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Abstract These lecture notes address mathematical issues related to the modeling

of impact laws for systems of rigid spheres and their macroscopic counterpart. We

analyze the so-called Moreau’s approach to define multibody impact laws at the

mircroscopic level, and we analyze the formal macroscopic extensions of these laws,

where the non-overlapping constraint is replaced by a barrier-type constraint on the

local density. We detail the formal analogies between the two settings, and also their

deep discrepancies, detailing how the macroscopic impact laws, natural ingredient

in the so-called Pressureless Euler Equations with a Maximal Density Constraint,

are in some way irrelevant to describe the global motion of a collection of inertial

hard spheres. We propose some preliminary steps in the direction of designing

macroscopic impact models more respectful of the underlying microscopic structure,

in particular we establish micro-macro convergence results under strong assumptions

on the microscopic structure.

1 Introduction

The modeling of particle systems spreads over a wide range of approaches, which

rely on various levels of description of the particles. At one end of this range, the

microscopic / Lagrangian setting is based on an individual description of particles,

which “simply” obey Newton’s Laws. At the other end, macroscopic models rely on

a description of the collection of particles by a local density, and designing models

amounts to elaborating equations verified by the velocity fields, under the implicit

assumption that such a velocity is indeed well-defined. Between those extreme levels

F. Bourdin

Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, e-mail: felicien.bourdin@ens.fr

B. Maury

Département de Mathématiques et Applications, Ecole Normale Supérieure, PSL University, 45

rue d’Ulm, 75005 Paris, e-mail: bertrand.maury@ens.psl.eu

1



2 Félicien Bourdin and Bertrand Maury

of descriptions, Boltzmann-like models are based on a kinetic description of the

particle collection, namely a function f (x, v, t) which quantifies at time t the number

of particles around x at velocity v. Note that this setting makes it possible to handle a

diffuse limit (smooth f representing an infinite number of infinitely small particles),

as well as finite collection (a single particle at a given velocity is represented as a

Dirac mass in the (x, v) space). From this standpoint, the kinetic description can be

considered as microscopic in a generalized sense. This setting is particularly relevant

to describe the limit of a low-density gas with the underlying hypothesis of elastic

binary collisions between particles, and it is a natural bridge between Lagrangian

models, considered as untractable for many-body systems, and macroscopic models

which can be used to investigate the global behavior of these systems, by means

of theoretical analysis or numerical computations. Considerable energy has been,

and is still, deployed to rigorously obtain macroscopic models from the Boltzmann

equation, like Euler or Navier-Stokes equations (see e.g. [15, 36]).

We are interested here in dense collections of finite size particles (more commonly

called grains in this context), subject to possibly non-elastic collisions. The non-

dilute character of the collections together with the non-elastic character of the

collision is likely to rule out the hypothesis of sole binary collisions which prevails

in the Boltzmann context: multiple (or quasi-simultaneous) collisions together with

persistent contacts can be expected to be generic in this situation. As a consequence,

Boltzmann-like equations can no longer be considered as a natural step between

microscopic and macroscopic models, and most macroscopic models which have

been proposed to describe the behavior of dense (up to jammed) granular media have

indeed been built independently from any homogenization procedure. We propose

here to investigate the possibility to identify some ingredients that might appear

in relevant macroscopic models considered as limits of microscopic ones. Let us

make it clear that we are far from proposing a full and rigorous construction of a

macroscopic model from the microscopic one, which is clearly out of reach. We

shall rather focus on a crucial part of microscopic models, namely collision laws,

and investigate the possibility to infer collision laws at the macroscopic level which

would be respectful of the microscopic structure.

If one restricts to local interactions due to direct contact between entities, micro-

scopic models based on finite size grains essentially rely on impact laws. Different

strategies have been carried out to formalize this type of direct interactions. In the

Molecular Dynamic approach (MD), see e.g. [1], one considers that grains are slightly

deformable by implementing a short range force of the repulsive type. Note that this

force is commonly taken as a computational trick to handle the non-overlapping

constraint. This makes it possible to circumvent the very question of collisions, for

it leads to classical Ordinary Differential Equations which fit in a classical theo-

retical framework (Cauchy-Lipschitz theory), and which can be solved by standard

numerical schemes to perform actual computations. Note that, in spite of the natively

elastic character of such interactions, some ingredients can be included to account

for inelastic collision, as well as shear forces (see [29]).

In order to directly address micro-macro issues, we shall restrict ourselves here

to alternative approaches, called Contact Dynamics (CD), based on a hard-sphere
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setting. As detailed in a recent review ([27]), several strategies can still be carried

out to formalize the behavior of the system whenever the non-overlapping constraint

is up to be violated. A popular, sometimes called event-driven, strategy, consists in

handling binary collisions only. In this setting multiple collisions are considered as so

rare that they can be disregarded, which makes it possible to use explicit expressions

of post-collisional velocities. Another strategy is based on extending the so-called

Darboux-Keller shock dynamics to multibody collisions. It consists in changing the

time scale in the neighborhood of a collision event, to set it at the impulse scale.

The dynamics is then described as a sequence of compression and extension phases

(see [17] for a detailed description of this method). We also refer to [14] for a very

detailed account of thermodynamical aspects of collision problems.

The developments we present here are based on an alternative approach, called

Moreau’s approach in [27], which considers instantaneous impacts involving an

arbitrary large number of grains, treated in a global way (see [30, 26, 3]). As detailed

below, it relies on basic concepts of Convex Analysis, the principal of which being

the cone of feasible direction associated to the set of admissible configurations

(configurations with no overlapping), and the associated polar cone (set of vector

which have a nonpositive scalar product with all feasible directions) which is the

outward normal cone. Given a restitution coefficient e ∈ [0, 1], the post-collisional

velocity is determined from the projection of the pre-collisional velocity on the

outward normal cone. Since everything can be written as a simple expression of the

projection on the cone of feasible directions, we shall actually focus on this very

notion in the largest part of these notes.

We shall end this introductory section by a few considerations on microscopic

impact law following Moreau’s approach, and what appears to be the canonical ex-

tension of this approach to the macroscopic setting. Section 2 is then dedicated to

a detailed analysis on these impact laws. Identifying similarities and discrepancies

between these formally similar laws is the object of Section 3. We describe in par-

ticular Laplace-like operators which are canonically associated to the collision laws

in both settings, We introduce a notion of Abstract Maximum Principle (detailed

in the appendix), which is verified in the macroscopic setting but not in the micro-

scopic one, which deeply differentiates both models, and enlighten in some way the

poorness of the macroscopic law.

In Section 4, we investigate the possibility to elaborate macroscopic impact mod-

els which are more respectful of the underlying microscopic structure. As detailed

in Section 5, a rigorous homogenization procedure makes it possible to build such

macroscopic models under very strong assumptions on the structure.

Although the resulting evolution problems are out of the scope of our work, we

dedicate Section 6 to some remarks on this aspect of the problem. In the microscopic

setting, the question is delicate but well understood: the problem is well-posed for

analytic data, but might admit multiple solution otherwise, even for infinitely smooth

data. In the macroscopic setting, under oversimplifying assumptions, the expected

model takes the form of the so called pressureless equations with maximal density

constraint, which essentially fits into a sound framework in the one-dimensional
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setting only ([7, 4]). For higher dimension, little is known on this equation. Let

us add that the system is commonly written without any collision law, the actual

choice being usually made in an implicit way, depending on the approach which is

followed. For instance, in [7], particular solutions are built by means of sticky blocks

with a purely inelastic collision law, whereas in [10, 11], the approach is based on

compressible Euler equation with a barrier-like pressure with respect to the density,

natively leading to a purely elastic behavior.

The largest part of this text is meant to be accessible to graduate students, so

we tried to preserve self-consistency as far as possible, writing at some points full

proofs of elementary results, in particular in the appendix.

From single collision to multibody impact laws

We introduce here Moreau’s approach of impact laws, which fits in the general class

of Contact Dynamics Methods (see [26, 31]). Let us start with a point particle subject

to remain in the upper half plane R×R+, with a purely inelastic collision law on the

boundary. We denote by r = (x, y) its position, and by u its velocity. If this particle

is not subject to any force, its motion follows

u+ = PCr
u− , with Cr =

�����
R

2 if y > 0

R × R+ if y = 0
(1)

where u− (resp. u+) is the pre- (resp. post-) collisional velocity, and PCr
is the

euclidian projection on Cr . When the particle does not touch the wall, the velocity is

constant. When a collision occurs, with pre-collisional velocity u− = (ux, uy) (with

uy < 0), the post-collisional velocity is u+ = (ux, 0).
In the case of an elastic collision, we introduce a restitution coefficient e ∈ (0, 1].

The post-collisional velocity is now u+ = (ux,−euy). This behavior can be written

in a way which can generalized to the multi-collisional situation. We introduce the

outward normal cone to K , defined as

Nr = C◦
r =

{
v ∈ R2 , v · w ≤ 0 ∀w ∈ Cr

}
= {0} × R−.

The collision law can be written

u+ = u− − (1 + e)PNr
u−.

In the multi-collisional situation, the Moreau’s approach consists in straightfor-

wardly write the previous collision law, with the appropriate notion of cone of

feasible velocities and outward normal cone. Consider a many-body system of hard

spheres in Rd , centered at r1, . . . , rn, with common radius R. The feasible set writes

K =
{
r ∈ Rdn , Dij = |rj − ri | − 2R ≥ 0 ∀i , j

}
.
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Fig. 1 Collision against a

wall. Depending on the resti-

tution coefficient e ∈ [0, 1],
the post collisional velocity

can take any value between

(ux, 0) (purely non-elastic)

and (ux, −uy ) (elastic).

u−

u+

ux uy

−e uy

x

y

Denoting eij =
rj − ri

|rj − ri |
, the set of admissible velocities is

Cr =
{
v , Dij (r) =

��rj − ri
�� − 2R = 0 ⇒ eij · (vj − vi) ≥ 0

}
. (2)

(N.B.: we use the notation a · b to denote the dot product of vectors in the physical

space Rd , while 〈· | ·〉 shall be used for generalized velocity vectors in Rnd , or

elements in abstract Hilbert spaces.)

