
HAL Id: hal-02555887
https://hal.science/hal-02555887

Submitted on 27 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Displacement uncertainties with multiview correlation
schemes

François Hild, Stéphane Roux

To cite this version:
François Hild, Stéphane Roux. Displacement uncertainties with multiview correlation schemes. Jour-
nal of Strain Analysis for Engineering Design, 2020, 55 (7-8), pp.199-211. �10.1177/0309324720927102�.
�hal-02555887�

https://hal.science/hal-02555887
https://hal.archives-ouvertes.fr


Displacement uncertainties with

multiview correlation schemes

François Hild1 and Stéphane Roux1

Abstract

Multiview correlation is based on the use of explicitly parameterizing surfaces whose

deformation is to be measured. In the present analyses, the surfaces are modeled as

triangular facets (for local approaches), and with �nite element meshes (for global

approaches) using a linear interpolation between nodal displacements. Displacement

uncertainty due to the presence of noise in the images is considered. The noise �oor

levels of the latter are compared for both local and global cases with two di�erent

sets of pictures. A priori estimates based upon the Hessian of the registration

procedure are derived analytically, and a simpli�ed expression is provided that

is shown to be in very good agreement with their a posteriori evaluations. The

uncertainty di�erence between local and global approaches is interpreted from their

di�erent spatial resolutions.
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Introduction

StereoDIC (also known as 3D-DIC or stereocorrelation) is a well-established

measurement technique [1, 2]. As a result, commercial systems are currently

available (e.g., [3, 4, 5, 6, 7, 8]). The standard way of addressing shape and

deformation measurements was to extend matching concepts (i.e., based upon

local registrations) originally developed for 2D-DIC to the analysis of the

deformation of 3D surfaces [9, 10, 11, 12, 13]. As a result, the output of

virtually all analyses are clouds of 3D points. Consequently, the comparison

of measurements with the theoretical surface de�nitions (e.g., CAD or FE

parameterizations) requires post-processing steps. The most common methods

rely on Iterative Closest Point (ICP) algorithms [14, 15] and may induce

additional errors or uncertainties in the determination of deviations between

theoretical and actual surfaces [16].

To overcome some of the previous issues, global approaches have been

introduced, in which the prior knowledge of the surface of interest is explicitly

accounted for [17, 5]. The calibration step enables the camera frame to be

repositioned within that of the numerical (i.e., virtual) calibration target or

the surface of interest if self-calibration is performed [18]. Up to now, two

di�erent discretizations of the reference object have been considered, namely,

non-uniform rational B-splines (or NURBS) [18, 19, 20] and �nite-element based

descriptions using triangular [21, 22] or quadrangular [23] meshes.

Any vision-based technique requires uncertainty quanti�cations to be

performed so that they be utilized as measurement tools. First, uncertainties

were evaluated by propagating acquisition noise for the determination of
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calibration parameters and 3D positions. Such derivations correspond to the so-

called Rao and Cramér lower bounds [24, 25]. The theoretical derivations were

validated against simulations [26] and actual experimental con�gurations [27].

Synthetic analyses were subsequently performed via Monte-Carlo simulations

to assess the sensitivities to various calibration parameters [28, 29]. Lighting

variations were added as a source of error, and arti�cial deformations were

studied as well [30]. Such frameworks enable simulators to fully characterize the

uncertainties and propose guidelines for good practices [31]. This bibliographic

review shows that displacement uncertainties received less attention than the

other studied quantities (including systematic errors). The present study will

speci�cally deal with displacements, and it will be assumed that the only source

of deviation between measured and actual displacements is due to the matching

algorithm and its sensitivity to acquisition noise.

The paper is organized as follows. First, the framework of multiview

correlation (which is a generalization of stereo-correlation to an arbitrary

number of cameras) will be recalled when applied to displacement �eld

measurements. It will enable for the derivation of the covariance matrix of

the complete set of measured degrees of freedom. Analyses of two arti�cial

cases are then performed to compare local and global stereocorrelation based on

triangular tessellations. In particular, the a priori uncertainty estimates based on

the global Hessian will be compared to a posteriori evaluations. Last, a compact

expression is proposed to estimate a priori the uncertainty due to noise, which

accounts for the e�ect of the di�erent parameters of image acquisitions.

Local / global multiview correlation

In the following, the general framework of multiview correlation procedures [20]

is followed in order to measure displacement �elds and assess their uncertainties

due to image noise (i.e., so-called noise �oor levels [32]).
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Generally, there are three steps in the use of stereovision systems for shape and

deformation measurements, namely, i) calibration of the stereo-setup, ii) shape

and iii) subsequent displacement �eld measurements [1]. Multiview procedures

follow the same steps [20]. In the sequel, only the third step (i.e., displacement

�eld measurements) will be analyzed in details, although the �rst two steps can

be studied in the same way.

The starting point is the mathematical model of the surface of interest and

its deformation [17], which is not taken into account in standard stereoDIC

procedures [1]. The parameterization of the sought displacement �eld U is

written as

U(X) =

np∑
i=1

3∑
j=1

UijNi(X)ej (1)

with respect to the initial shape of the surface of interest, where X denotes the

vector de�ning the position of any point on the 3D surface, Ui =
∑3
j=1 Uijej

the displacement of the i-th (out of np) remarkable point (e.g., control point of

NURBS-based descriptions, mesh node for �nite element formulations), Ni(X)

the corresponding (scalar) interpolation function (e.g., blending function in

NURBS-based descriptions, �nite element shape functions), and ej the unit

vectors (i.e., j = 1, 2, 3) of the reference frame.

