ · u = 0 and u · n |∂Ω = 0}, (9)

where Ω = [0,1]3 and n denotes the unit outward normal to boundary ∂Ω. Then,
following [21] there are three kind of divergence-free scaling functions in Hdiv(Ω)

defined by:

Φ
div,1
j ,k

:= curl


0
0

ϕd
j ,k1
⊗ ϕd

j ,k2
⊗ ϕ0

j ,k3

 =

ϕd
j ,k1
⊗ (ϕd

j ,k2
)′ ⊗ ϕ0

j ,k3

−(ϕd
j ,k1
)′ ⊗ ϕd

j ,k2
⊗ ϕ0

j ,k3
0

 , (10)

Φ
div,2
j ,k

:= curl

ϕ0
j ,k1
⊗ ϕd

j ,k2
⊗ ϕd

j ,k3
0
0

 =


0
ϕ0
j ,k1
⊗ ϕd

j ,k2
⊗ (ϕd

j ,k3
)′

−ϕ0
j ,k1
⊗ (ϕd

j ,k2
)′ ⊗ ϕd

j ,k3

 , (11)

Φ
div,3
j ,k

:= curl


0
ϕd
j ,k1
⊗ ϕ0

j ,k2
⊗ ϕd

j ,k3
0

 =

−ϕd

j ,k1
⊗ ϕ0

j ,k2
⊗ (ϕd

j ,k3
)′

0
(ϕd

j ,k1
)′ ⊗ ϕ0

j ,k2
⊗ ϕd

j ,k3

 . (12)

By construction these scaling functions are inHdiv(Ω) and the space Vdiv
j that they

spanned is included into the multiresolution analysis of (L2(Ω))3 given by:

Vdiv
j ⊂ Vd

j =
(
Vd
j ⊗ V0

j ⊗ V0
j

)
×

(
V0
j ⊗ Vd

j ⊗ V0
j

)
×

(
V0
j ⊗ V0

j ⊗ Vd
j

)
. (13)

Moreover, let Pj be the biorthogonal multiscale projector onto Vd
j :
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Pj =
(
Pd

j ⊗ P
0
j ⊗ P

0
j

)
×

(
P0

j ⊗ P
d
j ⊗ P

0
j

)
×

(
P0

j ⊗ P
0
j ⊗ P

d
j

)
,

and
P0
j = P

0
j ⊗ P

0
j ⊗ P

0
j ,

the biorthogonal multiscale projector onto V0
j = V0

j ⊗ V0
j ⊗ V0

j . Due to the commu-
tation property (3), we have:

∀ u ∈ Hdiv(Ω), ∇ · Pj(u) = P0
j (∇ · u) = 0

In terms of spaces this rewrites Pj(Hdiv(Ω)) = Vj ∩Hdiv(Ω). Therefore, the spaces
Vdiv

j = Vj ∩ Hdiv(Ω) provide a multiresolution analysis of Hdiv(Ω) and a basis of
Vdiv

j is generated by choosing two of the scaling function generators listed above
[24]. Beside, from each scaling function generator, one can construct 7 types of
anisotropic divergence-free wavelets [10, 24, 26]. We denote by {Ψdiv,1

j ,k
,Ψdiv,2

j ,k
} the

wavelets corresponding to {Φdiv,1
j ,k

,Φdiv,2
j ,k
} and Wdiv

j the space they span:

Wdiv

j = span
{
Ψ

div,1
j ,k

,Ψdiv,2
j ,k

}
jmin≤ | j | ≤ j−1

, (14)

where the index k = (k1, k2, k3) varies depending on the corresponding function: if
one coordinate of k corresponds to a wavelet ψd

j ,k
or ψ0

j ,k
, we take 1 ≤ k ≤ 2j ; if

it corresponds to a scaling function ϕd
j ,k
, we take 1 ≤ k ≤ Nj − 2; if it corresponds

to a scaling function ϕ0
j ,k
, we take 0 ≤ k ≤ Nj − 2. In the sequel, we will use this

convention for all the summation over the index k.

According to (14), the anisotropic multiscale decomposition of Vdiv
j corresponds

to:
Vdiv

j = Vdiv
jmin

⊕
jmin≤ | j | ≤ j−1

Wdiv

j , (15)

and since the spaces Vdiv
j provide a multiresolution analysis ofHdiv(Ω), decompo-

sition (15) is stable for this space. Specifically, we have the following proposition
[24]:

Proposition 1 For every function u ∈ Hdiv(Ω), there are coefficients cdiv,ε
k

and
ddiv,ε

j ,k
such that:

u =
2∑
ε=1

©«
∑
k

cdiv,ε
k
Φ

div,ε

jmin ,k
+

∑
| j | ≥ jmin

∑
k

ddiv,ε

j ,k
Ψ

div,ε

j ,k
ª®¬ , (16)

and for two positive constants C1 and C2 independent of u, we have:
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C1‖u‖L2 ≤
©«

2∑
ε=1

∑
k

|cdiv,ε
k
|2 +

2∑
ε=1

∑
| j | ≥ jmin

∑
k

|ddiv,ε

j ,k
|2
ª®¬

1/2

≤ C2‖u‖L2 . (17)

Proposition 1 is immediate using Lemma 2 borrowed from [20, 26] and reported in
the Appendix Section. Precisely, the constructed divergence-free wavelets and their
duals satisfy the hypothesis of this lemma, see [24].