Let r = (r1, . . . , rn) ∈ K be given. As previously, the outward normal cone to K

at r is defined as the polar set to the cone of feasible velocities:

Nr = C◦
r =

{
v ∈ Rdn , 〈v | w〉 ≤ 0 ∀w ∈ Cr

}
.

To alleviate notation, we shall now denote by U the pre-collisional velocity, and by

u the post-collisional velocity. With these new notation, the collision model writes

u = U − (1 + e)PNr
U, (3)

where e ∈ [0, 1] is the restitution coefficient. Since Nr and Cr are mutually polar, it

holds that

I = PNr
+ PCr

,

where I is the identity operator in Rdn (see [25], or the proof of Proposition 11 in

the appendix). As a consequence, the post-collisional velocity can be expressed in

terms of PCr
U, for any e ∈ [0, 1],

u = U − (1 + e)(U − PCr
U), (4)

which simply reduces to u = PCr
U for e = 0. For the sake of simplicity, we shall

therefore focus on this purely inelastic situation, keeping in mind that the knowledge

of PCr
U makes it possible to recover the whole range of elastic collision laws

through (4).
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Macroscopic impact laws

We describe here informally how the Moreau’s approach described above can be

developed at the macroscopic scale. More details will be given in the next section.

We consider an infinite collection of inertial grains described by a macroscopic

density ρ, which is subject to remain below a prescribed value, which we set at 1. We

denote by K̂ the corresponding set of densities of a given mass, which are assumed

to be supported in some domain Ω.

We denote by U the velocity field at some instant, defined on the support of ρ, and

we aim at defining a collision law which would give us the post-collisional velocity

from this pre-collisional velocity U. In the purely inelastic setting, a natural candidate

for this law amounts to define the post-collisional velocity u+ as the projection u of

U on the set of all those vector fields which have a nonnegative divergence on the

saturated zone, that is the macroscopic counterpart of Cr (defined by (2)). Indeed,

having ∇ · u < 0 in the neighborhood of some point in the saturated zone would lead

to an increase of ρ, thereby a violation of the constraint. As will be detailed below,

this cone Ĉρ can be described as the set of all those velocity fields which have a

nonnegative divergence (in a weak sense) over the saturated zone.

2 A closer look to micro and macro impact laws

In this Section, we give some details on the mathematical formulation of the im-

pact laws presented above, in the microscopic and macroscopic settings, and we

investigate their similarities and discrepancies.

2.1 Saddle point formulation of the microscopic impact law

We consider as previously a system of hard spheres in Rd, centered at r1, . . . , rn,

with common radius R. The feasible set writes

K =
{
r ∈ Rdn , Dij = |rj − ri | − 2R ≥ 0 ∀i , j

}
. (5)

The set of feasible velocities Cr is defined by (2). Let us denote by m ∈ N the number

of contacts, i.e. the number of pairs {i, j} such that Dij = |rj − ri | − 2R = 0. We

introduce B ∈ Mm,n(R) the matrix which expresses the constraints, each row of

which is

Gij =
(
0, . . . , 0,−eij, 0, . . . , 0, eij, 0, . . . , 0

)
∈ Rdn, (6)

where eij = (rj − ri)/|rj − ri |. The feasible set can be written

Cr = {v , Bv ≤ 0} = B−1
Λ

o
+
, Λ+ = R

m
+
, (7)
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Fig. 2 In the configuration

represented here, the number

of primal degrees of freedom

is 2 × n = 28, whereas the

number of contacts is m = 29.

where Λ◦
+

is the polar cone to Λ+, that is Rm− , and B−1
Λ
◦
+

its preimage by B.

The problem which consists in projecting U ∈ Rnd on Cr fits into the abstract

setting of Proposition 12 in the appendix, and it can be put in a saddle point form:

Proposition 1 Let Cr ∈ Rdn be defined by (2) (or equivalently by (7)). Denote by B⋆

the transpose of the matrix B. If u = PCr
U then there exists p ∈ Λ+ = Rm+ such that��������

u + B⋆p = U

Bu ≤ 0

〈Bu | p〉 = 0.

(8)

Conversely, if (u, p) ∈ Rdn × Rm
+

is a solution to (8), then u = PCr
U.

Proof Let us start by a preliminary remark: the fact that the image of B⋆ is closed (it

is a finite dimensional linear space) is not sufficient to ensure that B⋆(Λ+) is closed

(see Remark 11 in the appendix). This property is nevertheless true here, because

B⋆(Λ+) is spanned by a finite number of vectors

B⋆(Λ+) =
{
−

∑
ij

pijGij , pij ≥ 0

}
(9)

where Gij is defined by (6), which implies closedness by Lemma 3. Proposition 12

then ensures existence of p ∈ Λ+ = Rm+ such that u + B⋆p = U, with the comple-

mentarity condition 〈Bu | p〉 = 0. �

If we furthermore assume that B⋆ is one-to-one, i.e. B is onto, then p is unique.

The one-to-one character of B⋆ is lost as soon as the number of constraints is larger

than the number of degrees of freedom (hyperstatic situation). For identical disks in

2d, it can appear as soon as n = 14 discs are involved (see Figure 2). For many-body

triangular lattices, the number of primal degrees of freedom is 2n, while the number

of constraints is asymptotically 3n, which mean that the dimension of the kernel of

B⋆ is asymptotically n.

The problem nevertheless presents some sort of uniqueness property, restricted

to the homogeneous problem (U = 0). The following proposition essentially states a

very intuitive fact: if one considers any static configuration of a finite number of hard

spheres in the open space (i.e. with no walls), under the assumption that interaction
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contact forces are only repulsive, then all forces are actually zero. This property will

be used to show that the solution set for the pressure field (Proposition 1) is bounded.

Lemma 1 We consider an admissible configuration r ∈ K , and the associated matrix

B ∈ Mm,n(R) (the raws of which are given by (6)). The set

S =
{
q ∈ Rm

+
, B⋆q = 0

}
= ker B⋆ ∩Λ+

is reduced to {0}.

Proof Let us first establish the uniqueness for the homogeneous problem. We con-

sider q = (qij ) ∈ Rm+ such that

B⋆q =
∑
i∼j

qijGij = 0.

where i ∼ j means that the particles i and j are in contact. Let i0 denote the index

of an extremal vertex of the convex hull conv(qi, 1 ≤ i ≤ n). By Hahn-Banach’s

theorem, the compact {qi0 } and the set conv{qi, i , i0}, which is closed and convex,

can be separated in a strict sense by a plane in Rd . We denote by x an element of

this plane, and by v a normal vector to it. One has

(qi0 − x) · v > 0 , (qj − x) · v < 0 ∀ j = 1, . . . , n , j , i0,

so that (qi0 − qj ) · v > 0 for j , i0. Now the balance of contact forces exerted upon

sphere i0 in the direction v reads ∑
j,i0

qji0 eji0 · v

where eji0 · v > 0, and qji0 ≥ 0 for all j. This quantity is positive unless qji0 = 0 for

all j , i0. Therefore all multipliers associated to a contact with sphere i0 are equal to

0, and this approach can be iterated for the reduced family (qj, j , i0). By downward

induction on the number of active spheres, we prove that S is reduced to {0}. �

An important consequence of this expected property is the boundedness of the

solution set for (8).

Proposition 2 Under the assumptions of Proposition 1, the solution set for the dual

component p

S =
{
q ∈ Rm

+
, B⋆q = U − u

}
=

(
p + ker B⋆

)
∩ Λ+ ,

where (u, p) is a solution to (8), is bounded.

Proof This is a direct consequence of Proposition 15 (in the appendix) and

Lemma 1. �
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2.2 Saddle point formulation of the macroscopic impact law

In the macroscopic setting, we consider that the solid phase is represented by a

density supported in a domain Ω ∈ Rd , subject to remain below the value 1. We

denote by K̂ the set of all those measures, which is the macroscopic counterpart of

the set K of n-sphere configurations with no overlapping. We shall disregard here

issues possibly related to wall conditions or mass at infinity: we assume that Ω is

bounded, and that that the support of ρ is strongly included in Ω (i.e. the support of

ρ is at a positive distance from ∂Ω, which we denote by ω ⊂⊂ Ω).

We define a pre-collisional configuration as a density in K̂ , together with a pre-

collisional velocity field

U ∈ L2
ρ(Ω)d =

{
v : Ω→ Rd , ρ − measurable ,

∫
Ω

|v |2dρ < ∞
}
.

We describe here a natural way to define a post collisional velocity u, natural in

the sense that it directly follows the same principles as the microscopic law. This

strategy to define a post-collisional velocity in the purely inelastic setting follows

the framework proposed in [22, 23] for macroscopic crowd motion models. Feasible

velocities are those which are non-concentrating in the saturated zone [ρ = 1]. For

smooth velocities, it amounts to prescribe a nonnegative divergence in this zone.

Such a set can be properly defined by duality as

Ĉρ =

{
v ∈ L2

ρ(Ω)d ,
∫
Ω

v · ∇q dρ ≤ 0 ∀q ∈ Λρ , q ≥ 0 a.e.

}
(10)

where the space Λρ of pressure test functions is defined as

Λρ =

{
p ∈ H1(Ω) , p(1 − ρ) = 0 a.e.

}
. (11)

Note that, since we assumed that the support of ρ is strongly included in Ω, it holds

that Λρ ⊂ H1
0
(Ω).

It can be easily checked that, for a smooth velocity field v and a regular saturated

zone, belonging to Ĉρ is equivalent to verifying ∇ · v ≥ 0 on [ρ = 1].
The non-elastic collision law writes

u = P
Ĉρ

U,

where the projection P
Ĉρ

is with respect to the L2
ρ norm.

Let us check that it fits into the abstract setting of Proposition 12. withV = L2
ρ(Ω)d,

and Λ = Λρ. We define Λ+ ⊂ Λρ as the set of all those functions in Λρ which are

nonnegative almost everywhere:

Λ+ =
{
q ∈ Λρ , q(x) ≥ 0 a.e. in Ω

}
. (12)

We introduce



10 Félicien Bourdin and Bertrand Maury

B̂ : v ∈ V = L2
ρ(ω)d 7−→ B̂v ∈ Λ′,

where B̂v is defined by 〈
B̂v, p

〉
=

∫
v · ∇p dρ. (13)

Note that Λ and Λ′ are not identified here, and that B̂ maps V onto Λ′, so that the

adjoint operator B̂⋆ is defined in L(Λ,V), the set of continuous linear mappings

from Λ into V .