Images as captured by di�erent cameras are corrupted by random noise. The

latter can only be characterized statistically. It is assumed in the present study

that this noise is Gaussian, white (i.e., with no spatial correlation from pixel to

pixel) and uniform (i.e., noise variance is considered constant for each camera).

Because of this noise, the measured kinematic degrees of freedom Uk (where

the index k corresponds to the vectorization of Uij with respect to the indices i

and j) are corrupted by a noise η, which will lead to displacement �uctuations

δUk whose statistical properties quantify the displacement uncertainties. In

particular, because image noise is assumed to be small in amplitude, the
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model relating images to kinematic parameters can be linearized about the

converged solution [33, 34, 24, 25], and hence displacement uncertainties will

inherit from image noise a Gaussian distribution (because of the stability of

Gaussian random variables under linear transforms). For the same reasons, the

expected value of displacement �uctuation 〈δUk〉 = 0 is null, and hence the

kinematic measurements are unbiased. The entire displacement noise statistics

is fully determined by its covariance matrix [35], Covkm = 〈δUkδUm〉η (where

〈·〉η denotes the expected value over noise), which is the aim of the present

study.

Let us consider a set of nc ≥ 2 cameras. Each of them is de�ned by its

projection matrix [Mc] that allows the homogeneous coordinates of 3D points

{X} to be related to those of the pixel positions {xc} in camera c plane by

sc{xc} = [Mc]{X} (2)

where sc is the local scale factor.

It is convenient to decompose the surface of interest S into ns di�erent sub-

surfaces, Sj , and to introduce a weight ωcj equal to 1 when the surface is visible,

and 0 when it is hidden, for camera c = 1, ..., nc. Measuring displacements of the

considered surface of interest S consists in minimizing the following weighted

functional φ2

φ2 =

nc∑
c=1

ns∑
j=1

∑
X∈Sj

ωcj
(Ict (xc + uc({U}))− Ic0(xc))2

2(σc)2
(3)

with respect to the unknown degrees of freedom {U}, a column vector

that gathers the set of elementary degrees of freedom Uk, for the series of

images in the deformed con�guration Ict with respect to those in the reference

con�guration Ic0 . In the present setting, the apparent pixel displacement uc

depends on {U}. Let us stress that this formalism allows an arbitrary number
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of cameras (i.e., nc ≥ 2) to be considered, in a similar fashion as standard

stereocorrelation (i.e., nc = 2).

The weighting introduced in Equation (3) is associated with the standard

deviation σc of acquisition noise, which in the present case is assumed to be

white and Gaussian. It is worth noting that this type of formulation allows for

di�erent camera de�nitions in addition to di�erent modalities to be accounted

for in a unique formulation [36, 37].

Let us consider a perturbation of the 3D displacement �eld

δU(X) =

np∑
i=1

3∑
j=1

δUijNi(X)ej (4)

For camera c, this displacement is projected to

δuc(xc) = [ΠΠΠc]δU(X) (5)

where [ΠΠΠc] = ∂xc/∂X. The latter de�nes the �kinematic sensitivity� �eld (no

summation over k)

ϕϕϕck(xc) = δuc(xc)/δUk = [ΠΠΠc]ekNk(X) (6)

associated with the degree of freedom Uk along direction ek. In turn, this

perturbed motion induces a change in the perceived intensity at pixel position

xc

δIc(xc) = ∇Ic0(xc) · δuc(xc) (7)

that can be rephrased with the �gray level sensitivity� de�ned as

ψck(xc) = δIc(xc)/δUk = ∇Ic0(xc) ·ϕϕϕci (xc) (8)

Equation (8) relates the 3D motion to its expression in the raw measurement,

i.e., the pictures themselves.

This sensitivity analysis allows the inverse problem to be considered, namely,

the violation of the conservation of gray levels due to noise, ηc(xc), will be



Displacement uncertainties with multiview correlation 7

interpreted as much as possible, in the multiview correlation framework, as due

to motion deviation δU with respect to ground truth. This is the origin of

displacement uncertainties due to noise. Thus, the presence of noise, ηc(xc), for

all camera pixels and all cameras, will lead to the evaluation of a displacement

�uctuation {δU} given by the minimization of the cost function φ2, or

[H] {δU} =

nc∑
c=1

{δhc} (9)

where [H] =
∑nc
c=1[Hc] denotes the global Hessian, and [Hc] the Hessian

associated with each camera c

Hc
ij =

ns∑
k=1

∑
X∈Sk

ωck
ψciψ

c
j

2(σc)2

=

ns∑
k=1

∑
X∈Sk

ωck
(∇Ic0 ·ϕϕϕci )(∇Ic0 ·ϕϕϕcj)

2(σc)2
(10)

where the dependence on xc in the summands has been omitted for the sake of

simplicity. The RHS member {δhc} reads

δhcj =

ns∑
k=1

∑
X∈Sk

ωck
ηcψcj

2(σc)2
(11)

Because the mean gray level of Gaussian noise is equal to zero, then the mean

displacement �uctuations solely induced by noise vanish, or, in other words, the

displacement estimates are unbiased. The covariance matrix of the measured

degrees of freedom [Covu] = 〈{δU}{δU}>〉η becomes

[Covu] = [H]−1 (12)

When (iterative) Gauss-Newton schemes are considered to perform the

minimization of Equation (3), the global Hessian [H] is computed [38, 1, 39].