The approximation error provided by the divergence-free wavelet basis is linked
to the approximation order of the spaces V1

j . If the spaces V1
j contain polynomials

up to degree r − 1, then V0
j contain polynomials up degree r − 2 and for all u ∈

(Hs(Ω))3∩Hdiv(Ω)with 0 ≤ s ≤ r−1, the following Jackson type estimation holds:

‖u − Pdivj (u)‖L2 ≤ C2−js ‖u‖H s , (18)

where Pdivj is the biorthogonal multiscale projector onto Vdiv
j :

Pdivj (u) =
2∑
ε=1

©«
∑
k

cdiv,ε
k
Φ

div,ε

jmin ,k
+

∑
jmin≤ | j | ≤ j−1

∑
k

ddiv,ε

j ,k
Ψ

div,ε

j ,k
ª®¬ . (19)

For homogeneous Dirichlet boundary conditions, the divergence-free function
space is slightly different, and will be denoted by:

Hdiv,0(Ω) =
{
u ∈ (H1

0 (Ω))
3 : ∇ · u = 0

}
= (H1

0 (Ω))
3 ∩Hdiv(Ω).

The space Hdiv,0(Ω) is a closed subspace of (H1
0 (Ω))

3, then we have the following
decomposition:

(H1
0 (Ω))

3 = Hdiv,0(Ω) ⊕ Hdiv,0(Ω)
⊥,

which is an orthogonal decomposition with respect to the inner product of (H1
0 (Ω))

3:
(u, v)(H1

0 (Ω))
2 = (∇u,∇v)(L2(Ω))3 , see [17] for details.

Since Hdiv,0(Ω) ⊂ Hdiv(Ω), a multiresolution analysis of Hdiv,0(Ω) is then
provided by the spaces:

Vdiv,0
j = Vdd

j ∩Hdiv,0(Ω),

where

Vdd
j =

(
Vdd
j ⊗ V00

j ⊗ V00
j

)
×

(
V00
j ⊗ Vdd

j ⊗ V00
j

)
×

(
V00
j ⊗ V00

j ⊗ Vdd
j

)
, (20)

and V00
j = V0

j ∩ H1
0 (0,1). A scaling function basis of Vdiv,0

j is then given by:
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Φ
div,0,1
j ,k

:= curl


0
0

ϕdd
j ,k1
⊗ ϕdd

j ,k2
⊗ ϕ00

j ,k3

 =

ϕdd
j ,k1
⊗ (ϕdd

j ,k2
)′ ⊗ ϕ00

j ,k3

−(ϕdd
j ,k1
)′ ⊗ ϕdd

j ,k2
⊗ ϕ00

j ,k3
0

 , (21)

Φ
div,0,2
j ,k

:= curl

ϕ00
j ,k1
⊗ ϕdd

j ,k2
⊗ ϕdd

j ,k3
0
0

 =


0
ϕ00
j ,k1
⊗ ϕdd

j ,k2
⊗ (ϕdd

j ,k3
)′

−ϕ00
j ,k1
⊗ (ϕdd

j ,k2
)′ ⊗ ϕdd

j ,k3

 , (22)

Φ
div,0,3
j ,k

:= curl


0
ϕdd
j ,k1
⊗ ϕ00

j ,k2
⊗ ϕdd

j ,k3
0

 =

−ϕdd

j ,k1
⊗ ϕ00

j ,k2
⊗ (ϕdd

j ,k3
)′

0
(ϕdd

j ,k1
)′ ⊗ ϕ00

j ,k2
⊗ ϕdd

j ,k3

 , (23)

where {ϕ00
j ,k
}1≤k≤N j−3 = {ϕ

0
j ,k
}1≤k≤N j−3 is the scaling function basis of V00

j [29].

Similarly, to construct no-slip divergence-free wavelets associated to Vdiv,0
j , it

suffices to replace the wavelets of Wd
j by those of Wdd

j = Vdd
j+1 ∩ (Ṽ

dd
j )
⊥ in the

formula which defines the functions {Ψdiv,ε

j ,k
}ε=1,2,3, see [22, 33]. Let now Pdiv,0j be

the L2-orthogonal projector from (H1
0 (Ω))

3 onto Vdiv,0
j . Again, for all u ∈ (Hs(Ω))3

with 1 ≤ s ≤ r − 1, the following Jackson type estimation holds, for some C > 0:

‖u − Pdiv,0j (u)‖H1
0
≤ C 2−j(s−1)‖u‖H s . (24)

2.3 Extension to higher dimension d > 3.

The divergence-free wavelet basis construction is not limited to dimension 3 only.
Several applications such as image warping [30], optimal transportation [19] or
magnetohydrodynamic turbulence [13], involve divergence-free vector fields living
in spaces of dimension d greater than 3. This divergence-free contraint for the
solution leads in general to solve a Poisson equation difficult to handle. Therefore it
would be of great interest to have at hand divergence-free bases that enable to encode
such solution.

The construction of previous section extends to larger dimensions d > 3 readily.
As in [8, 26] we obtain in this case (d−1) types of linear independent divergence-free
wavelet functions. For 1 ≤ i ≤ d − 1, the general formula of these wavelets is given
by:
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Ψ
div,i

j ,k
:=



0
...
0

2ji+1ψ0
j1 ,k1
⊗ · · · ⊗ ψ0

ji−1 ,ki−1
⊗ ψd

ji ,ki
⊗ ψ0

ji+1 ,ki+1
⊗ · · · ⊗ ψ0

jd ,kd

−2jiψ0
j1 ,k1
⊗ · · · ⊗ ψ0

ji ,ki
⊗ ψd

ji+1 ,ki+1
⊗ ψ0

ji+1 ,ki+2
⊗ · · · ⊗ ψ0

jd ,kd
0
...
0


, (25)

where only the row i and row i + 1 are not zeros.