The saddle-point formulation of the problem can be written

�����������

u + ∇p = U ρ-a.e. in Ω,

“ − ∇ · u ≤ 0 in [ρ = 1]”,
p ≥ 0 ρ-a.e. in Ω,∫
Ω

u · ∇p dρ = 0,

(14)

where the second equation (between quotation marks) is meant in a weak sense, i.e.∫
Ω

u · ∇q dρ ≤ 0 ∀q ∈ Λ+.

This condition can also be written in an abstract way: B̂u ∈ Λ−, where Λ− is the

polar cone to Λ+, i.e. the cone of all those linear forms in Λ′ which are nonpositive

over Λ+.

We may now state the well-posedness result.

Proposition 3 Let ρ ∈ K̂ be given as a density defined over a bounded domain

Ω, with supp(ρ) strongly included in Ω. Problem (14) admits a unique solution

(u, p) ∈ V × Λ+, and the primal component u of this solution is the projection of U

on Ĉρ.

Proof From Proposition (12) (more precisely Corollary 1), it is sufficient to prove

that B̂ (defined by (13)) is onto. Let us prove that there exists a constant β > 0 such

that for every q ∈ Λ B̂⋆q


L2
ρ

≥ β‖q‖H1,

which writes ‖∇q‖L2
ρ
≥ β‖q‖H1 in the present context. Due to Poincaré Inequality,

which holds true because Λ ⊂ H1
0
(Ω), it is sufficient to establish that the inequality

‖∇q‖L2
ρ
≥ β‖∇q‖L2 holds for any q ∈ Λ.

For q ∈ Λ, by Theorem 1.56 in [35] one has (1 − ρ) ∇q = (1 − ρ) 1q,0∇q = 0, so

that ‖∇q‖L2
ρ
= ‖∇q‖L2 . As a consequence, B̂⋆ has a closed range, and so does

B̂ by Banach-Steinhaus Theorem. The range of B̂ is also dense thanks to the same

inequality, thus B̂ is onto. �
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3 Micro-macro issues

We detailed in the previous section impact laws for a collection of rigid spheres, in

the Moreau’s spirit, and we proposed a natural instantiation of the same principles at

the macroscopic level. The macroscopic version may appear as a natural candidate

to handle collision between clusters of infinitely many hard spheres represented

by a diffuse density. We shall see here that some considerations may comfort this

standpoint in the one-dimensional setting. Yet, for dimensions d ≥ 2, we shall prove

that the macroscopic law presented in the previous section is not a relevant model

for describing the impact between large collections of hard spheres.

One dimensional setting

In the one-dimensional setting (hard spheres move on a fixed line) the two approaches

are mutually consistent, as we shall see here.

First, the notion of maximal density is well defined at the microscopic level: a

cluster of spheres (represented by segments in 1d) is saturated if the solid phase

covers some zone of the real line, which corresponds to ρ = 1 in the macroscopic

setting.

Now consider such a cluster of n segments covering an interval I ∈ R, and

the corresponding macroscopic density ρ = 1I (characteristic function of I). We

consider a pre-collisional velocity field U that pushes the configuration against the

boundary of the feasible set, i.e. such that ∂xU ≤ 0. In this case the constraint will

be saturated overall the cluster so that, at the macroscopic scale, −∇ · u = −∂xu = 0,

and Problem (14) is a classical Darcy problem�����
u + ∂xp = U,

−∂xu = 0 in I .
(15)

Eliminating the velocity yields a Poisson problem on the pressure

−∂xxp = −∂xU, (16)

with Dirichlet boundary conditions on the boundary of I .

At the microscopic level, we simply consider pre-collisional velocities U1, . . . ,

Un, with Ui = U(qi), and we make a slight abuse of notation by keeping U to denote

the vector of velocities. Since the velocities U1, . . . , Un, are non-increasing, the

constraint will also be saturated, which leads to a Darcy-like problem���� u + B⋆p = U

Bu = 0.
(17)

Eliminating the velocity yields a Poisson-like problem
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Fig. 3 Square (left) and triangular (right) lattices.

BB⋆p = BU, (18)

with

B =

©
«

1 −1 0 . . . . . .

0 1 −1 . . . . . .

0 0
. . .
. . . . . .

0 0 . . . 1 −1

ª®®®®¬
∈ Mn−1,n(R) , BB⋆

=

©«

2 −1 0 · · 0

−1 2 −1 0 · ·
0 −1 · · ·
· · · · ·
· · 2 −1

0 · · 0 −1 2

ª®®®®®®®®®®®®
¬

∈ Mn−1(R),

that is the discrete Laplacian matrix. The two formulations are mutually consistent

in the sense that the linear system (18) is a standard finite difference discretization

of the Poisson problem (16), which is covered by rigorous convergence results (see

e.g. [2]).

Case d ≥ 2

In higher dimensions the situation is fully different. First, the notion of maximal

density is not clearly defined at the microscopic level. Let us consider collections

of identical discs. The maximal packing density ρmax = π/2
√

3 ≈ 0.9069 . . . , and

corresponds to the triangular lattice (see Fig. 3, right). Yet the actual density of

moving collections of rigid disks is generally strictly less than this maximal value,

which does not mean that the flow is unconstrained (as the macroscopic setting

would suggest). These considerations call for a clear identification of configurations

which saturate the constraint. It is tempting to consider as maximal in some sense

any density corresponding to such configurations, for which there are no free disks,

so that constraints are activated everywhere. The triangular lattice is clearly jammed,

but so is the cartesian lattice (ρ = π/4 ≈ 0.79), and it is possible to build looser

jammed configurations, for example by removing some non neighboring discs from
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the triangular lattice. We refer to [34] for a general review on the notion of maximal

random packing.

Beyond this difficulty to properly define the notion of maximal density, the micro-

scopic and macroscopic projections exhibit deep discrepancies in dimensions higher

than 1. We propose here to enlighten these discrepancies by considering the underly-

ing Poisson problems for the pressure in both settings. Like in the one-dimensional

setting, we first consider the macroscopic setting, which is in some manner simpler

than the microscopic one, in spite of its infinite dimensional character.

The pressure can be shown, under some assumptions, to verify a Poisson like

problem in the saturated zone, The first step consists in proving that the problem

verifies the abstract maximum principle (see Definition 3), that is

B̂U ∈ −Λ− = −Λ◦
+
=⇒ ∃p ∈ Λ+ s.t. B̂B̂⋆p = B̂U.

Proposition 4 We assume that supp(ρ) is strongly included in Ω, and that Ω is

connected. The couple (B̂,Λ+) verifies the maximal principle (Definition 3).

Proof Since B̂⋆ is one to one, it amounts to check that, if B̂U ∈ −Λ−, i.e. if U is

such that ∫
Ω

U · ∇q ≥ 0 ∀q ∈ Λ , q ≥ 0 a.e., (19)

then the (unique) solution p ∈ Λ to∫
Ω

∇p · ∇q =

∫
Ω

U · ∇q ∀q ∈ Λ

takes nonnegative values almost everywhere, i.e. it lies in Λ+. This property takes

the form of a maximum principle for the Laplace operator, in an extended sense:

the saturated zone [ρ = 1] may be not be the closure of an open domain, it may in

particular have an empty interior, while having a positive measure (see Remark 1).

This property is obtained by a standard procedure, which consists in taking a test

function equal to the negative part of p, i.e. q = p− = −min(0, p). We have that

∇q = −∇p1p≤0 (see Theorem 1.56 in [35]), and q ≥ 0, so that

−
∫
Ω

| ∇p− | 2
=

∫
Ω

U · ∇p− ≥ 0,

which implies that ∇p− vanishes almost everywhere, i.e. p− is constant on Ω. Since

it is 0 in the neighborhood of the boundary, it vanishes on Ω i.e. p ≥ 0 a.e. in Ω. �

In other words, if the pre-collisional field is non-expansive, i.e. ∇ · U ≤ 0, then

the pressure field p is a weak solution to the Poisson problem

−∆p = −∇ · U, (20)

on the saturated zone [ρ = 1], with homogeneous boundary conditions.

Let us add that the PDE above can only we legitimately written under certain

conditions on the saturated zone. If the latter presents some pathologies, for example
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if it has an empty interior (like the complement of a dense open set) and yet a

positive measure, then p might be non-trivial (Λ is not reduced to {0}), whereas (20)

is not even verified in the sense of distributions. Indeed, sinceΛ does not contain any

smooth function (except 0), the formulation (19) is much weaker than (20) considered

in the sense of distribution.

A proper Poisson problem can be recovered under some additional assumptions,

for instance if the saturated zone is “regular” in the sense that [ρ = 1] = ω where ω

is a smooth domain. The condition that is actually needed is actually the following:

ω is such that Λ (defined by (11)) is equal to the closure of C∞
c (ω) in H1(Ω) (the

functions of C∞
c (ω) being extended by 0 outside ω). Under these conditions, (19)

implies that p is a weak solution (in a standard sense) to the Poisson problem (20).

Remark 1 We mentioned the fact that the spaceΛmight contain no smooth function,

while being non-trivial. We prove in this remark that it is indeed the case. We propose

to investigate the case where the saturated zone [ρ = 1], which contains the support

of all those functions in Λ, is the complement of a dense open set ω, which excludes

any nontrivial smooth function. We describe below how to build a nontrivial function

inΛ. We assume d = 2, but the approach can be straightforwardly extended to higher

dimensions. We consider a sequence (cn) ∈ ΩN that is dense in Ω, and a sequence

(Rn) ∈ (0,+∞]N such that
∑
πR2

n ≤ |Ω|/2. For a given rn < Rn, we denote by γn
the circle of radius rn, centered at cn, by Γn the cocentric circle of radius Rn, and

by Ωn the ring domain between these circles. We denote by gn the solution to the

following Dirichlet problem in Ωn��������
−∆g = 0 in Ωn,

g = 0 on γn,

g = 1 on Γn,

(21)

extended by 0 inside the small disc, and by 1 outside the large one. Since the

capacity of a point is 0 in R2 (see e.g. [24]), one can choose rn, with 0 < rn < Rn,

sufficiently small to ensure that ∫
Ω

|∇gn |2 ≤ 1

22n
.