Consequently, the covariance matrix [Covu] is directly known since it simply is

the inverse of [H] in the present setting.

Equation (12), which is the main result of the present paper, corresponds

to the generalization of results derived for Q4-DIC [40], T4-DVC [41] and C8-

DVC [42] to multiview correlation. If local approaches are to be considered, then
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S corresponds, for instance, to a single surface facet. Conversely, the union of

many such facets forming a continuous mesh will lead to global approaches.

Last, a mean-�eld approximation of the previous result is derived. Long range

and short range �uctuations are separated in the expression of the Hessians

[Hc], namely, ∇Ic0 is rapidly varying in comparison to ϕϕϕci and is replaced by

its expected value. Therefore, the integral of the tensor ∇Ic0 ⊗∇Ic0 is equal

to Sck/2〈‖∇Ic0‖22〉I, where Sck is the area of the projected support surface of

the interpolation function Nk. Conversely, [ΠΠΠ]ek is very slowly varying for

smooth surfaces and can be considered constant over Sck for planar surfaces or

surfaces with high curvature radii (and its norm equal to Πc
k). Consequently, the

square of the interpolation functions are to be integrated to obtain a standard

displacement uncertainty for the considered degree of freedom Uk

σ̃2
k ∝

1

N2
e

nc∑
c=1

4(σc)2

(Πc
k)2〈‖∇Ic0‖22〉

(13)

where the coe�cient of proportionality will depend on the type of interpolation

function.

Analysis of arti�cial cases

The aim of this section is to analyze the change of standard displacement

uncertainties as functions of mesh sizes, number of evaluation points, surface

pattern characteristics, and type of registration analysis. For each analysis, series

of 100 pictures are obtained by adding white Gaussian noise to the considered

reference picture. Then 100 stereocorrelation analyses are run. From these data,

the full covariance matrix can be determined. What is reported in the sequel is

only one global quantity per direction. The standard deviation of each kinematic

degree of freedom is computed for its 100 evaluations, and its mean level per

direction is reported and referred to as standard displacement uncertainty σu.
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Test cases

The following test cases are based upon the NURBS shape that was studied to

validate the implementation of a CAD-based stereocorrelation procedure [18,

19]. Two di�erent patterns are considered herein:

- The �rst one corresponds to sprayed paint on a cross-shaped sample made of

a vinylester matrix reinforced by E-glass �bers and tested in a biaxial testing

machine [43].

- The second one is a classical color painting, converted to gray scale (with a

binning of 2 procedure), that underlines the e�ect of spatial correlations that

di�er much from a speckle that has been designed speci�cally for DIC purposes.

These patterns are then expressed in the parametric space of the NURBS

patch de�ning the surface of interest. From this information, they are �drawn�

on the 3D surface (Figure 1(a)) thanks to the blending functions of NURBS [44].

With the projection matrices (determined in the �rst step of the calibration

procedure [18]), they are expressed in the camera planes. They �nally need to

be interpolated at pixel locations. In the present case, a bilinear interpolation

scheme was selected. With this procedure, pictures of the reference con�guration

are created for each considered camera and pattern.

(a) (b)

Figure 1. (a) Random pattern on 3D shape. (b) Gray level histogram of added noise.
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A synthetic Gaussian noise is added to these images before registering them

with the previous ones. In order to be representative of the actual experiment,

the added noise corresponds to the gray level residuals of the registration

between the picture in the reference con�guration and that of the �rst loading

step, for which the registration errors can be assumed to be very small.

Figure 1(b) shows the histogram of these gray level residuals. As expected from

random noise, its mean is close to 0. Its standard deviation is equal to 2.9 gray

levels.

With the selected camera con�guration described by the projection matrices,

it is possible to get some early indication on the relative displacement

uncertainties to be expected due to noise from the sensitivities [ΠΠΠc]ek. Figure 2

shows the norm of the sensitivity �elds for both cameras taken independently,

and then combined (i.e., the square root of their squared norms assuming that

the noise variance is the same for both cameras) for all three ek directions. These

�elds are useful for having a �rst order estimate of measurement uncertainties

(see Equation (13)) when it is assumed that contrasts are uniform in the region

of interest and have �uctuations with signi�cantly higher frequencies than those

of the sensitivity �elds. From this result, it is concluded that a centi-pixel

sensitivity is obtained for micrometer displacements in the X and Y directions.

Conversely, the Z direction is observed to be about 3.4 times less sensitive.

It is expected that the displacement uncertainties in the X and Y directions

will be 3.4 times lower than that in the Z direction. Micrometer uncertainties

can be expected for X and Y displacements, but the Z direction will be more

challenging.
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(a) left camera

(b) right camera

(c) global

Figure 2. Norm of sensitivity �elds (expressed in mpx / µm) with respect to a motion in

X (left), Y (middle), and Z (right) directions. Three cases are shown, namely, the �elds

for the left (a), right (b) cameras, and their combined e�ect (c)

In the following, so-called T3-stereocorrelation will be used [21]. It consists in

discretizing the surface of interest with a continuous meshes made of 3-noded

triangles. In the present case, it is obtained by cutting quadrilaterals in two

(Figure 3(a)). The displacements of those vertices (or nodal displacements) are

the degrees of freedom to be considered in the correlation procedure. With such

a discretization, the measured displacement �eld is continuous and fully dense
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(i.e., the shape functions of the T3 elements provide the interpolation to be

performed at any location of the region of interest).

