
HAL Id: hal-02555457
https://hal.science/hal-02555457v1

Submitted on 27 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing dm-crypt for XTS-AES: Getting the Best of
Atmel Cryptographic Co-Processors (long version)

Levent Demir, Mathieu Thiery, Vincent Roca, Jean-Michel Tenkes, Jean-Louis
Roch

To cite this version:
Levent Demir, Mathieu Thiery, Vincent Roca, Jean-Michel Tenkes, Jean-Louis Roch. Optimizing
dm-crypt for XTS-AES: Getting the Best of Atmel Cryptographic Co-Processors (long version). SE-
CRYPT 2020 - 17th International Conference on Security and Cryptography, Jul 2020, Paris, France.
pp.1-11. �hal-02555457�

https://hal.science/hal-02555457v1
https://hal.archives-ouvertes.fr

Optimizing dm-crypt for XTS-AES: Getting the Best of Atmel
Cryptographic Co-Processors (long version)

Levent Demir1,2, Mathieu Thiery1,2, Vincent Roca1, Jean-Michel Tenkes2, and Jean-Louis Roch3

1Incas ITSec, France
2Univ. Grenoble Alpes, Inria, France

3Univ. Grenoble Alpes, Grenoble INP, LIG, France

Keywords:
Full disk encryption, XTS-AES, Linux dm-crypt module, cryptographic co-processor, Atmel board.

Abstract:
Linux implementation of Full Disk Encryption (FDE) relies on the dm-crypt kernel module, and is
based on the XTS-AES encryption mode. However, XTS-AES is complex and can quickly become a
performance bottleneck. Therefore we explore the use of cryptographic co-processors to efficiently
implement the XTS-AES mode in Linux. We consider two Atmel boards that feature different
cryptographic co-processors: the XTS-AES mode is completely integrated on the recent SAMA5D2
board but not on the SAMA5D3 board. We first analyze three XTS-AES implementations: a pure
software implementation, an implementation that leverages the XTS-AES co-processor, and an
intermediate solution. This work leads us to propose an optimization of dm-crypt, the extended
request mode, that enables to encrypt/decrypt a full 4kB page at once instead of issuing eight
consecutive 512 bytes requests as in the current implementation. We show that major perfor-
mance gains are possible with this optimization, a SAMA5D3 board reaching the performance of a
SAMA5D2 board where XTS-AES operations are totally offloaded to the dedicated cryptographic
co-processor, while remaining fully compatible with the standard. Finally, we explain why bad
design choices prevent this optimization to be applied to the new SAMA5D2 board and derive
recommendations for future co-processor designs.

1 Introduction

Data protection is a necessity: large amounts
of sensitive information are stored in many differ-
ent devices, smartphones, tablets and computers.
If such devices are lost or stolen, the unauthorized
access to information could have disastrous con-
sequences (e.g., psychological or economic (LLC,
2010)). We also have to pay attention not only to
data at rest, but also to data in different memo-
ries like RAM and swap spaces.

One possible approach is to use Full Disk En-
cryption (FDE), which consists of encrypting an
entire disk, content as well as associated meta-
data, all information being encrypted/decrypted
on-the-fly and transparently. At the system
level, data is stored either in a logical parti-
tion or in a file container. Different tools ex-
ist for FDE. With Linux, the native solution is
based on cryptsetup/LUKS application (Fruh-
wirth, 2005a), within user-space, and the dm-

crypt module (Brož et al., 2020) within kernel-
space, which allows transparent encryption and
decryption of blocks.

A crucial aspect for FDE is the cipher mode
of operation, AES being the main cipher choice.
Until 2007, the standard for data encryption in
FDE was the CBC-AES mode. But this mode has
several drawbacks. For instance, as explained in
(IEEE Computer Society, 2008): ”an attacker can
flip any bit of the plaintext by flipping the cor-
responding ciphertext bit of the previous block”
which can be dangerous. Furthermore, encryp-
tion is not parallelizable which is an issue for cer-
tain use cases.

Therefore a new mode has been introduced in
2008, XTS-AES (IEEE Computer Society, 2008).
The previous two limitations have been solved
because the encryption/decryption of a 16-byte
block is now performed independantly of any pre-
vious 16-byte block. Each 16-byte block can
be accessed in any order and parallelization is

2 1 INTRODUCTION

now possible during both encryption and decryp-
tion. In spite of that, the XTS-AES encryp-
tion/decryption operations are complex and the
use of this mode in lightweight environments over
huge amounts of data is challenging.