Recalling that (ψd
ji ,ki
)′ = 2jiψ0

ji ,ki
, we easily verify that ∇ · Ψdiv,i

j ,k
= 0, and that

the Ψdiv,i

j ,k
satisfy the boundary condition Ψdiv,i

j ,k
· n = 0. The space Wdiv

j
spanned

by these wavelets is included into the following standard BMRA of (L2(Ω))d:

Vj = V1
j × · · · × Vd

j with Vi
j = Vδ1,i

j ⊗ · · · ⊗ Vδd ,i

j , 1 ≤ i ≤ d, (26)

where δi, j denotes the Kronecker symbol. To satisfy the free-slip boundary condition
wemust replaceV1

j byVd
j in (26).We also emphasized that, the corresponding spaces

Vdiv
j = Vj ∩Hdiv(Ω) = Pj(Hdiv(Ω)) provide a multiresolution analysis ofHdiv(Ω).

Following a similar approach as for d = 3, and taking (d − 1) scaling functions, we
obtain a divergence-free basis of Vdiv

j .

3 Divergence-free wavelet schemes for the Navier-Stokes
equations

The motions of incompressible homogeneous viscous flows, confined in an open
domainΩ ⊂ Rd with smooth boundary Γ = ∂Ω, are governed by the time-depending
Navier-Stokes equations:

∂t v − ν∆v + (v · ∇)v + ∇p = f ,

∇ · v = 0,
(27)

where v ∈ Rd denotes the velocity vector field, p ∈ R is the pressure, ν > 0 is
the kinematic viscosity and f the external force. Without loss of generality, we
will assume that f = 0. System (27) is supplemented by boundary conditions and
throughout this section, we will assume the no-slip boundary condition v = 0 on Γ.
Non-homogeneous Dirichlet boundary condition v = g on Γ will be handled in the
numerical experiments.
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The objective in this section is to study the numerical approximation of (27)
using divergence-freewavelet basedmethods. These schemes use the divergence-free
wavelet Leray projector to decouple the computation of the velocity and the pressure,
as in the case of the Fourier spectral method [9, 10, 23], thus they avoid the resolution
of a Stokes problem. In this section we propose to investigate the generalization of
the method of [23] to the three dimensional Navier-Stokes equations. We begin with
the description and the study of the temporal and spatial discretizations.

3.1 Temporal discretization

Let δt > 0 be a time step. For 0 ≤ n ≤ N , we set tn = nδt such that 0 = t0 < t1 <
· · · < tN = T is a uniform partition of the computational time interval. We denote by
vn and pn the approximations of v(tn, x) and p(tn, x), where (v, p) is a smooth solution
of (27). To compute (vn, pn), the approach of [23] consists in replacing the classical
correction step of the projection method [4, 34] by a divergence-free wavelet Leray-
Hodje projector. Specifically, since (H1

0 (Ω))
d = Hdiv,0(Ω)⊕Hdiv,0(Ω)

⊥, there exists
Φn+1, a scalar potential in L2(Ω) such that:

ṽn+1 = vn+1 + ∇Φn+1, with ṽn+1 ∈ (H1
0 (Ω))

d . (28)

Then, substituting this change of variable in the Navier-Stokes equations (27) and
using a projection method time step, with an implicit Euler scheme in time for the
diffusion term, we get:

• Prediction step: 
ṽn+1

−vn

δt + (vn · ∇)vn = ν∆ṽn+1,

ṽn+1 = 0, on ∂Ω.

(29)

• Correction step: 
vn+1 = Pdiv,0(ṽn+1),

pn+1 = 1
δtΦ

n+1 − ν∆Φn+1.

(30)

where the correction step of the standard projection method has been modified
by introducing Pdiv,0, the L2-orthogonal projector from (H1

0 (Ω))
2 onto Hdiv,0(Ω).

Remark that the Navier-Stokes formulation (29) and (30) is no more than a change
of variables, whereas the classical projection method is an operator splitting, which
implies a loss of precision in time.

The problem defined by (29)-(30) is well posed, in the sense that the numerical
solution ṽn+1 exists for given smooth initial data. Indeed, let us define the bilinear
form a(., .):



12 Souleymane Kadri Harouna and Valérie Perrier

a(u, v) =

∫
Ω

u · v + νδt
∫
Ω

∇u : ∇v, ∀ u, v ∈ H1
0 (Ω)

d, (31)

and the linear form L:

L(v) =
∫
Ω

vn · v − δt
∫
Ω

(vn · ∇)vn · v,∀ v ∈ H1
0 (Ω)

d . (32)

Formal computations lead to:

a(v, v) =

∫
Ω

v · v + νδt
∫
Ω

|∇v |2 ≥ min{1, νδt} ‖v‖2
H1, ∀v ∈ H1

0 (Ω)
d,

and

|L(v)| ≤ (‖vn‖H1 + δt ‖vn‖L∞ ‖vn‖H1 ) ‖v‖H1, ∀ v ∈ H1
0 (Ω)

d .

By the Lax-Milgram theorem [17, 35], there exists a unique ṽn+1 ∈ H1
0 (Ω)

d , solution
of (29) and vn+1 = Pdiv,0(ṽn+1). The spatial approximation of these solutions is
detailed in next subsection.