(a) (b)

Figure 3. (a) Example of T3 mesh used in the reported analyses. (b) Depiction of the

evaluation points in the parametric space of T3 elements.

In the sequel, meshes consisting of 5× 5 nodes (i.e., 75 degrees of freedom),

10× 10 nodes (i.e., 300 degrees of freedom), 15× 15 nodes (i.e., 675 degrees of

freedom, see Figure 3), and 20× 20 nodes (i.e., 1,200 degrees of freedom) will

be considered.

With the present setting, there is no master camera and hence pixels are not

the key local discretization level. Rather, the 3D surface (or equivalently its

parametric space representation) is the master, and all cameras are slaved to

it. Conversely, evaluation points are to be de�ned in the parametric space of

each �nite element [21], see Figure 3(b). They play the same role as pixels in

standard stereocorrelation procedures [1], and as Gauss points in regular �nite

element analyses [45]. The evaluation points are de�ned with their barycentric

coordinates, (i/(N + 1), j/(N + 1), (N + 1− i− j)/(N + 1)), where i and j are

integers such that 1 ≤ i, 1 ≤ j and (i+ j) ≤ (N + 1). With this setting, N

parameterizes the density of evaluation points, and N(N + 1)/2 the total

number of points in any triangle. It is chosen to de�ne the �equivalent number
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of evaluation points� Ne as

Ne =

√
N(N + 1)

2
(14)

where Ne would correspond to the equivalent length of the side of a square

having the same number of evaluation points as the triangle. It is worth noting

that when the minimum distance between two neighboring evaluation points is

less than the pixel scale (in each considered camera [20]) it brings no additional

information. Changing the number of evaluation points is equivalent to selecting

di�erent scales for the analyses. Such scale changes have to be adjusted in

comparison with the correlation length of the random pattern and the scale

factor.

Global T3 Stereocorrelation

In the following analyses, the equivalent number of evaluation points Ne, as

given by Equation (14), ranges from less than 4 to less than 40, which is

a very small number. In standard stereocorrelation, it would correspond to

square window sizes ranging from 4 to 40 pixels. Consequently, it is expected

to be challenging for the correlation procedures. Figure 4 shows the change

of the standard displacement uncertainty σu with the equivalent number of

evaluation points Ne for the �nest mesh (i.e., with 20× 20 nodes). Even though

the number of evaluation points remains small, micrometer to sub-micrometer

uncertainties are observed for the X and Y directions. The uncertainty in the Z

direction is four times higher, which con�rms the a priori analyses performed by

studying the sensitivity �elds (Figure 2). Further, the displacement uncertainty

is inversely proportional to Ne, which is to be expected for registrations using

2D pictures [40]. This �rst result exempli�es the trade-o� between displacement

uncertainties and the number of evaluation points (for global stereocorrelation).
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Figure 4. Standard displacement uncertainty σu vs. equivalent number of evaluation

points Ne for the mesh made of 20 × 20 nodes (global analyses). The dashed line depicts

the power-law dependence with an exponent -1.

The e�ect of the number of nodes is now investigated with the same series

of evaluation points as before within each triangular element. Figure 5 shows

that there is virtually no e�ect of the discretization level because the sought

displacement �eld being a constant (uniformly equal to zero) no discretization

error is induced by a change in mesh �neness. It is worth remembering that the

mesh de�nes the discretization of the kinematics. The important property is that

the evaluation points are assumed to be su�ciently dilute as compared to the

texture correlation length and the distance over which gradients are computed

so that there is no dependence. For the present sensitivity analysis to acquisition

noise, the key parameter is the equivalent number of evaluation points, which

de�nes the number of data used to evaluate the kinematic degrees of freedom.
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(a)

Figure 5. Standard displacement uncertainty σu vs. equivalent number of evaluation

points for four di�erent meshes (global analyses). The dashed line depicts the power-law

dependence with an exponent -1.

The previous results should now be compared with the a priori estimates

based upon the inverse of the global Hessian of the multiview system. However,

the inversion of the Hessian is a costly operation. A very simple approximation

consists in retaining only the diagonal of the Hessian,Hdiaij = Hijδij . This inverse

of the latter is trivially computed and o�ers a very good approximation as will be

demonstrated at the end of this paper. Figure 6 shows that there is a very good

correlation, for all components of the displacement �elds between the a priori

estimate based on Hdia and the a posteriori results. When a linear interpolation

is sought, the slope is equal to 0.98, which is very close to unity.
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Figure 6. Comparison of a priori and a posteriori standard displacement uncertainties σu

for all global analyses. The dashed line depicts a linear interpolation with a slope of 0.98.

Local T3 stereocorrelation

The preceding analyses will be repeated for local registrations and compared

with global results. It is worth noting that the current setting is di�erent

from regular stereocorrelation techniques [1]. First, T3 elements will still be

considered as opposed to quadrilateral interrogation windows. Second, the

registration is not performed as a master/slave setting of the cameras but in

terms of the degrees of freedom de�ned in the 3D space. Third, as already

mentioned, the present implementation considers evaluation points in the

parametric space of the elements, which then translate into (non-integer) pixel

locations thanks to the projection matrices. Fourth, contrary to standard

practice, the uncertainties of nodal displacements are still considered and not the

mean displacement. Last, the actual implementation consists in disconnecting

each element from all others so that a local analysis is performed independently.