The motivation for this work is to offload all
XTS-AES cryptographic operations to a dedi-
cated board, in charge of FDE. This feature can
be useful to design a security board that would be
in charge of all cryptographic operations required
to outsource user’s data in an external, untrusted
storage facility (e.g., a Cloud). This architecture,
with a security board in the middle, between the
client and the storage facility, was our initial goal
that triggered the present work. The question
of improving the performance of the XTS-AES
mode in embedded, lightweight environments, is
therefore critical.

Choice of Atmel Boards: the Importance of
Detailed Technical Specifications: We con-
sidered two Atmel boards, both equipped with a
cryptographic co-processor, the (old) SAMA5D3
board (ATMEL, 2017b) and the (new) SAMA5D2
board (ATMEL, 2017a). These boards have been
chosen because of their low price, because of their
wide acceptance in industrial systems, and also
because the cryptographic co-processor documen-
tation is publicly available, a requirement for ad-
vanced developments. This is not always the case
as we discovered after buying another more pow-
erfull board: the provided information turned out
to be too limited for our needs and our academic
status did not enable us to obtain the technical
documentation from the manufacturer, even after
asking their support.

A major difference exists between these two
Atmel boards, which justifies that we consider
both of them: the cryptographic co-processor of
the first board supports common AES modes but
not XTS-AES, while the second one also supports
XTS-AES. Those constraints led us to consider
different implementation options that are the sub-
ject of this work.

Scientific Approach Followed in this Work:
The first step of our work was the experi-
mental analysis of three XTS-AES implemen-
tations: a pure software implementation (the
legacy baseline), an implementation that lever-
ages the dedicated cryptographic co-processor
with XTS-AES support of the SAMA5D2 board
(the most favourable case), and in between an
implementation that leverages the cryptographic

co-processor with ECB-AES support only of the
old SAMA5D3 board. Our benchmarks demon-
strated that the performance achieved in all
cases was still behind expectations and did not
match our objective of efficient on-the-fly encryp-
tion/decryption of large amounts of data within
the Atmel boards.

An analysis of in-kernel data paths highlighted
a limitation of plaintext sizes to a hard-coded 512
bytes value, in particular because this is the com-
mon sector size on most devices, and also because
test vectors are limited to a maximum of 512
bytes in the official XTS-AES standard (IEEE
Computer Society, 2008). We therefore explored
the possibility of having 4 KB long requests (i.e.,
a page size), a rational choice and a pretty natu-
ral idea for kernel operations. We called this op-
timization ”extended request mode”, or extReq.

We therefore modified of dm-crypt as well
as the underlying atmel-aes driver, two highly
complex tasks, in order to support extended
encryption/decryption requests. We then ana-
lyzed its impacts on performance. With this
optimization, a mixed implementation with the
(old) SAMA5D3 ECB-AES co-processor features
roughly the same performance as that of the
(new) SAMA5D2 XTS-AES co-processor.

Finally we analyzed the existing XTS-AES
cryptographic co-processor of the SAMA5D2
board in order to apply the extReq optimization
to it directly. Unfortunately, because of bad de-
sign choices by Atmel, this new cryptographic co-
processor is not compatible with this optimiza-
tion, therefore limiting the opportunities for ma-
jor performance improvements. We explain why
it is so and conclude this work with recommen-
dations for future co-processor designs.

Note that this work only considers crypto-
graphic operations over large data chunks, which
is pretty common with FDE use-cases. It does not
consider the opposite case, i.e., large numbers of
small data chuncks, which is not the target of our
optimisation.

Contributions of this Work: The contribu-
tions of this work are threefold:

• this works explores the implementation of
cryptographic primitives in Linux systems,
detailing the complex interactions between
software and hardware components, and the
dm-crypt kernel module internals. Note that
this work implied major in-kernel low-level
software developments and complex perfor-
mance evaluation campaigns.

3

• this work shows that significant performance
gains are possible thanks to the ”extended
request mode”, extReq, optimization, even
with boards that do not feature cryptographic
co-processors supporting XTS-AES. Although
the idea behind this optimisation is pretty
natural, we describe the architectural implica-
tions, we apply it to several XTS-AES imple-
mentations, depending on the available hard-
ware, and provide performance evaluation re-
sults. Note that even if this work only con-
siders embedded boards, it will be useful to
other execution environments.