3.2 Spatial discretization

For simplicity, this part takes place in dimension d = 3, but can be generalized in
general dimension. At a fixed spatial resolution j ≥ jmin, the numerical solutions ṽn
and vn of (29-30) are searched as the following linear combination of wavelets:

ṽnj =
3∑
ε=1

©«
∑

jmin−1≤ | j |< j

∑
k

d̃n,ε

j ,k
Ψ
ε

j ,k
ª®¬ and vnj =

2∑
ε=1

©«
∑

jmin−1≤ | j |< j

∑
k

ddiv,n,ε

j ,k
Ψ

div,0,ε
j ,k

ª®¬ ,
where for ε = 1,2,3, Ψε

j ,k
denote the usual tensor-product wavelets of the space

Vdd
j introduced in (20), whose (vector) scaling functions Φε

j ,k
are recalled below:

Φ
1
j ,k
=


ϕd
j ,k1
⊗ ϕ00

j ,k2
⊗ ϕ00

j ,k3
0
0

 ,Φ2
j ,k
=


0

ϕ00
j ,k1
⊗ ϕd

j ,k2
⊗ ϕ00

j ,k3
0

 ,Φ3
j ,k
=


0
0

ϕ00
j ,k1
⊗ ϕ00

j ,k2
⊗ ϕd

j ,k3

 .
For the wavelet basis Ψε

j ,k
we adopted the convention that at index jmin − 1, the

wavelets have to be replaced by scaling functions:

Ψ
ε

jmin−1,k
= Φε

jmin ,k
and Ψ

div,0,ε
jmin−1,k

= Φ
div,0,ε
jmin ,k

.

We use a Galerkin method to compute the set of coefficients (d̃n+1,ε
j ,k
) and (ddiv,n+1,ε

j ,k
)

on these wavelet bases. The numerical resolution of (29-30) thus yields to the
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resolution of two linear systems:

Mj(d̃
n+1,ε
j ,k
) = Aj

(
(dn,ε

j ,k
) + δt(hn,ε

j ,k
)

)
, (33)

and
Mdiv

j (d
div,n+1,ε
j ,k

) =

(
(〈ṽn+1

j ,Ψdiv,0,ε
j ,k

〉)

)
, (34)

where dn,ε

j ,k
and hn,ε

j ,k
are respectively the coefficients of the projection of vn and

(vn · ∇)vn onto the basis {Ψε
j ,k
}. The nonlinear term (vn · ∇)vn is computed at grid

collocation points before its projection onto the wavelet space, where the gradient
operator ∇ is approximated using a finite difference method of the same order as
the scaling function ϕ1 polynomial approximation order [23]. Likewise, Aj andMj

correspond respectively to the matrices of the projection of the identity operator
and 1 − δt∆ onto this wavelet space, and Mdiv

j denotes the divergence-free wavelet
basis Gramian matrix. In practice, one can take advantage of the tensor product
construction of the above wavelet bases, thus to reduce the storage and the numer-
ical complexity of vector-matrix multiplication in (33) and (34). For the numerical
computation and properties of these matrices and projections, the reader is referred
to [1, 21, 23].

The numerical schemes (29 − 30) and (33 − 34) are stable and consistent with
the Navier-Stokes equations (27). This can be deduced from the numerical error
estimations.

3.3 Numerical error estimations

Let vnj be the numerical solution of (33) and (34). If the initial condition v0 is regular
enough, the following lemma is verified:

Lemma 1 For vnj an approximated solution of (30) given by (33) and (34), with an
appropriated time step δt, we have:

‖vnj ‖
2
L2 ≤ C(v0, ν) (35)

and

νδt
n∑

k=1
‖∇vkj ‖

2
L2 ≤ C(v0, ν), (36)

where C(v0, ν) is a positive constant depending only on the initial data.

Proof To prove the lemma, it suffices to show that:
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‖vnj ‖
2
L2 + νδtC

n∑
k=1
‖∇vkj ‖

2
L2 ≤ C(v0, ν), (37)

and this is done by induction with similar arguments as in the proof of Lemma 5.9
of [35]. Let us introduce a constant C(v0, ν) such that:

C(v0, ν) = ‖v0‖2
L2 + δt22jd ‖v0‖2

L2 ‖∇v
0‖2

L2 . (38)

Now, we assume that (37) holds for some n ≥ 0. Then, using (31) and (32), the
variational formulation for the solution ṽn+1

j reads:

a(ṽn+1
j , v) = L(v), ∀ v ∈ Vd

j , for j > jmin. (39)

Since ∇ · vn+1
j = 0, taking 2vn+1

j as a test function in (39) and replacing ṽn+1
j by its

ex (28) leads to:

‖vn+1
j ‖

2
L2−‖v

n
j ‖

2
L2+ ‖v

n+1
j −v

n
j ‖

2
L2+2νδt‖∇vn+1

j ‖
2
L2 = −2δt〈(vnj ·∇)v

n
j , v

n+1
j 〉 (40)

Otherwise, we have:

δt〈(vnj · ∇)v
n
j , v

n+1
j 〉 = δt〈(vnj · ∇)v

n
j , v

n+1
j − vnj 〉 ≤ δt‖vnj ‖L∞ ‖∇v

n
j ‖L2 ‖vn+1

j − vnj ‖L2

≤
δt2

2
‖vnj ‖

2
L∞ ‖∇v

n
j ‖

2
L2 +

1
2
‖vn+1

j − vnj ‖
2
L2

Thus, collecting these estimations together, we deduce that:

‖vn+1
j ‖

2
L2 − ‖v

n
j ‖

2
L2 + 2νδt‖∇vn+1

j ‖
2
L2 ≤ δt2‖vnj ‖

2
L∞ ‖∇v

n
j ‖

2
L2 . (41)

We recall that vnj ∈ Vd
j for j > jmin. As we are in finite space dimension, we have:

‖vnj ‖
2
L∞ ≤ 2jd ‖vnj ‖

2
L2, (42)

and Equation (41) becomes:

‖vn+1
j ‖

2
L2 − ‖v

n
j ‖

2
L2 + 2νδt‖∇vn+1

j ‖
2
L2 ≤ δt22jd ‖vnj ‖

2
L2 ‖∇v

n
j ‖

2
L2 . (43)

For n = 1, (41) reads:

‖v1
j ‖

2
L2 + 2νδt‖∇v1

j ‖
2
L2 ≤ ‖v

0
j ‖

2
L2 + δt22jd ‖v0

j ‖
2
L2 ‖∇v

0
j ‖

2
L2 . (44)

This is the statement of the lemma with:

C(v0, ν) ≥ ‖v0
j ‖

2
L2 + δt22jd ‖v0

j ‖
2
L2 ‖∇v

0
j ‖

2
L2 . (45)

Summation over n in (41) leads to:



Divergence-free wavelets for the simulation of incompressible viscous flows 15

‖vn+1
j ‖

2
L2 − ‖v

0
j ‖

2
L2 + 2νδt

n∑
k=0
‖∇vk+1

j ‖
2
L2 ≤ δt22jd

n∑
k=0
‖vkj ‖

2
L2 ‖∇v

k
j ‖

2
L2, (46)

and rewritten this, we get:

‖vn+1
j ‖2

L2 + 2νδt ‖∇vn+1
j ‖2

L2 + 2νδt
n∑

k=1
‖∇vkj ‖

2
L2 ≤ C(v0, ν) + δt22 j dC(v0, ν)

n∑
k=1
‖∇vkj ‖

2
L2 ,

which implies

‖vn+1
j ‖

2
L2 + 2νδt‖∇vn+1

j ‖
2
L2 + δt[2ν − δt2jdC(v0, ν)]

n∑
k=1
‖∇vkj ‖

2
L2 ≤ C(v0, ν) (47)

From (47), to end the proof of the lemma, we take δt small enough such that:

δt2jdC(v0, ν) < 2ν. (48)
�

Now we will analyze the behavior of the local error en = v(tn) − vn, where v is
a smooth solution of the exact Navier-Stokes equations (27) and vn the numerical
solution of (29) and (30). With the help of the Lemma 1, we get:
Proposition 2 Let v ∈ H2(0,T ; L2(Ω)d) ∩ C0(0,T ; W1,+∞(Ω)d ∩ H1

0 (Ω)
d) be a so-

lution of (27) and vn a solution of (29 − 30). Denoting by en = v(tn) − vn the local
error, we have:

max
n
‖en‖2

L2(Ω)d
−−−−→
δt→0

0. (49)

Proof According to (29) and (30), we see that:

v(tn+1) − v(tn) − δtν∆v(tn+1) + δt(v(tn) · ∇)v(tn) = δtεn+1 − δt∇p(tn), (50)

where εn denotes the consistency error. Since ∇ · en+1 = 0, taking 2en+1 as test
function in the variational formulations and using similar arguments as in the proof
of Lemma 1 allow to get:

‖en+1‖2
L2 − ‖e

n‖2
L2 + ‖e

n+1 − en‖2
L2 + 2δtν‖∇en+1‖2

L2

≤ 2δt‖vn‖L∞ ‖∇en‖L2 ‖en+1 − en‖L2 + 2δt‖en‖L2 ‖∇v(tn)‖L∞ ‖en+1‖L2

+ 2δt〈εn+1, en+1〉 (51)

Poincaré and Young’s inequalities lead to:

‖en+1‖2
L2 − ‖e

n‖2
L2 + δtν‖∇en+1‖2

L2 ≤ δt2‖vn‖2L∞ ‖∇e
n‖2

L2 (52)

+
C(Ω)2δt

ν
‖en‖2

L2 ‖∇v(tn)‖2L∞ + 2δt〈εn+1, en+1〉

Since ∇ · en = 0, using (50) we have:

δt〈εn+1, en+1〉 = 〈v(tn+1) − v(tn) − δtν∆v(tn+1) + δt(v(tn) · ∇)v(tn), en+1〉, (53)
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and replacing −∆v(tn+1) by

−ν∆v(tn+1) = −∂t v(tn+1) − (v(tn+1) · ∇)v(tn+1) − ∇p(tn+1), (54)

we obtain:

δt〈εn+1, en+1〉

= 〈v(tn+1) − v(tn) − δt∂t v(tn+1) + δt[(v(tn) · ∇)v(tn) − (v(tn+1) · ∇)v(tn+1)], e
n+1〉

= δt〈
1
δt

∫ tn+1

tn

(tn − t)∂tt v(t)dt −
∫ tn+1

tn

∂t [(v(t) · ∇)v(t)]dt, en+1〉

≤

(
δt3/2
√

3
‖∂tt v‖L2(tn ,tn+1;L2) + δt3/2‖∂t [(v · ∇)v]‖L2(tn ,tn+1;L2)

)
‖en+1‖L2 (55)

Again, using Young’s inequality we have:

2δt 〈εn+1, en+1 〉 ≤
4C(Ω)2δt2

3ν
‖∂t tv ‖

2
L2(tn ,tn+1;L2)

+
4C(Ω)2δt2

ν
‖∂t [(v · ∇)v] ‖

2
L2(tn ,tn+1;L2)

+
νδt

2
‖∇en+1 ‖2

L2 ,

and from the maximum principle and regularity of the solution of elliptic problem,
we infer that:

‖vn‖L∞ . ‖v
n
j ‖L∞ .