With the present choice, there is no element overlap so that both approaches

are compared with the same set of elements.
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In the following analyses, the range of evaluation points N was increased

from 20 to 400 so that the equivalent number Ne ranged from 15 to 300. This

choice will become clearer in the sequel. It su�ces to mention here that the

spatial resolutions of local and global approaches are di�erent [40]. Figure 7

shows the change of the standard displacement uncertainties as functions of the

equivalent number of evaluation points. All the general trends observed in global

analyses also apply to local approaches (i.e., power -1 decrease with Ne, quasi

independence with the mesh, factor 3.5 ratio between X and Y components in

comparison with the Z direction.

Figure 7. Standard displacement uncertainty σu vs. equivalent number of evaluation

points Ne for four di�erent tessellations (local analyses). The dashed line depicts the

power-law dependence with an exponent -1.

Comparisons

In order to compare both sets of results in a more quantitative way, all of

them are gathered in Figure 8. There is a clear o�set by a factor of about 2.5

between the uncertainties of local and global approaches. This e�ect can be

understood by the spatial resolution associated with both approaches, which
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was already discussed for 2D-DIC in which local and global Q4 approaches were

compared [40].

Figure 8. Standard displacement uncertainty σu vs. equivalent number of evaluation

points Ne for four di�erent meshes and di�erent registration procedures. The dashed line

depicts the power-law dependence with an exponent -1.

The spatial resolution, namely, the number of equivalent evaluation points

that are used to measure a given degree of freedom is assessed for both

approaches with the same node distribution. For local approaches (superscript

l), the spatial resolution is simply the equivalent number of evaluation points

N l
e since each T3 element is independently analyzed. For global analyses,

(superscript g), the situation is a bit more complex [40], see Figure 9(a). For

corner nodes, in the present case, two elements are considered. Consequently,

the spatial resolution is equal to
√

2N l
e. For edge nodes, three elements are

mostly used (i.e., the spatial resolution is equal to
√

3N l
e). Last, for inner nodes

the nodal connectivity is six (i.e., the spatial resolution is equal to
√

6N l
e). It

follows that an upper bound to the spatial resolution Ng
e for global T3 multiview

correlation is

Ng
e ≤
√

6N l
e (15)
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which is asymptotically reached when the number of edge nodes becomes

negligible as compared to inner nodes (Ne � 1). This result is illustrated in

Figure 9(b) for the di�erent discretizations analyzed herein. It is observed that

for the �nest mesh the upper bound is a very good approximation. Conversely

for coarse meshes, the relative weight of corner and edge nodes being more

important, the actual spatial resolution departs more signi�cantly from its upper

bound.

(a) (b)

Figure 9. Spatial resolutions for local and global T3 multiview correlations. (a) Depiction

of the number of elements used in local and global analyses for the evaluation of nodal

displacements. (b) Spatial resolutions for the meshes studied herein for global and local

analyses.

The results of Figure 8 are now reported in Figure 10 using the spatial

resolution discussed before. There is a very good correlation for both series

of analyses. It is found that the standard displacement resolution is inversely

proportional to the spatial resolution, as for 2D-DIC analyses [40]. The factor

2.5, which was anticipated from the raw results of Figure 8, is now understood

as the
√

6 ratio in spatial resolution.
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Figure 10. Standard displacement uncertainty σu vs. spatial resolution (Ng
e or N l

e) for

di�erent meshes, tessellations and registration procedures. The dashed line depicts the

power-law dependence with an exponent -1.

This comparison can be rationalized in two di�erent ways. If the meshes are

identical for local and global analyses, the fact that each T3 element has a

nodal connectivity that can be as high as 6 will lead to a decrease of standard

displacement uncertainties by a factor at most equal to 1/
√

6. Conversely, in

order to achieve the same displacement uncertainties, less (i.e., 1/
√

6) evaluation

points need to be considered in global approaches than in local analyses. Since

the connectivities of edge and corner nodes are lower than those of inner

nodes, special attention should be exercised if a uniform uncertainty is sought

(i.e., adapting the mesh as was proposed for Q4-DIC [40]).

Painting

The �nal analysis consists in using the picture of an actual paint, namely, the

Descent of the Cross (Figure 11(a)) that was recently restored and attributed to

Sebastian Düring [46]. During its restoration, NURBS-based stereocorrelation

was employed to analyze two tensioning systems of the canvas in order to

minimize wrinkling [47]. As stated above, the picture was converted to gray
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levels for the correlation analysis. No pattern was deposited and even though

the contrast is rather low in comparison with speckle patterns (Figure 1), it

was shown that very �ne analyses could be preformed thanks to global NURBS-

based analyses. It is therefore an interesting test case to probe both approaches.

(a) (b)

Figure 11. (a) Restored Descent of the Cross [46]. (b) Gray level histogram of added

noise.

Figure 11(b) shows the gray level histogram associated with acquisition noise.

The mean is very close to 0 and the standard deviation is equal to 2.3 gray levels.

As in the previous case, it will be used to create noisy images to be registered

with their noise-free references. Given the fact that this pattern is deemed very

di�cult, a larger number of evaluation points was considered, namely, from 7

to 64. Figure 12 shows the change of the standard displacement uncertainties

with Ne for the four considered meshes. As compared to the previous results,

the same general trends are observed (i.e., uncertainty in Z direction about four

times higher than those along directions X and Y , inverse proportionality with

equivalent number of evaluation points, mesh insensitivity).
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Figure 12. Standard displacement uncertainties σu vs. equivalent number of evaluation

points Ne for four di�erent meshes (global analyses). The dashed line depicts the

power-law dependence with an exponent -1.