We denote by ω the union of the small discs (centered at cn, with radius rn), which

is open and dense by construction. Now consider the function Gn = g1 g2 . . . gn. It

holds that

∇Gn =

n∑
k=0

∇gn
∑
j,k

gj,

so that (all the gj take values between 0 and 1 by construction), by the triangular

inequality in L2(Ω),

‖∇Gn‖L2(Ω) ≤
n∑

k=0

‖∇gk ‖L2(Ω) ≤
n∑

k=1

1

2k
≤ 2.
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Fig. 4 In the configuration

represented here, considering

that the distances are subject to

remain 0 (constraint Bu = 0),

the pre-collisional velocity

tends to push any two grains

in contact toward overlapping,

and yet the pressure between

the two grains in the center

will be negative.

The sequence (Gn) is therefore bounded in H1(Ω) (the gradient is bounded in L2,

and they all vanish in the first disc centered at c0, with radius r0). One can extract

a sub-sequence which weakly converges in H1(Ω) to some function G ∈ H1(Ω).
Since the convergence is strong in L2 by Rellich’s Theorem, the convergence (up

to a subsequence) holds almost everywhere, so that G is by construction equal to 1

almost everywhere in the complement of the union of the large discs (centered at cn,

with radius Rn). By assumption on Rn, the measure of this set is positive (larger than

|Ω|/2), so that G is different from 0, while vanishing by construction in the dense

union ω of the small discs.

At the microscopic level the picture is different in general. In particular, the

approach carried out in the proof on the previous proposition is no longer valid. The

difficulty comes from the fact that BB⋆, which is the straight analog of −∆ in the

one-dimensional setting, does not verify any maximum principle in general.

Consider the simple situation represented in Figure 4, with a pre-collisional

velocity directed toward the center. If we consider (like in the proof of the previous

proposition) the problem with an equality constraint (Bu = 0, which means that the

hard grains are glued together), eliminating the velocity leads to a discrete Poisson

problem

BB⋆p = BU.

Since the horizontal velocities have a much larger magnitude, in spite of the fact that

the pre-collisional velocity pushes the grains against each other (i.e. BU > 0), it is

clear that the pressure associated with the contact between the two central grains will

be negative, which rules out the maximum principle (in the sense of Definition 3).

As a consequence, the solution to the impact problem, with a unilateral constraint,

will not be the same: the grains at the center will be pushed apart during the

collision, which implies (thanks to the complementarity constraint 〈Bu | p〉 = 0)

that the corresponding pressure is 0. Note that some sort of Poisson Problem can be

recovered for the pressure associated with the impact law, by removing the raws of

B which correspond to non activated contacts, i.e. with −Gij · u < 0. If one denote

by B the corresponding matrix, and by p the corresponding pressure, it holds that

B B
⋆

p = B U,
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with a reduced matrix B which may also not verify the maximum principle.

This violation of the maximum principle for BB⋆ is generic in the hard-sphere,

microscopic, setting, as soon a dense collections of grains are concerned. It can

be checked for simple situation that the matrix BB⋆, unlike in the one-dimensional

setting, has positive off-diagonal entries.

Square and triangular lattices

As an illustration of the previous considerations, and as an introduction to the next

section, let us make some remarks on very specific situations, where the overall

behavior of a collection of rigid discs can be seen to significantly differ from the

behavior given by the macroscopic impact law.

Consider at first a jammed configuration structured according to a square lattice

(see Figure 3 (left)). On each row, the non-overlapping constraints impose horizontal

velocities to be non-decreasing. Similarly, on each column, the vertical velocities

must be non-decreasing also. Two fields of Lagrange multipliers can therefore be

associated to the constraints in the main directions x and y, which act on the system

independently from each other. As a consequence, two constraints must be verified,

to be compared to the single scalar constraint of the macroscopic constraint∇·u ≥ 0.

In the case of a triangular lattice (see Figure 3 (right)), the monotonicity of the

velocity is imposed in each of the 3 principal directions.

In both cases, the microscopic constraints are much stronger than the macroscopic

one, which is therefore obviously irrelevant to model at the macroscopic scale the

collections of hard discs. The next section is dedicated to designing macroscopic

models more respectful of the underlying microscopic structure, in the case of

crystal-like configurations.

4 Anisotropic macroscopic collision laws

We develop here some macroscopic models intended to represent configuration of

jammed grains introduced in section 3, namely configurations that are structured in

a periodic way. The approach is the following: starting from the constraints at the

microscopic level, we extend them to the macroscopic level.

Square lattice

We first propose a macroscopic model adapted from the microscopic configuration

of spheres jammed on a cartesian lattice, as depicted on Figure 5. Let us study the

constraints on the velocity of the central sphere denoted by 0 in the Figure: there are

four, each one corresponding to a contact with an adjacent sphere. The microscopic

constraint for spheres in contact described by (2) writes here
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0

1

2

3 4 0

1 2

3 4

5 6

Fig. 5 The two structured jammed configuration. On both side, the spheres in contact with the

sphere 0 are labelled from 1 to 4 or 6.

��������
(u1 − u0) · ey ≥ 0

(u0 − u2) · ey ≥ 0

(u4 − u0) · ex ≥ 0

(u0 − u3) · ex ≥ 0

(22)

System (22) can be reformulated in a more concise way: the quantities ux = u · ex
and uy = u · ey must be non decreasing along each axis. In a macroscopic setting,

we want thus to translate this constraint by subjecting ∂ux/∂x and ∂uy/∂y to be

nonnegative in some sense, considering that u has L2 regularity. To that purpose, we

define the directional derivatives of the two components in a dual way, imposing

−
∫
Ω

ux

∂p

∂x
≥ 0 (23)

for every nonnegative test function p such that its weak partial derivative in x can be

defined. In order to clarify this last condition, we will introduce anisotropic Sobolev

spaces, naturally defined to formalize the notion of “weakly derivable along one

direction”. The following description of these spaces is extracted from [16]. In what

follows, Ω is a strictly convex bounded open set, with regular boundary. We refer

to [16] for the study of more general domains.

Definition 1 The anisotropic Sobolev space in the direction x on Ω is defined by:

H1
x (Ω) =

{
f ∈ L2 (Ω) , ∂ f

∂x
weakly exists in L2 (Ω)

}
(24)

where “
∂ f

∂x
weakly exists in L2 (Ω) ” means that

∀g ∈ C1 (Ω) ,
∫
Ω

∂ f

∂x
g = −

∫
Ω

∂g

∂x
f . (25)

This space is endowed with the norm ‖ f ‖2

H1
x
= ‖ f ‖2

2 +

 ∂ f

∂x


2

2
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We then define H1
0,x

(Ω) as the closure of C∞
c (Ω) in H1

x (Ω), and H−1
x (Ω) as the

dual of H1
0,x

(Ω). Since integrating along a single direction is sufficient to prove

Poincaré inequality in the usual Sobolev space H1
0
(Ω) (see Proposition 9.18 and

Corollary 9.19 in [9]), the anisotropic counterpart of Poincaré inequality holds :

Proposition 5 There exists c > 0 such that for every f ∈ H1
0,x

(Ω),

‖ f ‖2 ≤ c

∂ f

∂x


2

(26)

We may now introduce the macroscopic model corresponding to a square micro-

scopic structure. Let ρ ∈ L∞ (Ω), such that ρ ≤ 1 a.e., we still denote by ρ the

measure of density ρwith respect to the Lebesgue measure. In order to avoid bound-

ary issues, we assume that all the measures we consider are supported on a set

strongly included in Ω (that is to say, as previously, at positive distance to ∂Ω).

In order to alleviate notation (and to deal with realistic situations when the grains

configuration is structured), we assume ρ to be saturated over all its support, so that

there is no need in mentioning the dependence in ρ in the notation.

Problem 1 Given ρ ≤ 1 and U ∈ L2 (Ω)2, find u =
(
ux, uy

)
∈ L2 (Ω)2 that realizes

the projection

min
u∈Cx∩Cy

∫
Ω

‖u − U‖2
2 dρ (27)

where the constraints set Cx and Cy are defined by duality:

Cα
=

{
u ∈ L2 (Ω) ,

∫
Ω

∂q

∂eα
uα ≤ 0 ∀q ∈ Λα , q ≥ 0 a.e

}
(28)

and Λα =

{
q ∈ H1

0,eα
(Ω) , q (1 − ρ) = 0 a.e.

}
for α = x, y.

Since Cx and Cy are closed convex cones, the projection problem 1 admits a

unique solution. We can write the saddle-point formulation of the problem, that is

the instantiation of the abstract formulation (50) to the present situation.

Proposition 6 There exists a unique pair of nonnegative Lagrange multipliers (or

pressures)
(
px, py

)
∈ Λx × Λy such that

u +
∂px

∂x
ex +

∂py

∂y
ey = U ρ-a.e. (29)

Proof The constraint set C = Cx ∩ Cy can be written

C =
{
u ∈ L2 (Ω)2 ,

〈
Bu |

(
qx, qy

)〉
≤ 0 , ∀

(
qx, qy

)
∈ Λ+

}
where
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B :




L2 (Ω)2 −→ H−1
x (Ω) × H−1

y (Ω)

u 7−→
(
−∂ux

∂x
,−
∂uy

∂y

)

and Λ+ =
{(

qx, qy
)
∈ Λx × Λy , qx ≥ 0 , qy ≥ 0 a.e.

}
. By Poincaré inequality,

there exists a constant β > 0 such that |B⋆µ| ≥ β|µ|, with

B⋆ :




H1
0,x

(Ω) × H1
0,y

(Ω) −→ L2 (Ω)2

(
qx, qy

)
7−→ ∂qx

∂x
ex +

∂qy

∂y
ey .

Corollary 1 in the appendix guarantees the existence of a pair of Lagrange multipli-

ers, the uniqueness comes from the one-to-one character of B⋆ given by the same

inequality. �

The saddle-point formulation (29) can be projected onto the two axes, leading to

two independant systems. The problem then reduces to finding

(ux, px) ∈ L2 (Ω) × H1
0,x (Ω) and

(
uy, py

)
∈ L2 (Ω) × H1

0,y (Ω)

solutions to ��������
∂px

∂x
+ ux = Ux ρ-a.e.