Thus, (52) becomes:

‖en+1 ‖2
L2 − ‖e

n ‖2
L2 +

δtν

2
‖∇en+1 ‖2

L2 ≤ δt
22 j d ‖vnj ‖

2
L2 ‖∇e

n ‖2
L2 +

C(Ω)2δt

ν
‖en ‖2

L2 ‖∇v(tn) ‖
2
L∞

+
4C(Ω)2δt2

3ν
‖∂t tv ‖

2
L2(tn ,tn+1;L2)

+
4C(Ω)2δt2

ν
‖∂t [(v · ∇)v] ‖

2
L2(tn ,tn+1;L2)

Summation over n in (52) shows that:

‖en+1‖2
L2 − ‖e

0‖2
L2 +

δtν
2

n+1∑
k=1
‖∇ek ‖2

L2 ≤ δt22jd
n∑

k=0
‖vkj ‖

2
L2 ‖∇e

k ‖2
L2

+C1δt
n∑

k=0
‖ek ‖2

L2 + C2δt2,

with

C1 =
C(Ω)2

ν
‖∇v ‖2L∞(0,T ,L∞),C2 =

4C(Ω)2

3ν
‖∂t tv ‖

2
L2(0,T ;L2)

+
4C(Ω)2

ν
‖∂t [(v · ∇)v] ‖

2
L2(0,T ;L2)

Since ‖vkj ‖
2
L2 ≤ C(v0, ν) according to Lemma 1, we have:
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‖en+1‖2
L2 +

δtν
2
‖∇en+1‖2

L2 + (
δtν
2
− δt22jdC(v0, ν))

n∑
k=1
‖∇ek ‖2

L2

≤ λ0 + C1δt
n∑

k=0
‖ek ‖2

L2 + C2δt2,

where:

λ0 = ‖e
0‖2

L2 + δt22jdC(v0, ν)‖∇e0‖2
L2 .

Then, choosing δt small enough such that:

ν

2
− δt2jdC(v0, ν) > 0, (56)

by the discrete Gronwall lemma, see [35, 38], we deduce that:

‖en‖2
L2 ≤

(
λ0 + C2δt2

)
exp(C1T) (57)

�

For the numerical error enj = v(tn) − vnj , we can write:

‖enj ‖
2
L2 ≤ 2

(
‖v(tn) − vn‖2

L2 + ‖v
n − vnj ‖

2
L2

)
,

and
‖vn − vnj ‖

2
L2 ≤ C‖vn − Pdiv,0j (vn)‖2

L2 .

Thus, due to the Jackson estimation (24) and Proposition 2, we obtain the following
convergence result:

‖enj ‖
2
L2(Ω)d

−−−−−−−−−−→
δt→0,δx→0

0. (58)

4 Numerical results

We present in this section numerical results on the simulation of the Navier-Stokes
equations, obtained using the time and spatial discretization (29− 30) and (33− 34).
These results will be compared to those of the literature for method validation.

4.1 Divergence free wavelet illustration

We start by presenting the wavelet bases generators introduced in Section 2.1, used
in all the numerical experiments that follow. We chose as scaling function generators
(ϕ1, ϕ̃1), the biorthogonal splines of order four: r = r̃ = 4. This corresponds to four
vanishing moments for each wavelet generator ψ1 and ψ̃1. We plot in Figure 1 the
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graph of ϕ1 and its derivative that satisfies (ϕ1(x))′ = ϕ0(x) − ϕ0(x − 1). Thus,
the scaling function ϕ0 can reproduce polynomials up to order 3 (or equivalently
of degree up to 2). Figure 2 shows the graph of the wavelet generators ψ1 and
(ψ1)′ = 4ψ0. The biorthogonal functions (ϕ̃1, ψ̃1) are plotted in Figure 3.
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(a) ϕ1
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(b) (ϕ1)′

Fig. 1 Primal biorthogonal spline scaling function generator ϕ1 (left) and its derivative (ϕ1(x))′ =
ϕ0(x) − ϕ0(x − 1) (right) with order parameters r = r̃ = 4.
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(a) ψ1

0 2 4 6 8 10

-6

-4

-2

0

2

4

6

(b) 4ψ0

Fig. 2 Primal biorthogonal spline wavelet generator ψ1 (left) and its derivative (ψ1(x))′ = 4ψ0(x)
(right) with order parameters r = r̃ = 4.

As mentioned in Section 2.2, the above scaling functions allow to construct, in
dimension 3, three divergence-free scaling function generators, defined by (10−12).
We plot in Figure 4 the isosurface of themagnitude of some internal scaling functions
Φ

div,1
j ,k

,Φdiv,2
j ,k

andΦdiv,3
j ,k

, where for a vector function v = (v1, v2, v3), the magnitude



Divergence-free wavelets for the simulation of incompressible viscous flows 19

0 2 4 6 8 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) ϕ̃1
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(b) ψ̃1

Fig. 3 Dual biorthogonal spline scaling function generator ϕ̃1 (left) and the dual wavelet generator
ψ̃1 (right) with order parameters r = r̃ = 4.

is defined as: |v | =
√
v2

1 + v
2
2 + v

2
3 . Likewise, the corresponding divergence-free

wavelet generators magnitude isosurfaces are shown in Figure 4.

(a) |Φdiv ,1
j ,k

| = 0.2 (b) |Φdiv ,2
j ,k

| = 0.2 (c) |Φdiv ,3
j ,k

| = 0.2

Fig. 4 Divergence-free scaling functions magnitude isosurface for biorthogonal spline generators
(ϕ1, ϕ̃1) of order 4
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(a) |Ψdiv ,1
j ,k

| = 0.4 (b) |Ψdiv ,2
j ,k

| = 0.4 (c) |Ψdiv ,3
j ,k

| = 0.4

Fig. 5 Divergence-free wavelets magnitude isosurfacef or biorthogonal spline generators (ϕ1, ϕ̃1)
of order 4.

4.2 Analyses of time and space convergence rates

In this part we study the time and space convergence rates provided by the divergence-
free wavelet based projection method (29 − 30)-(33 − 34) introduced in Section 3.
We present below two experiments on analytical solutions.