When compared with the a priori estimates of displacement uncertainties

based on the (diagonal approximation of) Hessian of the registration procedure,

it is observed in Figure 13 that the correlation is again very satisfactory with

a slope of 1.02. An o�set is observed for the X-direction, whose origin has not

been elucidated.

Figure 13. Comparison of a priori and a posteriori standard displacement uncertainties σu

for all analyzed cases. The solid line depicts a linear interpolation with a slope of 1.02.
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Moreover, the displacement uncertainties are signi�cantly higher than in the

previous case (with the global approach). In quantitative terms, there is a

fourfold increase of all uncertainties when compared with the random pattern

(Figure 14). This e�ect is related to the acquisition noise (whose variance is

very close for the pictures analyzed herein) and the contrast of the pictures.

The RMS contrast (i.e., average of norm half of the picture gradient over the

region of interest) of the speckle pattern is equal to 20.6 gray level per pixel,

and 4.8 for the Descent of the Cross. The same order of magnitude is observed.

Figure 14. Standard displacement uncertainty σu vs. equivalent number of evaluation

points Ne for four di�erent meshes and two di�erent patterns. The dashed line depicts

the power-law dependence with an exponent -1.

To account for all the di�erent conditions illustrated in Figure 14, namely,

contrast, in-plane and out-of �plane components,� number of evaluation points,

and acquisition noise, the actual standard displacement uncertainties are

compared to their mean-�eld estimates using an extension of Equation (13)

σ̃2
u =

1

N2
e

nc∑
c=1

4(σc)2

(Πc
u)2〈‖∇Ic0‖22〉

(16)

where Πc
u denotes the mean (over the whole ROI) pixel/m sensitivity for the

studied component of displacement, which is evaluated from [ΠΠΠc]. If the previous
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mean-�eld result is consistent with the numerical results, the ratio of σu by its

approximation σ̃u should collapse onto a single horizontal line Σu. Figure 15

shows that this trend is observed for the two analyzed cases with Σu = 1.2± 0.3.

In particular, the normalized uncertainties no longer depend on the equivalent

number of evaluation points, nor on the �speckle� patterns.

Figure 15. Dimensionless standard displacement uncertainty Σu = σu/σ̃u vs. equivalent

number of evaluation points Ne for four di�erent meshes and two di�erent patterns. The

dashed line depicts the mean level (i.e., 1.2 ± 0.3).

Conclusion

The displacement uncertainties have been evaluated within the framework of

multiview correlation. The latter enables multiple (i.e., more than two) cameras

with various modalities to be considered in a unique registration step. In

the present case, the surface of interest was parameterized with triangular

tessellations or meshes made of triangular elements. Such hypotheses lead to

local and global T3 stereocorrelation when only two cameras with the same

modality are considered [21, 22].

A closed-form expression of the covariance matrix of the measured degrees of

freedom was derived when only acquisition noise was considered (i.e., noise �oor
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level [32]). With the present setting, it corresponds to the Hessian used in the

minimization scheme of the registration algorithm. Such results allow for a priori

estimates of measurement uncertainties. They were probed on two test cases for

which the speckle pattern was signi�cantly di�erent (i.e., there was a fourfold

di�erence in terms of contrast). Very consistent agreements were observed when

the a priori estimates were compared with stereocorrelation measurements on

series of 100 pictures in which experimental noise was added. A unique collapse

for standard displacement uncertainties ranging over more than two orders of

magnitude was achieved by accounting for the number of evaluation points,

the mean contrast, and the average sensitivity for the three components of

displacements.

Uncertainty quanti�cations associated with local and global registrations were

also compared. The main di�erence, as already observed in 2D-DIC [40], and

DVC [42, 41] was due to the spatial resolution, which in the present case was

a ratio of
√

6, and that led to lower uncertainties (by the same factor), for the

same distribution of evaluation points, for the global approach in comparison

to the local registrations.

The cases studied herein were only based on perturbing reference images

with experimentally observed noise. Similar analyses should now be performed

for real experiments. They should also account for rigid body motions to

fully characterize the performances of the correlation code [35]. Additional

evaluations would also be needed to assess the uncertainties associated with

the calibration step, and the shape correction step by extending the framework

utilized herein. Additional biases such as those induced by optical distortions

may also be accounted for. Last, let us note that the present tools are very

useful when designing and optimizing experiments monitored by multiview

systems [48].
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Appendix: Evaluation of the standard deviation σc

The following appendix discusses the way of assessing the standard deviation σc

of the noise level for any evaluation point xc. It is assumed that the noise ηc at

pixel locations xc has been characterized. The evaluation of the gray levels at

position xc requires the use of an interpolation scheme. Let the latter be de�ned

with a set of ni interpolation functions Ni such that

Ic(xc) =

ni∑
i=1

Ic(xci )Ni(x
c) (17)

where xci denote pixel positions in the considered image Ic acquired by camera c.

In the following, it is assumed that acquisition noise ηc is Gaussian (with zero

mean) and characterized by the covariance matrix [Covηc ], which is positive

semi-de�nite. Given the fact that the interpolation scheme is linear with respect

to gray levels Ic(xci ) (Equation (17)), the noise propagation is straightforward,

and the variance (σc)2 for the considered evaluation point xc reads

(σc)2(xc) = ||{N(xc)}||2[Covηc ]
(18)

where || · ||[Covηc ] denotes the norm constructed with the covariance matrix

[Covηc ], and {N(xc)} the column vector gathering the interpolation functions

Ni evaluated at the position xc. When noise is white with identical variance σ2
ηc

(i.e., the covariance matrix reduces to σ2
ηc [I], where [I] is the identity matrix),

the previous result becomes

(σc)2(xc) = σ2
ηc ||{N}||22 (19)
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where || · ||2 is the standard L2-norm.