• when we tried to apply the extReq optimiza-
tion to the XTS-AES facility of the new cryp-
tographic co-processor, we discovered an un-
compatible design. We explain why it is so,
we provide likely explanations for this situta-
tion, as well as recommendations for future co-
processor designs. This is an important out-
come of this work if we want to boost FDE
cryptographic performance.
1

2 Related Works

Full Disk Encryption (FDE) has been inten-
sively researched. Encryption schemes have been
discussed in details by Rogaway (Rogaway, 2011).
An implementer’s perspective is given with Fruh-
wirth (Fruhwirth, 2005b). Implementation of
FDE within LUKS is also criticized because of
the Password Based Key Derivation Function
(PBKDF): Visconci et al. (Visconti et al., 2015)
described the weaknesses of PBKDF2 (i.e., used
in LUKS) whereas Broz et al. (Brož and Matyáš,
2015) tried to select a new one.

XTS-AES mode has been standardized in
2007 (IEEE Computer Society, 2008) and later
became a NIST recommendation (Dworkin,
2010). However in their recent work (Khati et al.,
2017), Khati et al. explained the security issue
of using the same plaintext with the same sector
number. They give a new perspective by using a
short ”diversifier” to every sector which makes it

1Preliminary results have been presented in a lo-
cal hacker conference without any proceedings (Re-
moved,). However the work was very limited: no en-
cryption considered, no global execution time break-
down, no encryption/decryption time breakdown, no
IOZONE test, no SAMA5D2 board, and no recom-
mendation on the cryptographic co-processor design
to support our extended request proposal.

possible to encrypt the same plaintext into differ-
ent ciphertexts without additional storage.

Throughout this paper, we are focusing
on performance issues. Because of the huge
amount of data to be encrypted, the encryp-
tion/decryption throughput is essential in FDE.
Alomri et al. (Alomari et al., 2014) and Adrian et
al. (Hoban et al., 2013) have improved XTS-AES
through parallelization. The former has used a
purely software approach whereas the latter has
used AES-NI dedicated CPU instructions. Both
are using a synchronous model. These works dif-
fer significantly from ours: because we are consid-
ering ARM-based cards equipped with hardware
co-processors, and also because we investigate the
possibility to increase the data block size during
encryption/decryption requests.

Finally other works analyzed FDE on Android
systems, as in (Kunz, 2016; Götzfried and Müller,
2014).

3 Full Disk Encryption (FDE)
Implementations on Linux

This section first describes the FDE imple-
mention in Linux, and then the XTS-AES mode.

3.1 About FDE in Linux

Since Linux kernel version 2.6, FDE relies on the
dm-crypt kernel module. It provides transparent
encryption/decryption of a virtual block device
using the kernel crypto API, in which the block
device can be a logical partition, an external disk
(HDD or USB stick) or a file container. Each data
written to the device is automatically encrypted
and conversely each data read is decrypted.

The linux kernel crypto API offers a rich set of
cryptographic ciphers and modes, as well as other
data transform mechanisms. Natively the crypto
API offers its own generic software ciphers: since
all the cryptographic operations are performed by
the CPU, this cipher is portable, without any as-
sumption on available hardware. When another
implementation exists for the same cipher (see
section 3.3), it is used instead of the generic one.

On top of the kernel module, FDE relies on
the cryptsetup tool, which in turn is based on
Linux Unified Key Setup (LUKS). LUKS provides
a standard on-disk header with all the required
information such as the cipher mode, the salt and
the hash of the master key (Fruhwirth, 2018). It
also provides a secure user management system

4 3 FULL DISK ENCRYPTION (FDE) IMPLEMENTATIONS ON LINUX

 BLOCK
 LAYER

USERSPACE

Cryptsetup / LUKS

Application:

DEVICE
 MAPPER Map IO

dm-crypt module

KERNEL

Physical device: file container, disk ...

Low level driver: atmel-aes driver

Atmel
cryptographic
co-processor

Figure 1: High-level overview of the FDE architecture
in Linux and the data paths during cryptographic
operations. Within the user-space, cryptsetup allows
to create an encrypted disk following LUKS format.
When plaintext needs to be encrypted, data is sent to
the dm-crypt module, within the kernel space. De-
pending on what is available, a software or crypto-
graphic co-processor based implementation is chosen.
When a co-processor is available, as is the case here,
data is transferred to the specific low level driver. Fi-
nally the ciphertext is written to the physical device.

that allows up to eight users to share a single
container.