The spatial discretization of the divergence-free wavelet based projection method
uses the scaling function and wavelet generators of Section 4.1. In practice, one time
iteration step (33 − 34) split into the following steps:

Step 0: Start with an initial velocity v0(x) = v(x,0) defined on dyadic grid points
at space resolution j > jjmin.
- Compute its wavelet coefficients [d0,ε

j ,k
].

- Compute the nonlinear term (v0 · ∇)v0 using a fourth order finite difference
scheme, and its wavelet coefficients [h0,ε

j ,k
] in Vd

j .
For 1 ≤ n ≤ N , repeat:

Step 1: Find [d̃n+1,ε
j ,k
] solution of (33).

Step 2: Find [ddiv,n+1,ε
j ,k

] solution of (34).

Step 3: Compute [dn+1,ε
j ,k
] from [ddiv,n+1,ε

j ,k
] using a change of basis [22] and

extrapolate vn+1
j at grid points to compute the nonlinear term, and update.

Remark 1 An explicite optimal preconditioner is known for the matrices Mj and
Mdiv

j , see [6, 22] and references therein. Therefore we use a preconditioned conjugate
gradient method to solve systems (33) and (34). Moreover, due to the tensor product
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construction ofwavelet bases, thematrix-vector product in (33) and (34) only requires
the use of one-dimensional basis stiffness matrices [21, 23]. Therefore, the numerical
complexity to solve (33) and (34) is about O(N4

j ), with Nj the dimension of the one-
dimensional space V1

j .

The time discretization convergence rate of the proposed divergence-free wavelet
based projection method is studied on a designed solution (v, p) defined by:

v1(x, y, z, t) = 2e−t (x4 + x2 − 2x3)(2y + 4y3 − 6y2)(2z + 4z3 − 6z2),
v2(x, y, z, t) = −e−t (2x + 4x3 − 6x2)(y4 + y2 − 2y3)(2z + 4z3 − 6z2),
v3(x, y, z, t) = −e−t (2x + 4x3 − 6x2)(2y + 4y3 − 6y2)(z4 + z2 − 2z3),
p(x, y, t) = cos(t)[(x2 − x)(y2 − y)(z2 − z)]2.

(59)

This solution satisfies Dirichlet homogeneous boundary conditions v |∂Ω = 0, where
Ω = [0,1]3 and appropriate forcing terms f are added to ensure that (59) is an exact
solution of (27). Since the quadrature formula for the projection onto Vd

j is exact
up to order 3, which is the polynomial reproduction order of the scaling function
ϕ0, the spatial discretization error for the solution (59) is negligible compared to
the time discretization error for δt < 0.1. Tab. 1 shows different errors between
the exact solution projected onto Vd

j (with a space resolution fixed at j = 7 and
viscosity ν = 2−j), and the numerical solution of (29 − 30)-(33 − 34), in terms of
the discretization time step δt. For each norm considered, the expected first order
convergence rate is obtained.

Going further, we also analyzed the convergence rate of a second order numerical
scheme: Crank-Nicholson for the diffusion part and Adams-Bashforth for the non-
linear term [23]. The results of this experiment are given in Tab. 2, where again the
expected order is achieved.

Backward-Euler
δt 0.05 0.025 0.0166 Order
L∞-error 7.2549E−5 3.6427E−5 2.4318E−5 0.99159
L2-error 2.9129E−5 1.4626E−5 9.7643E−6 0.99157
H1-error 2.9031E−4 1.4576E−4 9.7312E−5 0.99159

Table 1 Time discretization relative errors according to the time step δt, for the solution (59) at
final time T = 1, j = 7 and ν = 2− j .

Similarly, we investigate the spatial projection error convergence rate of the pro-
posed divergence-free wavelet based projection, using the following exact solution:

v1(x, y, z, t) = 2e−t sin2(2πx) sin(4πy) sin(4πz),
v2(x, y, z, t) = −e−t sin(4πx) sin2(2πy) sin(4πz),
v3(x, y, z, t) = −e−t sin(4πx) sin(4πy) sin2(2πz),
p(x, y, t) = cos(t)[(x2 − x)(y2 − y)(z2 − z)]2.

(60)



22 Souleymane Kadri Harouna and Valérie Perrier

Crank-Nicholson
δt 0.05 0.025 0.0166 Order
L∞-error 6.1014E−7 1.5292E−7 6.8247E−8 1.98770
L2-error 2.4478E−7 6.1226E−7 2.7271E−8 1.99124
H1-error 2.4476E−6 6.3177E−6 3.1354E−7 1.87311

Table 2 Time discretization relative errors according to the time step δt, for the solution (59) at
final time T = 1, j = 7 and ν = 2− j .

The simulation time step is δt = 0.0001, which is very small compared to the
maximal spatial resolution j = 7 (δx = 2−7 = 0.0078125) and the used kinematic
viscosity ν = 2−3j . Tab. 3 shows the spatial error for the final time T = 1, using
the first-order-accurate Backward-Euler time-scheme: as the solution is C∞, the

Backward-Euler
j 5 6 7 Order
L2-error 1.40145E−3 6.2469E−5 3.2643E−6 4.3729
L∞-error 5.4952E−3 2.7106E−4 1.42890E−5 4.2935
H1-error 9.2027E−2 7.7476E−3 6.5306E−4 3.5693

Table 3 Spatial discretization errors according to the resolution j, for final time T = 1.

convergence rate given by Tab. 3 saturates due to the number of vanishing moments
of our wavelet family (equal to 3 in our spline approximation), and we lose one order
for the H1-error. Remark that the use of divergence-free wavelet basis induces no
divergence error on the solution vnj in Vd

j .