−∂ux

∂x
≤ 0 where ρ = 1,

(30)

��������

∂py

∂y
+ uy = Uy ρ-a.e.

−
∂uy

∂y
≤ 0 where ρ = 1.

(31)

This is the macroscopic counterpart of what we had seen at the end of Section 3:

two independant pressure fields appear, acting separately on each component of the

velocity in order to correct the compressions in x and y.

Remark 2 This model introduces anisotropy, so that the collision is no longer rota-

tionally invariant: Figure 6 shows the situation of two colliding blocks, under three

angles of impact. In the case of an impact along one of the two principal directions,

no perturbation occurs in the tangential direction whereas in the case of an impact

involving both directions (second case in Figure 6), a transverse velocity appear.

Note that in the third case of two blocks colliding along a direction that is very

close to one of the two axes, the post-impact velocity is mainly directed along the

transverse direction.

We shall now build a more pathological macroscopic model derived from the

microscopic configuration of a triangular (or hexagonal) stack of particles (see

Figure 5, right). The well-posedness of the saddle-point formulation (i.e. existence
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Fig. 6 Three impacts between opposing blocks, varying the angle of incidence. On the left, the

velocity fields before the impact; on the right, the velocity fields after the impacts.
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and uniqueness of pressure fields) is more delicate than before: uniqueness is lost,

as we shall see later on, and the existence is still an open problem. We introduce unit

vectors along the principal directions:

e0 = (1, 0) , e1 =

(
−1

2
,

√
3

2

)
, e2 =

(
−1

2
,−

√
3

2

)
.

In this case, any sphere has 6 neighbors, two along each axis directed by the ei .

As for the previous configuration, one can write the microscopic constraints on the

sphere 0 ���� (u4 − u0) · e0 ≥ 0 , (u0 − u3) · e0 ≥ 0 , (u1 − u0) · e1 ≥ 0

(u0 − u6) · e1 ≥ 0 , (u5 − u0) · e2 ≥ 0 , (u0 − u2) · e2 ≥ 0
(32)

that can be reformulated by saying that ui = u · ei has to be increasing along each

axis of constraint. We can thus write the macroscopic model reformulating this

monotonicity exactly as above: the non-overlapping constraint becomes Bu ≤ 0,

with

B :

{
L2 (Ω)2 −→ H−1

e0
(Ω) × H−1

e1
× H−1

e2
(Ω)

u 7−→
(
−∂e0

u0,−∂e1
u1, ∂e2

u2

) (33)

where ui is the projection of u on the vector ei . The triangular macroscopic model

then writes

Problem 2 Given ρ ≤ 1 and U ∈ L2 (Ω)2, find u ∈ L2 (Ω)2 that realizes the

projection

min
Bu≤0

∫
Ω

‖u − U‖2
2 dρ. (34)

The constraint Bu ≤ 0 is to be interpreted in a dual way: we then require 〈Bu | q〉 ≤ 0

for every nonnegative pressures q ∈ Λ0 × Λ1 × Λ2, with

Λi =

{
qi ∈ H1

0,ei
(Ω) , q (1 − ρ) = 0 a.e.

}
, i = 0, 1, 2.

Since Problem 2 consists in projecting on a closed convex cone, it admits a unique

solution. The saddle-point formulation reads:

Find (u, p0, p1, p2) ∈
(
L2 (Ω)2 × Λ0 × Λ1 × Λ2

)
such that

������������

u +

2∑
i=0

∂ei piei = U,

pi ≥ 0,
2∑
i=0

∫
Ω

ui∂ei pi = 0.

(35)
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Remark 3 The operator B⋆ is not onto, as we show here by exhibiting a non-trivial

element in ker
(
B⋆

)
. Consider an hexagon H included in Ω, and f a piecewise

constant function equal to 0 out of H, and alternatively 1 and −1 depending on the

position in H, as represented on Figure 7. Define now pi as the solution of�����
∂ipi = f in H

pi = 0 in Ω \ H
(36)

Due to the symmetries of f , this equation is compatible with the limit condition

p = 0 on ∂H: every line directed by any ei has an intersection of the same length

with zones labelled by 1 or −1. Moreover, we have

2∑
i=0

∂ipiei = f

2∑
i=0

ei = 0, so p

lies in ker(B⋆).

1 −1

1−1

−1 1

Fig. 7 Counterexample to the injectivity of B⋆

Remark 4 It is an interesting counterpart to the microscopic counterexample pre-

sented on Figure 2. When the number of spheres increases, there is 3/2 times more

constraints than degrees of freedom; thus the dimension of the kernel of B⋆ tends to

infinity in the micro case. Accordingly, the macroscopic example above provides an

infinite family of independent vectors in ker(B⋆).

5 Homogenization issues

This section deals with issues pertaining to the convergence of microscopic models

towards macroscopic ones. Let us make it clear that such convergence is out of

reach in general. We shall rather describe a general framework to address these

issues, and establish some convergence results in very particular situations, in the

case when the microscopic situation is structured. The idea is the following: we

start from a macroscopic velocity field, and we span the domain with a sequence of

saturated configurations of spheres of radius tending to 0. At each scale, we project

the field on the feasible set, which contains all those fields which comply with the

non-overlapping constraint.
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Fig. 8 On the left, the construction of a microscopic vector field Ũ from the macroscopic one U ,

in the square configuration. The green lines delimit the Voronoï cells associated to the spheres, the

red arrows are the mean of the vector field on each cell (expanded for a sake of clarity). On the

right, construction of a macroscopic vector field v (black) from a microscopic field ũ (red).

5.1 General procedure

We describe here a general procedure to formalize questions concerning micro-macro

convergence. First, we need to define a way to compare microscopic velocities to

macroscopic fields. Given a field U ∈ L2 (Ω)2, and n non overlapping touching

spheres in Ω, denote D1, . . . , Dn ⊂ Ω the Voronoï cells associated to the spheres.

Define

Ũi =
1

|Di |

∫
Di

U(x)dρ(x) ∀1 ≤ i ≤ n. (37)

Let ũ be the solution of the microscopic problem associated to Ũ. Finally, let v be

the piecewise constant function equal to ũ on the cell Di . This mapping is depicted

in Figure 8. We have built an operator

φn :

{
L2 (Ω)2 −→ L2 (Ω)2

U 7−→ v

(38)

which maps a pre-collisional macroscopic velocity U to a post-collisional velocity,

computed through projection at the microscopic level.

We are now able to formulate the homogenization problem statement, in terms of

two general questions:

•? Homogenization of impact laws

Given a velocity field U ∈ L2 (Ω)2 and a sequence (xn) = (xn
i
)1≤i≤n of collections

of hard sphere configurations, with a common radius δn (with δn → 0), such that
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n∑
i=1

1B(xn
i
,δn ) (39)

weakly converges to some limit density when n goes to +∞, what are the possible

limits of φn(U) ? Is it possible to prescribe constraints on the microscopic structure

so that φn converges to some projection operator at the macroscopic level, which

would encode the characteristics of the microscopic structure ?

These questions should be seen as a wide research program which is way beyond

the scope of these notes. We shall restrict ourselves to some short comments, and to

providing a detailed answer in very specific situations (see Section 5.2).

First, various sorts of constraints can be expected: isotropic ones like in Section 2,

anisotropic ones according to some principal directions like in Section 4, or possibly

not linked to any underlying regular structure in the grain configuration. The notion

of local maximal value, already discussed in Section 2, is also an issue: consider

e.g. a configuration where a part of the saturated domain is spanned by a square

lattice, and another part is spanned by a triangular mesh. As we shall see below, the

projection operators will actually converge towards an operator activated respectively

when ρ = (1 − π/4) and ρ = π/2
√

3, depending on the local microscopic structure,

so that the maximal density is not defined uniformly over the saturated zone.

In all generality, when there is no reason to assume any regularity / periodicity

in the microscopic structure, one may expect some sort of averaging in the direction

of contacts, with a local constraint on the density based on the so-called Random

Maximal Packing, that is around 0.64 for three-dimensional collections of identical

hard spheres ([33]). This may legitimate an isotropic approach like the one presented

in Section 2.2, based on a uniform maximal density, and an isotropic constraint on

the velocities. Yet, as extensively described in the literature on granular media (see

e.g. [32]), complex force networks are observed within collections of grains, over

scales that go way beyond the microscopic size of the grains. Such observations

advocate for the need to develop macroscopic models which would reflect some

anisotropy at the mesoscopic scale, in the spirit of what is done in the next section

for highly structured configurations.

Remark 5 One could question the choice of using Voronoï Cells instead of defining

the field v to be constant on every sphere, and null elsewhere. The reason is that

we aim at showing strong L2 convergence results, which will not hold for velocities

supported on spheres. For instance, consider the constant field U = ex for the

squared configuration with radius tending to 0. As no constraint is activated, v is

automatically equal to U everywhere, and similarly, ũn
i
= ex for every 1 ≤ i ≤ kn (kn

being the number of spheres needed to span the domain). If we define wn piecewise

constant on every sphere equal to 0 elsewhere, there subsists an irreducible gap

‖U − w
n‖2

2 = (1 − π/4) λ(Ω) + o(1)

π/4 being the proportion of Ω spanned by the spheres for a square lattice.
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5.2 Homogenization for structured configurations

We detail here micro-macro convergence results in very specific situations, namely

when the microscopic spheres on which we interpolate in the previous subsection

are organized on square or triangular lattices. More precisely, under the framework

presented at the beginning of Section 5.1, we establish that, given a pre-collisional

velocity field U, the velocities obtained by projection at the microscopic level (op-

erators φn defined by (38)) converge to a velocity obtained by projection at the

macroscopic level, according to the projection operators detailed in Section 4. Here,

for the sake of simplicity we consider the whole set ω = [0, 1] × [0, 1] to be spanned

by spheres disposed on a square or triangular lattice, as in Figure 5. We can thus disre-

gard the issues of maximal density raised in the previous section, as we know that the

microscopic density measure will weakly converge to a constant, that we can set to 1.

First, we need to fix some common notation for the two structures considered.