Figure 1 presents a high-level overview of the
global architecture and summarizes the various
operations on data between user-space, kernel
space, and physical device.

3.2 About XTS-AES

XTS-AES is the standard cipher mode for block-
oriented storage devices since 2007 (IEEE Com-
puter Society, 2008). The block size of this mode
matches the block size of the storage device: 512
bytes2.

The sector number corresponding to a 512-
byte block is used as IV, which means that the en-
cryption/decryption operations can be done inde-
pendently for each block, and in parallel if needed.

Let us consider XTS-AES encryption (the in-
terested reader can refer to (Martin, 2010; IEEE
Computer Society, 2008) for decryption). There
are three input parameters:

• The key, K, is 256 or 512 bits long and is
divided into two equal-sized sub-keys, K1 and
K2. K1 is used to encrypt/decrypt data while
K2 is used for IV encryption.

2 We will see in section 6.2 that this block size
value significantly impacted the design of the Atmel
XTS-AES co-processor, thereby preventing us from
applying our optimization on this board.

Figure 2: XTS-AES encryption of the jth 128 bits
data unit of a 512-byte block.

• The initialization vector, IV , is 128
bits/16 bytes long and represents the sector
number (i.e., the logical position of the data
unit). This IV, once encrypted, is called eIV .
After multiplication, it forms the tweak, de-
noted as T .

• The plaintext P is 512 bytes long block and
constitutes the payload to encrypt.

Let us consider a 512-byte block. It is com-
posed of 32 data units of 128 bits/16 bytes each.
Let j denote the sequential number of the 128 bits
data unit inside this block. Figure 2 shows the
encryption process for this data unit. The first
step consists in encrypting the IV with K2 using
AES-ECB to produce the eIV . The result is mul-
tiplied in the Galois Field with the jth power of
α to produce the tweak, T , where α is a primi-
tive element of GF(2128). Then the 128 bits data
unit (plaintext) is XORed with T and encrypted
with K1 using AES-ECB, resulting in CC. The
last step consists in XORing CC with T , produc-
ing the encrypted result C for this 128 bits data
unit. The same operation is performed for all the
128 bits data units, successively.

3.3 XTS-AES Implementations

Cipher implementations are available at different
levels. Some ciphers are available from userspace,
through libraries such as OpenSSL, GnuTLS or
Gcrypt. Within the Linux kernel, other ciphers
are used:

• some of them are pure software implementa-
tions;

• other ciphers use specific CPU instructions
like AES-NI (Gueron, 2012) for Intel CPU,

5

or ARMv8 Crypto Extensions for ARM pro-
cessor. They offer a clear performance bene-
fit compared to generic software implementa-
tions;

• finally some implementations rely on a ded-
icated cryptographic co-processor. This ap-
proach usually features better performance
than generic software, but on the downside,
the co-processor acts as an unmodifiable black
box. We will see in section 6 that this lack of
flexibility can prevent optimizations to be ap-
plied.

In the next section we introduce a fourth solution
which leverages on the SAMA5D3 cryptographic
co-processor ECB-AES support.

4 Optimizing dm-crypt for
XTS-AES

4.1 Accelerating XTS-AES with
an ECB-AES Co-Processor

For situations where a cryptographic co-processor
is available and supports ECB-AES but not XTS-
AES (e.g., the Atmel SAMA5D3 board, sec-
tion 5.1), a mixed approach is possible. XTS-
AES is composed of five operations: two XOR
operations, a multiplication in GF(2128), two
ECB-AES encryptions (or decryptions). There-
fore the idea is to offload the two ECB-AES
operations onto the cryptographic co-processor
while other operations are performed by the
CPU. Doing so requires to modify the atmel-aes
driver. The main difficulty is to accommodate
the asynchronous nature of the cryptographic co-
processor operations: the interruption generated
at the end of the ECB-AES encryption (or de-
cryption) by the co-processor is intercepted and
triggers the remaining of the operations by the
CPU.

As we will see later on, the performance gain
achieved was not as high as expected and we
looked at another possible optimization.