4.3 Simulation of 3D lid-driven flows

In addition to these preliminary studies, the present method was tested on the numer-
ical simulation of 3D lid-driven flows in a cubic cavity Ω = [0,1]3, with Reynolds
numbers Re = 100 and Re = 1000. These flows have been extensively studied in the
literature and there are a lot of reference results and solutions, mainly for the two
dimensional flows, see [11]. The simulations used a Matlab code and the discretiza-
tion parameters are δt = 0.005 and δx = 2−j , where j = 6 or j = 7 is the considered
spatial resolution.

The validation is done by analyzing the flow’s steady state. Specifically, we
compare our simulation horizontal velocity vx and vertical velocity vz profiles in
the middle of the cavity to the results of [11]. For j = 6, Figure 6 and Figure 7
show the plot of these profiles, respectively for the Reynolds numbers Re = 100 and
Re = 1000. As observed, despite of some small discrepancies for z ∈ [0,0.2] in the
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velocity component vz , our results are in agreement with those of [11]. Moreover, as
illustration we plot in Figure 8 the velocity magnitude for the simulations performed
at resolution j = 7. As expected, this highlights the presence of a cavity central
vortex.

We also analyze the divergence-free wavelet representation of the solution. For a
3D array A = [Ai jk] of scalars, we define its magnitude as |A| = [|Ai jk |], the array
of coefficients modulus |Ai jk |. Figure 9 and Figure 10 show the map of divergence-
free wavelet coefficient magnitude of the solutions, respectively for the Reynolds
number Re = 100 and Re = 1000. Clearly, these figures emphasize the quality
and the sparsity of such a solution approximation. This suggests the development of
adaptive methods with these wavelet bases to improve the numerical complexity. As
mentioned before, the actual theoretical complexity of one iteration in the method
is about O(N4

j ).
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Fig. 6 Steady state velocity profile in the middle of the cavity: vx (0.5, 0.5, z) (left) and
vz (x, 0.5, 0.5) (right). Solid line (present work) and circle (reference [11]) for the Reynolds number
Re = 100 and the spatial resolution j = 6.

Conclusion

We presented a construction of wavelets linked by differentiation and integration
that allows to construct free-slip and no-slip divergence-free wavelets on the hy-
percube. These divergence-free wavelets are used to provide an Helmholtz-Hodge
decomposition and a change of variables in a first-order-accurate time integration for
the resolution of Navier-Stokes, similar to the Gauge method. This scheme avoids
the use of the projection method Poisson solver that imposes non physical boundary
conditions on the pressure. Our method was tested and validated on the simulation
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Fig. 7 Steady state velocity profile in the middle of the cavity: vx (0.5, 0.5, z) (left) and
vz (x, 0.5, 0.5) (right). Solid line (present work) and circle (reference [11]) for the Reynolds number
Re = 1000 and the spatial resolution j = 6.
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Fig. 8 Isosurface of the steady state velocity magnitude |v | for the Reynolds number Re = 100
(left) and Re = 1000 (right), at the spatial resolution j = 7.

of the well known 3D lid-driven cavity flow for the moderate Reynolds numbers
Re = 100 and Re = 1000. From the simplicity and precision of this method, we
claim that adaptive algorithms can be developed within this approach: mainly for the
simulation of turbulent flows at high Reynolds number, including sub-grid models
near walls.
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Fig. 9 Isosurface of the steady state velocity divergence-free wavelets coefficients magnitude
|ddiv ,1
j ,k

| (left) and |ddiv ,2
j ,k

| (right), for the Reynolds numberRe = 100 and 4 = jmin ≤ j1, j2, j3 ≤

j = 7.

Fig. 10 Isosurface of the steady state velocity divergence-free wavelets coefficients magnitude
|ddiv ,1
j ,k

| (left) and |ddiv ,2
j ,k

| (right), for the Reynolds number Re = 1000 and 4 = jmin ≤

j1, j2, j3 ≤ j = 7.

Appendix

Lemma 2 [20, 26] Let θ ∈ L2(R) be a compactly supported function, Cα-
differentiable, α > 0, and with at least one vanishing moment

∫
R
θ = 0. Then,

there is a positive constant C(θ) such that:
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∀ (λj ,k) ∈ `
2(Z2), ‖

∑
j ,k∈Z

λj ,kθ j ,k ‖L2(R) ≤ C(θ) ©«
∑
j ,k∈Z

|λj ,k |
2ª®¬

1/2

, (61)

with θ j ,k = 2j/2θ(2j . − k).

Proof The Cα assumption on θ leads to |〈θ j ,k, θ j′,k′〉| ≤ C2−| j−j′ |(1/2+α). As θ is
compactly supported, for fixed index j, k and j ′, we have 〈θ j ,k, θ j′,k′〉 = 0 except
for some k ′: k ′ ≤ M if j ′ ≤ j and k ′ ≤ M2(j′−j) if j ′ ≥ j, where M is a positive
constant independent of j, j ′ and k. Then

sup
j ,k

∑
j′,k′

|〈θ j ,k, θ j′,k′〉|2(j−j
′)/2 < +∞

and since

‖
∑
j ,k∈Z

λj ,kθ j ,k ‖
2
L2(R)

≤
©«
∑
j′,k′

∑
j ,k∈Z

|λj ,k |
2 |〈θ j ,k, θ j′,k′〉|2(j−j

′)/2ª®¬
1/2

·
©«
∑
j′,k′

∑
j ,k∈Z

|λj ,′k′ |
2 |〈θ j ,k, θ j′,k′〉|2(j

′−j)/2ª®¬
1/2

, �

the lemma is proved.
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