In the present analyses, bilinear interpolations were considered. Consequently,

four interpolation functions were needed

Ni(x
c, yc) = σ2

ηc

(
1

2
± xc

)(
1

2
± yc

)
(20)

for −1/2 ≤ xc, yc ≤ 1/2 (i.e., the pixel centers are located at half integers). The

variance σ2 then reads

(σc)2(xc, yc) = σ2
ηc
∑(

1
2 ± x

c
)2 ( 1

2 ± y
c
)2

= σ2
ηc
(
1
4 + (xc)2 + (yc)2 + 4(xc)2(yc)2

) (21)

If a uniform sampling is assumed (i.e., a large number number of evaluation

points), the �uctuations of (σc)2 wrt. xc and yc are neglected and approximated

by the average value with a uniform distribution

(σc)2 ≈
∫ 1/2

−1/2

∫ 1/2

−1/2
(σc)2(x, y)dxdy =

4

9
σ2
ηc (22)

or equivalently,

σc ≈ 2

3
σηc (23)

It is worth remembering that when the evaluation points are separated enough

(i.e., neighboring evaluation points would not have any correlation, as in the

present case) there is no need to compute the covariance matrix, which would

only have diagonal terms, and the present setting (see Equation (3)) is still

optimal.

References

[1] Sutton M, Orteu J and Schreier H. Image correlation for shape, motion

and deformation measurements: Basic Concepts, Theory and Applications.

New York, NY (USA): Springer, 2009.



28 ©FH & SR 2020

[2] Sutton M. Computer vision-based, noncontacting deformation measure-

ments in mechanics: A generational transformation. Applied Mechanics

Reviews 2013; 65(AMR-13-1009): 050802.

[3] GOM. ARAMIS. Sensors for high-precision motion and deformation

analyses. 2019 (accessed). URL www.gom.com/metrology-systems/

aramis.html.

[4] Holo3. CorreliSTC. Link between Experiments and Simulations. 2019

(accessed). URL www.correli-stc.com/.

[5] Eikosim. EikoTwin DIC - Global �eld measurement. 2019 (accessed). URL

eikosim.com/en/eikotwin-2/.

[6] Dantec Dynamics. Q-400 DIC - Digital Image Correlation System -

Measurement of Shape, Displacement and Strain. 2019 (accessed). URL

www.dantecdynamics.com/q-400-dic/.

[7] La Vision. StrainMaster. 2019 (accessed). URL www.lavision.de/en/

products/strainmaster/.

[8] Correlated Solutions. VIC-3D. Non-Contact Full-Field 3D Strain

Measurement System. 2019 (accessed). URL www.correlatedsolutions.

com/vic-3d/.

[9] Luo P, Chao Y, Sutton M et al. Accurate measurement of three-

dimensional deformations in deformable and rigid bodies using computer

vision. Experimental Mechanics 1993; 33: 123�132.

[10] Luo P, Chao Y and Sutton M. Application of stereo vision to

three-dimensional deformation analyses in fracture experiments. Optical

Engineering 1994; 33(3): 981�990.



Displacement uncertainties with multiview correlation 29

[11] Helm J, McNeill S and Sutton M. Improved three-dimensional image

correlation for surface displacement measurement. Optical Engineering

1996; 35(7): 1911�1920.

[12] Orteu JJ, Garric V and Devy M. Camera calibration for 3D reconstruction:

application to the measurement of 3D deformations on sheet metal parts.

In Refregier P and Ahlers RJ (eds.) New Image Processing Techniques

and Applications: Algorithms, Methods, and Components II, volume 3101.

International Society for Optics and Photonics, SPIE, pp. 252�263.

[13] Lavest JM, Viala M and Dhome M. Do we really need an accurate

calibration pattern to achieve a reliable camera calibration? In Burkhardt

H and Neumann B (eds.) Computer Vision � ECCV'98. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 158�174.

[14] Besl P and McKay N. Method for registration of 3-d shapes. In

Sensor Fusion IV: Control Paradigms and Data Structures, volume 1611.

International Society for Optics and Photonics, pp. 586�607.

[15] Zhu L, Barhak J, Srivatsan V et al. E�cient registration for precision

inspection of free-form surfaces. The International Journal of Advanced

Manufacturing Technology 2007; 32(5-6): 505�515.

[16] Senin N, Colosimo B and Pacella M. Point set augmentation through �tting

for enhanced icp registration of point clouds in multisensor coordinate

metrology. Robotics and Computer-Integrated Manufacturing 2013; 29(1):

39�52.

[17] F Hild and S Roux. Method of three-dimensional stereo-correlation

measurements using a parametric representation of the measurement

object. Patent family FR2991448B1, EP2856424B1, US9733071B2,



30 ©FH & SR 2020

ES2700975T3, 2012. URL patents.google.com/patent/FR2991448B1/

en.

[18] Beaubier B, Dufour J, Hild F et al. CAD-based calibration of a 3D-DIC

system: Principle and application on test and industrial parts. Experimental

Mechanics 2014; 54(3): 329�341.

[19] Dufour JE, Beaubier B, Hild F et al. CAD-based displacement

measurements. Principle and �rst validations. Experimental Mechanics

2015; 55(9): 1657�1668.