4.2 Extended Requests to the
atmel-aes Driver

We also analyzed the mapping between 4kB pages
managed by the dm-crpyt module and the low
level cryptographic operations within the atmel-
aes driver. Let us consider the encryption opera-
tion in Figure 3 (decryption is similar):

• The dm-crypt module receives a description in
a bio structure of the plaintext file (this bio is
not represented in Figure 3). This bio struc-
ture consists of a list of bio vec structures, one
per 4kB page.

• For each 4kB page of the list, the dm-crypt
module splits this page into eight 512-byte
blocks and initializes two scatterlist structures
for each block, respectively for source (where
is the plaintext) and destination (where to
write the corresponding ciphertext). The off-
set in the page is incremented for each scat-
terlist to point to the right 512-byte block.

• Then an encryption request is generated for
each block, with complementary information
(like the IV) and sent to the atmel-aes driver.

• Finally the atmel-aes driver encrypts each
512-byte block, writing the ciphertext to the
destination.

From this description it appears that a nat-
ural optimization would consist in working with
larger requests to the atmel-aes driver, a full 4kB
page at a time. Doing so reduces by a factor
eight the number of requests and reduces the im-
pact of fixed overheads within the cryptographic
co-processor (for instance when programming a
DMA to move data from a kernel buffer to the
internal co-processor memory, and vice-versa).

We also limit ourselves to 4kB pages (rather
than a list of pages) because the page size is the
common size for file processing. It follows that
the various pages are not necessarily contiguous
on disk which limits the benefit of having a single
request larger than a page.

This optimization requires modifying both
dm-crypt and the atmel-aes driver. We increased
the dm-crypt 512 bytes limit to 4kB. Of course,
the original dm-crypt behavior is preserved and
used if less than a full page is concerned.

The atmel-aes driver is also modified. Again,
any request size from 512 bytes to 4kB (with a
512 bytes step) is accepted. For instance, with
an extended request for a full page, the driver
computes eight IVs, by incrementing the initial
IV value for each 512-byte block. This is in line
with the way data is stored in the page, since the
eight blocks are necessarily stored sequentially.
The driver also computes eight times more tweaks
from these IVs, and performs XOR and ECB-AES
encryption operations 4kB at a time.

This approach is fully backward compatible,
which we experimentally checked: a plaintext en-
crypted using this optimized extended request

6 5 EXPERIMENTS

mode can be decrypted with a classic XTS-AES
mode implementation, and vice versa.

5 Experiments

5.1 Experimental Platform

We implemented the proposals of section 4. In
order to assess the performance of the various
options, we considered two Atmel boards: the
SAMA5D3 (ATMEL, 2017b) and the SAMA5D2
(ATMEL, 2017a) boards. Both cards feature
the same single core Cortex A5 ARM proces-
sor, 500 MHz, and a specific cryptographic co-
processor. The SAMA5D3 co-processor supports
five common AES modes, but not XTS-AES. On
the opposite, the SAMA5D2 co-processor, more
recent, also supports XTS-AES. Otherwise both
cards feature 256 MB of RAM, a Sandisk Class
10 SDHC card, and run the same Linux/Debian
operating system with a 4.6 Linux kernel. During
all tests, we used the default key size of dm-crypt :
a 256-bit XTS-AES key, divided into two 128-bit
sub-keys, which means that ECB-AES-128 mode
is always used.

Here are the various configurations tested:

SAMA5D3 board:

• software: existing xts.ko linux kernel
module;

• mixed, with ECB-AES co-proc. but
not extReq : atmel-aes driver modified to
use the co-processor for ECB-AES opera-
tions and CPU for other operations, with
512-byte request sizes;

• mixed, with ECB-AES co-proc. and
extReq : same as above, with 4kB request
sizes (full page).

SAMA5D2 board:

• software: existing xts.ko linux kernel
module;

• with XTS-AES co-proc.: cryptographic
co-processor for the full XTS-AES process-
ing, with 512-byte request sizes.

In these tests the two ”full software” con-
figurations enable us to calibrate the two At-
mel boards. As anticipated from the specifica-
tions, we show in section 5.3 that these ”full
software” configurations exhibit similar perfor-
mances. Therefore the results obtained on the
SAMA5D2 board can be safely compared to re-
sults obtained on the SAMA5D3 board, the main

difference being the cryptographic co-processors,
not the remaining of the execution environment.