Let V = L2 (ω)2 be the set of macroscopic velocities, and for n ∈ N, kn the number

of spheres of radius 1/n needed to span ω, either for the square or the triangular

configuration. Denote then Ṽn =
(
R

2
)n

the set of microscopic velocities, Vn ⊂ V

the set of functions constant on each Voronoï cell Di ⊂ ω associated to the sphere

configuration.

We are going to use a classical theorem in Numerical Analysis, designed to estimate

errors for approximated problems of optimisation. Here Vn is seen as an approxima-

tion space for V . The main idea here is to approximate not only the space of functions

V , but also the space of constraints. We denote by Cρ ⊂ V the set of velocities satis-

fying the macroscopic anisotropic constraint (defined in section 4), and Cn ⊂ Vn the

set of velocities satisfying the microscopic constraint once the velocity of a cell is

attributed to the sphere in the cell: Cn is seen as an approximation of the constraint

space Cρ. We then have the following error estimate between the exact solution u

and the approximate solution v:

Theorem 1 ( Adapted from Falk, 74’ [13])

There exists a, b > 0 such that for every f ∈ Cn and g ∈ Cρ,

‖u − v‖2 ≤
(
a‖u − f ‖2

2 + b‖u − U‖2 (‖u − f ‖2 + ‖g − v‖2)
)1/2

(40)

Given U ∈ V , denote by Ũn the approximation defined by (37) and vn = φn(U).
Denote as before u and ũn the solutions of the macroscopic and the microscopic

problems associated to U and Ũn, with respect to the constraint sets Cρ and Cn.

Figure 8 illustrates this construction.

Proposition 7 The sequence vn converges towards u in L2 (ω)2.

Proof Let uintn be the piecewise constant function equal to
1

|Di |

∫
Di

u(x)dx on every

Di . Since u is in Cρ, one can verify that uintn ∈ Cn. On the other hand, since ũn is the
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solution to the microscopic problem, vn is in Cρ. Therefore, we can use Theorem 1,

that guarantees the existence of a, b some positive constants such that for every

n ∈ N
‖u − vn‖2

2 ≤ a
u − uintn

2

2
+ b ‖u − U‖2

u − uintn


2

(41)

It is then sufficient to show that the piecewise constant approximation uintn tends to

u in L2 (ω)2. Let ǫ > 0 and f ∈ C0 (ω)2 be such that ‖u − f ‖2 ≤ ǫ; denote f intn the

piecewise constant approximation of f . We haveu − uintn


2
≤ ‖u − f ‖2 +

 f − f intn


2
+

 f intn − uintn


2

(42)

Using that f is uniformly continuous onω, define n0 ∈ N such that for every x, y ∈ ω
satisfying |x − y | ≤ 2

n0

, | f (x) − f (y)| ≤ ǫ . Thus for n ≥ n0

 f − f intn

2

2
≤

kn∑
i=1

∫
Di

�� f (x) − f intn (x)
��2 dx

≤
∑
i∈I

∫
Di

ǫ2 = ǫ2 .

On the other hand, using Jensen inequality

uintn − f intn

2

2
=

kn∑
i=1

∫
Di

��uintn (x) − f intn (x)
��2 dx

=

kn∑
i=1

λ(Di)
���� 1

λ(Di)

∫
Di

(u(y) − f (y)) dy

����
2

≤
kn∑
i=1

∫
Di

|u(y) − f (y)|2 dy

= ‖u − f ‖2
2

Thus uintn converges in L2 (ω)2 towards u, and so does vn. �

Remark 6 In the previous proof, two ingredients can be identified as essential in the

process of elaborating general homogenization results:

• uintn ∈ Cn: a field that respects the macroscopic constraint must check the mi-

croscopic constraints once integrated on the Voronoï cells; and reciprocally the

piecewise constant approximation vn of the corrected microscopic field must

satisfy the macroscopic constraint. Thus the macro/micro constraints must be

compatible under the mapping that we defined above.

• uintn needs to converge for the L2 norm toward u: this is in particular true if

the spheres span the whole saturation area, in the sense that the diameter of the

Voronoï cells tends to 0.
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6 Evolution models

We describe here the evolution problems which are associated to the impact laws

that have been described in the first sections of these notes. Let us first make it clear

that writing an evolution problem associated to the impact laws studied in Sections 4

and 5 is irrelevant a priori. Indeed, the assumptions which can be made on the

microscopic structure of a granular medium are instantaneously ruled out as soon

as the medium undergoes any deformation. A macroscopic model respectful of the

current state of the medium in terms of microscopic structure should rely on some

parameters to reflect the local organization of grains, which strongly conditions the

impact law as we detailed in the previous sections. We shall rather present evolution

problems for the microscopic setting, which takes the form of a second-order in time

differential inclusion, and for the macroscopic scale we shall consider the isotropic

setting only (the divergence is nonnegative on the saturated zone).

Microscopic evolution problem

Like in Section 2.1, we consider n moving rigid spheres centered at r1, . . . , rn, with

common radius R, subject to forces f = ( f1, . . . , fn). We denote by m1, . . . , mn, the

masses of the grains, and by M ∈ Mnd the associated mass matrix. We denote by K

the feasible set (defined by (5)), by Cr the cone of feasible direction (defined by (7)),

and by Nr = C◦
r the outward normal cone. Note that Nr is {0} as soon as r lies in

the interior of K , i.e. when there is no contact. We shall consider1 that Nr = ∅ for

r < K . The most concise way to write a class of evolution problems for this system,

considering that impacts are frictionless, is the following (see e.g.[30]):

M
d2r

dt2
+ Nr ∋ f . (43)

When there is no contact, Nr = {0}, and we recover n independent ODE’s in Rd.

The contraint r ∈ K is implicitly prescribed because Nr = ∅ as soon as r < K . Note

also that we have (see the proof of Proposition 1)

Nr =

{
−

∑
ij

pijGij , pij ≥ 0,

}
(44)

where Gij is defined by (6). It guarantees that contact forces verify the Law of

Action-Reaction, and that only repulsive forces are exerted (grains do not glue to

each other).

Yet, Inclusion (43) is essentially compatible with all impact laws which do not

violate the Law of Action-Reaction, including some laws which would lead to an

1 This convention is consistent with the definition of Nr as the Fréchet subdifferential of the

indicatrix function IK of K , which is indeed ∅ outside of K .
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increase of kinetic energy. An impact law of the type (3) has to be prescribed. We

shall now write the full evolution system, in the purely inelastic setting, and with an

explicit involvement of interaction forces. In the dynamic setting, these forces are

generically singular in order to instantaneously change the velocities of the grains,

and we shall represent them by positive measures in time, denoted by M+(0,T ) . In

the purely inelastic setting, the system writes

�������������

M
d2r

dt2
= f +

∑
ij

pijGij

pij ∈ M+(0,T )

supp(pij ) ⊂
{

t , Dij (r(t)) = 0
}

u+ = PCr
u−.

(45)

More general impact laws can be considered, by setting u+ = u− − (1+ e)PNr
u− for

e ∈ [0, 1]. As detailed in [3, 18], the relevance of the impact law is ensured by the

fact that the velocity has bounded variations in time, so that it admits at each time

left and right limits.

The system is formally well-posed in the sense that it fits in classical Cauchy-

Lipschitz theory when there is no contact, and whenever a contact occurs the im-

pact law univocally expresses the post-collisional velocity with respect to the pre-

collisional one. It can be checked that kinetic energy is preserved for e = 1, and part

of it is lost during each collision for e < 1.

There is indeed a well-posedness results for this system, under the condition that

the forcing term f is analytic (see e.g. [3]). Counter-examples to uniqueness exist

for the case of a single grain and a wall, in the elastic setting (e = 1), with a forcing

term which is infinitely differentiable (see [30]).

A similar counter-example can be built in the purely non-elastic case (e = 0),

we again refer to [30, 3] for the analytic expression of the forcing term. In order to

illustrate the principle of these counter-examples, we plot in Figure 9 a numerical

computation of two distinct solutions associated to the same forcing term, for a single

particle forced toward a wall. As detailed in [18], the plotted numerical solutions

correspond to two different sequences of time steps.

The macroscopic counterpart of (45) is the so-called Pressureless Euler equations

with maximal density constraint, which describes the motion of a granular fluid made

of particles which do not interact unless saturation (set at ρ = 1) is reached. In the

purely inelastic setting, the system writes
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Fig. 9 Two distinct solutions associated to the same forcing term




∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = 0,

ρ ≤ 1,

(1 − ρ)p = 0,

p ≥ 0,

u+ = P
Ĉρ

(u−).

(46)

where Ĉρ is the cone of feasible velocities defined by (10). These equation must be

understood in a weak sense. In particular the pressure p is likely to be very singular

in time, like in the microscopic setting, and the momentum equation is meant in a

distributional sense. Little is known concerning this system, which is usually written

without the impact law (last equation of the system). Note that this law can be

replaced, at least formally, by any law of the type

u+ = u− − (1 + e)
(
u− − P

Ĉρ
u−

)
,

with e = 1 for the elastic case. This equation is well-understood in the one-

dimensional setting, see e.g.[7] where particular “sticky-blocks” solutions are built,

and can be used to build solutions of the system. This class of solutions corresponds
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to the situation where the initial density is the sum of characteristic functions of

segments, each one initially moving at a uniform velocity. Since no forcing term is

involved, segments remains segments, possibly merging to form larger segments,

and the model can be treated exactly according to the microscopic model (45). Note

that this approach, presented in the purely inelastic setting, could be extended to

various impact laws (e ∈ (0, 1]). Note also that, since sticky blocks reproduce the mi-

croscopic setting, the non-uniqueness result which we mentioned obviously extends

to the macroscopic problem, if one accounts for a time-dependent forcing term.

This constructive approach does not straightforwardly extend to higher dimen-

sions for obvious reasons: the saturated zone is likely to deform in a complex way,

which makes the macroscopic model fully different from the microscopic one. An

extension has nevertheless been proposed recently in [5] to build solutions to (46)

(without the impact law), again in a purely non-elastic spirit. A numerical approach is

proposed in [10] to approximate candidate solutions to (46). It is based on barotropic

Euler equations, i.e. compressible Euler equations where the pressure is assumed to

be a function of the local density of barrier type: it is taken in the form p = εp(ρ),
where p is smooth on [0, 1) and blows up to +∞ at 1−. When ε goes to 0, the action

of the pressure disappears in non saturated zones, whereas the blow-up at 1 prevents

the density to pass the maximal value. Again, the impact law is not integrated in the

global limit system, but this approach natively recovers the elastic setting (e = 1).