[20] Dufour JE, Hild F and Roux S. Shape, Displacement and Mechanical

Properties from Isogeometric Multiview Stereocorrelation. Journal of

Strain Analysis for Engineering Design 2015; 50(7): 470�487.

[21] Dubreuil L, Dufour JE, Quinsat Y et al. Mesh-based shape measurements

with stereocorrelation. Experimental Mechanics 2016; 56(7): 1231�1242.

[22] Pierré JE, Passieux JC and Périé JN. Finite Element Stereo Digital Image

Correlation: Framework and Mechanical Regularization. Experimental

Mechanics 2017; 57(3): 443�456.

[23] Dufour J, Beaubier B, Roux S et al. Displacement measurement using

CAD-based stereo-correlation with meshes. In ICEM conference.

[24] Rao C. Information and the accuracy attainable in the estimation of

statistical parameters. Bulletin of the Calcutta Mathematical Society 1945;

37: 81�89.

[25] Cramér H. Mathematical Methods of Statistics. Princeton, NJ (USA):

Princeton Univ. Press, 1946.

[26] Wang YQ, Sutton MA, Ke XD et al. On Error Assessment in Stereo-based

Deformation Measurements. Experimental Mechanics 2011; 51(4): 405�422.



Displacement uncertainties with multiview correlation 31

[27] Ke XD, Schreier HW, Sutton MA et al. Error Assessment in Stereo-based

Deformation Measurements. Experimental Mechanics 2011; 51(4): 423�441.

[28] Reu P. A study of the in�uence of calibration uncertainty on the global

uncertainty for digital image correlation using a monte carlo approach.

Experimental Mechanics 2013; 53(9): 1661�1680.

[29] Zhu C, Yu S, Liu C et al. Error estimation of 3D reconstruction in 3D

digital image correlation.Measurement Science and Technology 2019; 30(2):

025204.

[30] Balcaen R, Wittevrongel L, Reu PL et al. Stereo-DIC Calibration

and Speckle Image Generator Based on FE Formulations. Experimental

Mechanics 2017; 57(5): 703�718.

[31] Balcaen R, Reu P, Lava P et al. Stereo-dic uncertainty quanti�cation based

on simulated images. Experimental Mechanics 2017; 57(6): 939�951.

[32] Standardization, Good Practices, and Uncertainty Qunati�cation Commit-

tee. A Good Practices Guide for Digital Image Correlation. International

Digital Image Correlation Society (iDICs).

[33] Fréchet M. Sur l'extension de certaines evaluations statistiques au cas de

petits échantillons. Revue de l'Institut International de Statistique / Review

of the International Statistical Institute 1943; 11(3/4): 182�205.

[34] Darmois G. Sur les limites de la dispersion de certaines estimations. Revue

de l'Institut International de Statistique / Review of the International

Statistical Institute 1945; 13(1/4): 9�15.

[35] ASD-STAN prEN 4861 P1. Metrological assessment procedure for

kinematic �elds measured by digital image correlation. 2018. URL

/www.asd-stan.org/downloads/asd-stan-pren-4861-p1.



32 ©FH & SR 2020

[36] Charbal A, Dufour JE, Hild F et al. Hybrid stereocorrelation using infrared

and visible light cameras. Experimental Mechanics 2016; 56: 845�860.

[37] Wang Y, Charbal A, Dufour JE et al. Hybrid multiview correlation for

measuring and monitoring thermomechanical fatigue test. Experimental

Mechanics 2019; DOI:10.1007/s11340-019-00500-8.

[38] Lucas B and Kanade T. An iterative image registration technique with

an application to stereo vision. In 7th International Joint Conference on

Arti�cial Intelligence. pp. 674�679.

[39] Hild F and Roux S. Digital image correlation. In Rastogi P and Hack

E (eds.) Optical Methods for Solid Mechanics. A Full-Field Approach.

Weinheim (Germany): Wiley-VCH, pp. 183�228.

[40] Hild F and Roux S. Comparison of local and global approaches to digital

image correlation. Experimental Mechanics 2012; 52(9): 1503�1519.

[41] Hild F, Bouterf A, Chamoin L et al. Toward 4d mechanical correlation.

Advanced Modeling and Simulation in Engineering Sciences 2016; 3(1): 1�

26.

[42] Leclerc H, Périé J, Hild F et al. Digital volume correlation: What are the

limits to the spatial resolution? Mechanics & Industry 2012; 13: 361�371.

[43] Claire D, Hild F and Roux S. Identi�cation of damage �elds using kinematic

measurements. Comptes Rendus Mécanique 2002; 330: 729�734.

[44] Piegl L and Tiller W. The NURBS Book - 2nd Edition. Springer, 1997.

[45] Zienkievicz O and Taylor R. The Finite Element Method. 4th edition,

London (UK): McGraw-Hill, 1989.



Displacement uncertainties with multiview correlation 33

[46] Grau S. Conservation et restauration de la Descente de croix conservée

dans le ch÷ur de la basilique de Saint-Maurice en Valais. Technical report,

Ecole de Condé, Paris, 2014.

[47] Dufour JE, Gonnet E, Grau S et al. On the analysis of canvas wrinkling

via isogeometric stereocorrelation. International Journal of Solids and

Structures 2018; 154: 114�123.

[48] Vitse M, Poncelet M, Iskef A et al. Toward virtual design and optimization

of a structural test monitored by a multi-view system. Journal of Strain

Analysis for Engineering Design 2020; DOI:10.1177/0309324720910887.