5.2 Time Breakdown with or
without Extended Requests

Let us first focus on our mixed implementation
using the ECB-AES co-processor, with or with-
out extended requests. We measured the to-
tal time spent within the atmel-aes driver for
each of the five operations of XTS-AES mode
on the SAMA5D3 board, during a large 50 MB
file encryption and decryption. To that purpose,
we instrumented the driver and collected times-
tamped traces with the getnstimeofday() and
printk() Linux kernel functions. In order to as-
sess the practical precision of getnstimeofday()
and printk(), we ran several consecutive calls
and measured a 330 ns overhead per measure,
which is an acceptable precision for our experi-
ments.

The breakdown values reported in Tables 1
and 2 are obtained by summing all the elementary
times for each of the following categories over the
full file encryption or decryption:

• Total time spent in the atmel-aes driver;

• Tweak computation time;

• First XOR time;

• Second XOR time;

• DMA (to and from the co-processor) + en-
cryption (resp. decryption) time. Note that
unfortunately these operations cannot be iso-
lated from the atmel-aes driver;

• Other time computed as the difference be-
tween the total time and the previous four
categories;

Let us focus on the encryption of this 50 MB
file first. From Table 1 we see that the DMA plus
encryption process takes more than the half of the
total time in the default configuration, with 512-
byte requests: 5.31s out of 9.09s, followed by the
tweak computation, with a total of 2.62s. Both
of them amount to 87% of the total time.3

Using the extended request mode, extReq, the
total processing time is reduced by a factor 1.74,

3 Looking more carefully one can notice that the
first XOR is significantly faster than the second one.
This difference may come from cache behaviors, the
second XOR using a data area initialized by the DMA
unlike the first one. Since the impacts are marginal
compared to other processing times, we did not in-
vestigate the topic more in details.

5.3 Benefits of Extended Requests to the Global Processing Time 7

bio_vec

*bv_page

bv_len

bv_offset

page split into 8
512-byte blocks

by dm-crypt

Atmel aes driver

1

2

3

4...

scatterlist

page_link

offset: 0

length : 512

dma_address
8 ×

cipher_request

 cryptlen

 iv

struct scatterlist *src

struct scatterlist *dst
8 ×

Figure 3: Classic approach for the encryption of a 4kB page with dm-crypt.

Without extReq With extReq
Time (s) % Time (s) %

Total time 9.09 100.00 5.23 100.00
Tweak computation time 2.62 28.90 1.70 32.61
First XOR time 0.31 3.41 0.31 6.08
Second XOR time 0.63 6.99 0.41 7.86
DMA + encryption time 5.31 58.46 2.75 52.72
Other time 0.20 2.24 0.03 0.73

Table 1: Time breakdown of 50 MB file encryption with the mixed implementation using the ECB-AES co-
processor, without or with extReq.

down to 5.23s. Looking at the DMA plus encryp-
tion process, if it still represents more than half
of the total time, we notice a major improvement
by a factor 1.93, now amounting to 2.75s. The
tweak computation is also significantly reduced
by a factor 1.54, now amounting to 1.70s.

The situation is pretty similar during the de-
cryption of this 50 MB file. These results show
that the extended request optimization has a con-
siderable impact when we use the dedicated hard-
ware, by reducing the overhead due to the set up
of the cryptographic co-processor and the multi-
ple data transfers, which is not surprising.

5.3 Benefits of Extended Requests
to the Global Processing Time

We now consider the global processing time with
our mixed implementation using the ECB-AES
co-processor. This global time now includes dm-
crypt processing, I/O operations, and all the re-
maining system call/kernel processing overheads.

with-extReq without-extReq
0

2

4

6

8

10

12

ti
m

e(
s)

MD5

I/O + kernel

atmel driver

Figure 4: Time breakdown for the MD5 computation
of a 50 MB encrypted file, with our mixed implemen-
tation using the ECB-AES co-processor.

In particular we want to see to what extent the
extended request mode can improve this global
time, beyond the benefits it has on the atmel-aes
driver itself (section 5.2).

86 DISCUSSION: WHY CAN’T WE APPLY EXTREQ TO THE SAMA5D2 XTS-AES CO-PROCESSOR?

Without extReq With extReq
Time (s) % Time (s) %

Total time 9.30 100.00 5.13 100.00
Tweak computation time 3.05 32.78 1.46 28.61
First XOR time 0.29 3.21 0.27 5.32
Second XOR time 0.55 5.98 0.40 7.92
DMA + decryption time 5.22 56.12 2.81 54.83
Other time 0.17 1.90 0.17 3.32

Table 2: Time breakdown of 50 MB file decryption with the mixed implementation using the ECB-AES co-
processor, without or with extReq.