In [11], a similar approach is carried out in the case of a variable congestion (the

constraint ρ ≤ 1 is replaced by ρ ≤ ρ⋆, where ρ⋆ is a given, non-uniform, barrier

density). We also refer to [28] for an analysis of a similar system with additional

memory effects induced by the presence of an underlying viscous fluid. An alterna-

tive approach, also of the constructive type, is proposed in [20], it is based on a time

discretization scheme of the splitting type: at each time step the density is transported

according to the pre-collisional velocity (the congestion constraint is disregarded),

possibly leading to a violation of the constraint. The density is then projected on

K̂ according to the Wasserstein distance (like in the crowd motion model presented

in [22, 23]), and the post-collisional velocity is then a posteriori built from the pro-

jected density. This approach natively restricts to the purely non-elastic setting. Let

us add that these exploratory approaches do not provide a full theoretical framework

to the full system (46) (including the impact law).

Let us add a few comments on the difficulty to handle the collision law, in the

process of building solutions to the full system. The impact law (last equation of (46))

implicitly assumes that left and right limits exist for the velocity field, which is far

from being obvious. In the microscopic setting, it is linked to the BV regularity in

time of the velocity field, which makes clear sense in this purely Lagrangian setting.

In the purely non-elastic setting the velocity of a given particle may undergo jumps,

but each of these jumps also corresponds to a decrease of the kinetic energy. If the

forcing term is controlled, the total variation due to these jumps can be shown to

be bounded. In the macroscopic setting, the velocity field is defined in a Eulerian

way, i.e. u(x, t) corresponds to the current velocity of the medium at x, and BV

character of velocities for Lagrangian particles has no clear counterpart in this

Eulerian description.
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Fig. 10 Newton’s craddle: computation of u+ with Moreau’s approach, with initially touching discs

(left), and slightly pulled apart discs (right).

Stability issues

As suggested by the non-uniqueness result for the evolution problems, the problem

is unstable with respect to data, and in particular to grain positions. A striking

illustration of this instability is given by the so-called Newton’s craddle, which can

be described as follows: a straight raw of touching identical hard spheres is hit on one

of its end by a hard sphere. Actual experiments on this setting show that the apparent

post-collisional velocity affects the sphere on the opposite side only, while the other

spheres (including the hitting one) stay still. A straight application of the approach we

presented (Moreau’s approach) in the elastic setting leads to a fully different picture,

presented in Figure 10 (left): the hitting sphere is pushed backward (i.e. rightward),

almost as if it had hit a wall (the speed is slightly reduced), while the rest of the

spheres are pushed leftward at a small velocity, in such a way that total momentum

and kinetic energy are conserved. Yet, by considering an initial situation where

grains are slightly pulled apart (initial distances set at an arbitrary small value), the

experimentally observed behavior is recovered, after a series of quasi-simultaneous

binary collisions as illustrated again in Figure 10 (right). Similar examples of the

high sensitivity of the impact law to the configuration, possibly inducing significant

changes in the future behavior of the system, can straightforwardly be built for the

macroscopic one-dimensional problem, in the elastic setting.

Appendix

We gather here some well-known theoretical results, and some less classical ones,

on the saddle-point formulation of cone-constrained minimization problems.
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Let V be a Hilbert space, and J : V −→ R a continuously differentiable func-

tional. We denote by DJ(u) ∈ V ′ its differential at u, and by ∇J(u) its gradient:

J(u + h) = J(u) + 〈DJ(u), h〉 + o(h) = J(u) + 〈∇J(u) | h〉 + o(h).

Linear constraints

Proposition 8 Let K be a linear subspace of V , and u a local minimizer of J over

K . Then ∇J(u) is orthogonal to K , which we can write

∇J(u) + ξ = 0 , ξ ∈ K⊥.

Proof Fix any h ∈ K . For t ∈ R in a neighborhood of 0,

J(u + th) = J(u) + t〈∇J(u) | h〉 + o(t) ≥ J(u),

which yields 〈∇J(u) | h〉 = 0. �

We now assume that K = ker B, where B ∈ L(V,Λ), and Λ is a Hilbert space,

identified to its dual space. We furthermore restrict ourselves to the case of a quadratic

functional

v 7−→ J(v) = 1

2
|v − U |2, (47)

for a given U ∈ V .

Proposition 9 Let K = ker B be a linear subspace of V , and u a local minimizer of J

(defined by (47)) over K , the linear functional ξ defined in the previous proposition

lies in B⋆(Λ).
If we assume that B has a closed range, then ξ ∈ B⋆(Λ). If we identify V with its

dual space, considering accordingly that B⋆ maps Λ to V , it means that there exists

p ∈ Λ such that {
u + B⋆p = U

Bu = 0
(48)

Conversely, without any assumption on B, if (u, p) ∈ V × Λ verifies (48), then u is

the projection of U on K = ker B.

Proof We have ξ ∈ K⊥
= B⋆(Λ) (see e.g. [9]). Now if B has a closed range, B⋆ has

also a closed range, so that B⋆(Λ) = B⋆(Λ), which yields (48).

Conversely, if (48) is verified, then U − u ∈ K⊥, which implies that u is the

projection of U on K = ker B. �

Proposition 10 Under the assumption of Proposition 9, if we furthermore assume

that B is onto, then λ is unique.

Proof This is a straightforward consequence of ker(B⋆) = B(V)⊥ = {0}. �
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Remark 7 Problem (48) is commonly called saddle-point formulation of the con-

strained minimization problem. Indeed, if we define the Lagrangian of the problem

as

L : (v, q) ∈ V × Λ 7−→ L(v, q) = J(v) + 〈Bv | q〉,

then (u, p) verifies (48) if and only if it is a saddle point for L in V × Λ, i.e.

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀v ∈ V , q ∈ Λ.

Unilateral constraints

We now consider the projection of an element on a closed convex cone C. This cone,

like all the cones we shall consider in this section, admits the origin as a pole, i.e.

R+C ⊂ C. More precisely, U ∈ V being given, we aim at minimizing

v 7−→ J(v) = 1

2
|v − U |2

over C. We denote by N the polar cone to C:

N = C◦
= {v ∈ V , 〈v | w〉 ≤ 0 ∀w ∈ C} .

Proposition 11 (Moreau 1962)

Let C be a closed convex cone in V and N = C◦ its polar cone. Then the identity in

V decomposes as the orthogonal sum of the projections on C and N . In other words,

for any U ∈ V , it holds that

u + ξ = U , u = PCU , ξ = PNU , 〈u | ξ〉 = 0.

Conversely, if U = u + ξ with u ∈ C, ξ ∈ N , and 〈u | ξ〉 = 0, then u = PCU and

ξ = PNU.

Proof For the sake of completeness, we give here a short proof of this standard

result established in [25]. Let us first recall that, for any closed convex set, u is the

projection of U on K if and only if u ∈ K and

〈U − u | w − u〉 ≤ 0 ∀w ∈ K .

Applying this to the closed convex set C, and using the fact that C is a cone, we have

that

〈U − u | tw − u〉 ≤ 0 ∀w ∈ C , t ∈]0,+∞[.

By dividing by t, and having t go to +∞, we obtain 〈U − u | w〉 ≤ 0, i.e. U − u ∈
N = C◦. Let us now prove that ξ = U −u is the projection of U on N . For any w ∈ N

〈U − (U − u) | w − (U − u)〉 = 〈u | w〉 + 〈U − u | 0 − u〉.
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Fig. 11 Mutually polar cones

The first term is nonnegative by polarity, and so is the second one because u is the

projection of U on C.

Finally, 〈u | ξ〉 ≤ 0 and, since 0 ∈ N ,

0 ≥ 〈U − ξ | 0 − ξ〉 = −〈u | ξ〉,

so that 〈u | ξ〉 = 0.

Conversely, if U = u + ξ with u ∈ C, ξ ∈ N , 〈u | ξ〉 = 0, then for any w ∈ C

〈U − u | w − u〉 = 〈ξ | w − u〉 = 〈ξ | w〉 ≤ 0,

so that u = PCU. The proof is similar for ξ = PNU. �

We assume now that C is defined by duality as

C = {v ∈ V , 〈Bv | µ〉 ≤ 0 , ∀µ ∈ Λ+} , (49)

where B ∈ L(V,Λ), Λ is a Hilbert space identified to its dual, and Λ+ is a closed

convex cone in Λ (see Figure 11).

Remark 8 One may interrogate the motivation for defining a convex cone by means

of another convex cone. This approach will be proven fruitful in many situations

where K is natively described in an implicit way, i.e. as the collection of elements

which verify certain unilateral constraints, whereas Λ+ is defined in a explicit way,

like Rd
+

in the finite dimensional setting, or as a subset of real functions taking

nonnegative values, so that projecting on Λ+ can be computed straightforwardly.

Lemma 2 Let C be a closed convex cone in V , defined by (49). It holds that

N = C◦
= {w ∈ V , 〈w | v〉 ≤ 0 , ∀v ∈ C} = B⋆Λ+.

Proof For any µ ∈ Λ+, any v ∈ C, it holds
〈
B⋆µ | v

〉
= 〈Bv | µ〉 ≤ 0, so that

B⋆(Λ+) ⊂ N , so that B⋆(Λ+) ⊂ N . Now assume that the inclusion is strict: there
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existsw ∈ N ,w < B⋆(Λ+). By Hahn-Banach separation Theorem, there exists h ∈ V ,

α ∈ R such that 〈
h | B⋆µ

〉
≤ α < 〈h | w〉 ∀µ ∈ Λ+.

Since µ goes over a cone, the left hand side inequality implies that
〈
h | B⋆µ

〉
≤ 0 for

all µ ∈ Λ+, so that α ≥ 0 and h ∈ C by definition of C. We then have 〈h | w〉 > 0,

which contradicts the fact that h ∈ C, w ∈ N = Co. �

Let us now introduce the so-called saddle-point formulation of the projection

problem �����������

u + B⋆p = U

Bu ∈ Λ−

p ∈ Λ+
〈Bu | p〉 = 0.

(50)

Remark 9 The condition p ∈ Λ+ will correspond in actual applications (impact laws)

to p ≥ 0. It can be written the same way in the abstract setting, if one considers the

partial order associated to the closed convex cone Λ+ (see e.g. [12]).

Remark 10 The term saddle-point formulation comes from the fact that there is an

equivalence between (50) and (u, p) ∈ V×Λ+ being a saddle point for the Lagrangian

L(v, q) = 1

2
| v − U |2 + 〈Bv | q〉,

i.e.

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀v ∈ V , q ∈ Λ+.

Proposition 12 Let C be a closed convex cone in V , defined by (49), and U ∈ V .

Let u be the projection of U on C. If the cone B⋆(Λ+) is closed, then there exists

p ∈ Λ+ such that (u, p) is a solution to System (50),

Conversely, if there exists (u, p) solution to System (50), then u is the projection

of U on C.

Proof If B⋆(Λ+) is closed, it identifies with N = C◦ by Lemma 2, so that there

exists p ∈ Λ+ such that U = u + B⋆p by Proposition 11. Since U = u + B⋆p is the

decomposition of U over two mutually convex cones (see again Proposition 11), the

two terms are orthogonal, i.e.
〈
B⋆p | u

〉
= 0

Conversely, if (u, p) solution to System (50), then u = PCU (and B⋆p = PNU),

thanks to Proposition 11. �

Corollary 1 Under the assumptions of the previous proposition, if B is onto, then

Problem (50) admits a solution (u, p), and it is unique.

Proof Uniqueness is straightforward: if B is onto, then ker B⋆
= B(V)⊥ = {0}, i.e.

B⋆ is one-to-one, and there exists at most one p ∈ Λ+ such that U = u+B⋆p. Since B



36 Félicien Bourdin and Bertrand Maury

has a closed range, so does B⋆ by the Banach-Steinhaus theorem. As a consequence,

there exists β > 0 such that |B⋆µ| ≥ β|µ|. Now if a sequence (B⋆µn), with µn ∈ Λ+,
converges to w ∈ V , then (µn) is a Cauchy sequence by the previous inequality, thus

it converges to µ ∈ Λ+, so that w = B⋆µ ∈ B⋆(Λ+). �

Remark 11 In the case of a linear space, assuming B has a closed range is enough to

ensure that B⋆(Λ) is closed (see Proposition 9 ). In the case of unilateral constraints,

a stronger assumption is needed: B has to be assumed onto for ensuring the closed

character of B⋆(Λ+). Indeed, the image of a closed convex cone by a linear mapping

with closed range is not necessarily closed, even in the finite dimensional setting.

Consider e.g. Λ = R3, and the parabola

P =
{
(x, y, z) , z = 1 , y = x2

}
.

Now consider the closed convex cone spanned by this parabola, i.e.

Λ+ = conv
(
R+P

⋃
R+ey

)
,

where ey is the unit vector in the direction y. The projection ofΛ+ on the (x, y) plane

is R×]0,+∞[∪ {(0, 0)}, which is not closed.

Yet, an important family of cones enjoys the property of being linearly mapped

onto a closed set, those are the cones spanned by a finite number of vectors.

Lemma 3 Let V be a Hilbert space, and N a convex cone spanned by a finite number

of vectors:

N =

{
n∑
i=1

αiGi , (α1, . . . , αn) ∈ Rn+

}
.

Then N is closed, as is its image by any linear mapping.

Proof We give a full proof of this classical result to enlighten the importance of the

fact that N is spanned by a finite number of vectors. We prove the result by induction

on the number of vectors. For n = 1, the result is obvious. Assume that the property

is true for n ≥ 1, and consider the cone N associated to n + 1 vectors. If the G′
i
s are

independent, we call W the space spanned by these vectors, and we introduce

G : α ∈ Rn+1 7−→
n+1∑
i=1

αiGi ∈ W .

This map is invertible, and its reciprocal G−1 is linear and continuous from W to

R
n+1. Now consider vk =

∑
αkGi converging to v ∈ W . then G−1

v
k converges to

G−1
v, i.e. αk converges toward α in Rn+1

+
by continuity (G−1 is a linear mapping

between finite dimensional spaces).

Now if the family is linearly dependent, there exists µ1, . . . , µn+1, not all equal

to 0, such that
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n+1∑
i=1

µiGi = 0. (51)

We consider a sequence (αk) in Rn+1
+

such that

n+1∑
i=1

αkGi −→ v.

We assume (without loss of generality) that one of the coefficient of (51) is

negative. We now consider, for any k, the largest βk ≥ 0 such that αk + βk µi ≥ 0

for 1 ≤ i ≤ n + 1. Equality holds for at least one of the indices. Since at least one

index i0 realizes equality an infinite number of times, we extract the corresponding

subsequence (without changing the notation). The limit v writes

v = lim
∑
i,i0

(αki + βk µi)Gi

which lies in the cone spanned by the n vectors (Gi)i,i0 (by the induction hypothesis),

so it is in N . �

We now address some theoretical issues related to the description of solution

sets for the pressure p ∈ Λ for equations of the type (50). Like in the case of

equality constraints (Proposition 10), the solution p is unique a soon as B is onto,

and uniqueness is lost whenever the range of B is not dense in Λ. Yet, in the

finite dimensional setting, the solution set can be proven to be bounded under some

conditions which are typically met for impact laws in granular media. The approach

is based on the notion of asymptotic cone (see e.g. [8]):

Definition 2 Let V be a Hibert space, K ⊂ V a closed convex subset, and u ∈ K .

The set −→
K =

⋂
t>0

t(K − u),

which does not depend on the choice of u ∈ K , is called the asymptotic cone of K

(see e.g. [19]).

Proposition 13 Let V be a Hibert space, and K ⊂ V a closed convex subset. For

any u ∈ K , the asymptotic cone
−→
K is the set of directions h such that the half line

u + R+h is contained in K .

Proof If u + R+h ⊂ K , then h is in
−→
K by definition. Conversely, if h ∈ −→

K , h writes

t(v − u) for some t > 0, with v = u + h/t ∈ K , so that u + R+h ⊂ K . �

This notion provides a criterium to identify bounded convex sets (in the finite

dimensional setting).

Proposition 14 Let V be a finite dimensional Hibert space, and K ⊂ V a closed

convex subset which contains 0. Then
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K is bounded ⇐⇒ −→
K = {0} .

Proof If K is bounded by M, then tK is bounded by tM, so
−→
K contains only 0.

Conversely, if K is not bounded, there exists a sequence (un) in K , with |un | → +∞.

Let u be any element of K . Since V is finite-dimensional the unit sphere is compact,

and one can extract a subsequence from (un − u)/|un − u|, which converges to some

v ∈ H, with |v | = 1. Now consider t > 0, and θn = t/|un − u|. By convexity of K , it

holds that

(1 − µn)u + µnun = u + µn(un − u) = u + t
un − u

|un − u| ∈ K .

Since K is closed, having n go to infinity yields u + tv ∈ K . As a consequence
−→
K

contains the nonzero vector v. �

Note that the finite dimension is crucial in the previous proposition. Consider for

example the case where V = ℓ2 and K is the hypercube {x = (xn) ∈ V , 0 ≤ xn ≤ 1}.
The closed convex set K does not contain any half-line, while being not bounded.

We may now establish the main property

Proposition 15 Let V be a finite dimensional Hilbert space, C ⊂ V a closed convex

cone defined by (49), U ∈ V , and u the projection of U on C. We assume that B⋆(Λ+)
is closed, so that (by Proposition 12) there exists p ∈ Λ+ such that u + B⋆p = U. If

ker B⋆ ∩ Λ+ = {0}, then the solution set

S =
{
q ∈ Λ+ , B⋆q = B⋆p = U − u

}
is bounded.

Proof The solution set can be written

S = (p + ker B⋆) ∩ Λ+,

it is a closed convex set. Consider h ∈ −→
S . By Proposition 13, the half line p+R+h is

contained in S ⊂ p + ker B⋆, which implies h ∈ ker B⋆. Since S is also contained in

the cone Λ+ is a cone, it also implies that p/t + h ∈ Λ+, for any t > 0, which yields,

by having t go to 0, h ∈ Λ+. To sum up, h ∈ ker B⋆ ∩ Λ+ = {0}. We proved that
−→
S = {0}, therefore (by Proposition 14), S is bounded. �

We end this appendix by defining a notion which is relevant to classify problems

according to some sort of abstract maximum principle. In the context of collisions,

the issue can be formulated as follows: if the pre-collisional velocity fields tends to

violate all the constraints, it can be expected that all contacts will be active, i.e. that

all interaction forces will be positive, and the unilateral constraints turn out to be

equalities. It is an essential tool to exhibit a Poisson like problem for the pressure

in impact laws (see the end of Section 3). We shall see that this intuitive fact is

sometimes ruled out, when a general property is not verified.
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Definition 3 (Abstract Maximum Principle)

Let C be a closed convex cone in V , associated to B ∈ L(V,Λ) through Equation (49).

Like in proposition 12, we assume that B⋆(Λ) and B⋆(Λ+) are closed, so that, for

any U ∈ V , the system (50) admits at least a solution (u, p) ∈ V ×Λ+, where u is the

projection of U on C. We say that the couple (B,Λ+) (which encodes the structure

of the projection problem) verifies the maximum principle if

BU ∈ −Λ− = −Λ◦
+
=⇒ ∃p ∈ Λ+ s.t. BB⋆p = BU.

Proposition 16 If B verifies the abstract maximum principle defined above then, for

any U such that BU ∈ −Λ−, there exists a solution (u, p) to (50) such that

BB⋆p = BU.

Proof Let us consider the problem with an equality constraint, i.e. u ∈ ker B. We

denote by u the projection of U on C. From the maximum principle there exists

p ∈ λ+ such that BB⋆p = BU, which implies that u = U − B⋆p is in K = ker B, so

that u = PKU by Proposition 9. Since Bu = 0 ∈ Λ− and p ∈ Λ+, the couple (u, p)
is also a solution to the problem with unilateral constraints (50), which ends the

proof. �
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