However the total time for the encryption and
decryption of file is difficult to measure because
of asynchronous operations and the presence of
caches. In order to circumvent these difficulties,
we measured the time to compute the MD5 di-
gest of an already encrypted file, i.e. the time to
decrypt and then compute the MD5 hash. There-
fore the total time is composed of the Atmel
driver time (line 1 of table 2), the MD5 digest
time which is constant, and the I/O and other
kernel processing time. We have:

ttotal = tmd5+tI/0 and kernel processing+tatmel driver

Here also, we focus on our mixed implementation
using the ECB-AES co-processor in order to as-
sess the impacts of the extReq optimization.

Figure 4 shows the breakdown of the total
time. It confirms that the MD5 hash processing is
both constant and small with respect to the total
time: the method followed is not negatively im-
pacted by the computation of a MD5 digest. Non
surprisingly, decryption within atmel-aes driver
represents the most important time, and is sig-
nificantly reduced as was shown before. But we
also notice that the I/0 and other kernel process-
ing times is divided by a factor of almost 2: this
is an additional benefit of the extended request
mode.

5.4 Performance Comparison for
All Configurations

So far we only focused on our mixed implementa-
tion using the ECB-AES co-processor. Let us now
compare the various ciphers listed in section 5.1,
using either the SAMA5D3 and SAMA5D2 cards.
In order to perform this comparison, we consid-
ered the IOZONE tool (Norcott and Capps, 2003)
that provides encryption and decryption through-
puts for large files (256 MB and 512 MB files in
our tests).

Figure 5 shows the results. First of all, the
two ”full software” configurations exhibit sim-

ilar performance which means the results can
be safely compared even if two different Atmel
boards have been used. These experiments show
that our mixed implementation with ECB-AES
co-processor and extReq exhibits similar perfor-
mance to that of the SAMA5D2 XTS-AES co-
processor: our solution is slightly slower during
encryption, but slightly faster during decryption,
no matter the file size. All other solutions are
clearly behind.

These experiments outline that in the absence
of native XTS-AES co-processor support, an im-
plementation that can leverage an ECB-AES co-
processor and extReq is highly competitive.

6 Discussion: Why Can’t we
Apply extReq to the SAMA5D2
XTS-AES Co-Processor?

The natural question is now: can the extReq
optimization be applied to an XTS-AES cryp-
tographic co-processor? We discuss this point
by considering the SAMA5D2. Note that, apart
from the simple case of the ECB-AES mode, this
discussion is not supported by any experimental
validation as the Atmel design choices made it
impossible, as will be explained.

6.1 The Case of ECB-AES

Let us first focus on the ECB-AES mode, using
the SAMA5D2 board. Because the principles be-
hind ECB-AES are quite simple, we easily imple-
mented the extReq approach. The experiments
carried out consisted in computing an MD5 di-
gest of an ECB-AES-128 encrypted file inside the
container. We then measured the global process-
ing time, as with section 5.3, which includes the
file decryption, I/O and kernel processing, and
MD5 digest computation.

6.2 The Case of XTS-AES 9

256 512
0

2,000

4,000

6,000

8,000

10,000

File size (MB)

T
h

ro
u

g
h

p
u

t
(K

B
/
s)

Encryption (write)

D3 software

D2 software

D3 with ECB-AES co-processor(without extReq)

D3 with ECB-AES co-processor(with extReq)

D2 with XTS-AES co-processor

256 512
0

2,000

4,000

6,000

8,000

10,000

File size (MB)

T
h

ro
u

gh
p

u
t

(K
B

/s
)

Decryption (read)

Figure 5: IOZONE benchmark, encryption and de-
cryption throughputs for all configurations.

The results are shown in Figure 6 (perfor-
mance is expressed with throughputs rather than
processing times). Since we observed that this
throughput does not fluctuate significantly with
the file size (we tested between 1 MB and 500
MB), we only report the case of a 256 MB file.
Figure 6 highlights that extReq provides major
improvement to ECB-AES decryption through-

Fu
ll

so
ftw

ar
e

O
rig

.
dr

iv
er

- 51
2B

Ext
R
eq

–
10

24
B

Ext
R
eq

–
20

48
B

Ext
R
eq

–
40

96
B

0

2,000

4,000

6,000

8,000

10,000

12,000

4,300

5,800

8,100

9,900

12,000

T
h

ro
u

gh
p

u
t

(K
B

/s
)

Figure 6: ECB-AES decryption throughput for dif-
ferent configurations, with/without extReq.

put: using 4kB pages instead of 512-byte blocks
doubles the average throughput (2.07 factor).
This result is a good incentive to consider apply-
ing extReq to the more complex XTS-AES mode.

6.2 The Case of XTS-AES

Let us now consider the case of XTS-AES
and its hardware implementation in the At-
mel SAMA5D2 board. The atmel-aes driver is
sketched in the following algorithm for a 512-byte
block:

atmel-aes (key split in (K1 | K2),
IV (16B),
plaintext P (512B))

{
eIV = AESEncECB (IV, K1);
C = XTSEngine (eIV, P, K2);

}

First of all, it uses the ECB-AES crypto-
graphic co-processor to compute the encrypted
IV, eIV , from the IV and K2 parameters. Then
it uses the XTSEngine cryptographic co-processor
to compute the tweak, to perform the two XOR
operations and the second ECB-AES, from the
eIV , P and K1 parameters. The question is:
can we update the atmel-aes to work natively on
a 4kB page, using the existing AESEncECB and
XTSEngine() hardware facilities?

The AESEncECB() method of the crypto-
graphic co-processor is not an issue as it can
accommodate any data block size. But the

10 7 CONCLUSION

XTSEngine() method of the cryptographic co-
processor has not been designed to accept more
than 512 bytes of plaintext, even if it can accom-
modate lower sizes. We can imagine two reasons
for this practical upper limit of 512 bytes:

• 512 bytes is the common sector size on most
devices;

• test vectors provided in the standard (IEEE
Computer Society, 2008) are all limited to 512
bytes.

By default, a team in charge of designing an XTS-
AES cryptographic co-processor has no incentive
to consider higher sizes.

But this 512 bytes size is not a fundamental
limit, as we already validated in our mixed imple-
mentation with extReq support. Instead, we rec-
ommend the following operations as guidelines to
implement a flexible and efficient XTS-AES mode
supporting larger plaintext sizes:

1. from the plaintext size, determine the num-
ber of 512-byte blocks. With a full 4kB page,
which we assume here, there are eight sectors
(i.e., eight 512-byte blocks);

2. determine the IV of each of the eight 512-
byte block (i.e., their sector number). With
a full 4kB page, the eight sectors are neces-
sarily consecutive, and incrementing the first
IV is sufficient to determine the following IVs;

3. initialize a 128-byte buffer, with the eight con-
secutive 16-byte IV values;

4. encrypt this 128-byte buffer within a single
ECB-AES operation and the K2 key;

5. pre-compute all the tweaks, each 512-byte
block being composed of 32 16-byte tweak val-
ues. When doing so, the alpha’s exponent
must be reset to 0 for each new 512-byte block;

6. initialize a 4096-byte buffer, with the eight
512-byte tweaks;

7. compute the [XOR]-[ECB-AES]-[XOR] oper-
ations using the 4096-byte plaintext P, the
4096-byte buffer containing all the tweaks,
and the K1 key.

Following those guidelines during the co-
processor design would enable both full standard
compliance and higher performance with extReq
support.

7 Conclusion

XTS-AES is complex and can easily become a
performance bottleneck when dealing with large

amounts of data in the context of Full Disk En-
cryption (FDE). If this is a perfect target for a
hardware cryptographic co-processor, XTS-AES
is also relatively recent and not universally sup-
ported. For this work we chose two SAMA5 At-
mel boards, in parts because of the availability of
technical information required by our advanced
developments (this is not always the case). If the
two boards feature a cryptographic co-processor,
only the recent SAMA5D2 supports XTS-AES
hardware acceleration.

This work focused on FDE in Linux, where the
dm-crypt module is in charge of block device, low
level, encryption/decryption. We studied three
XTS-AES implementations, from a pure soft-
ware implementation (baseline) to an implemen-
tation relying on the SAMA5D2 XTS-AES cryp-
tographic co-processor (most favourable case),
and in between an implementation relying on the
SAMA5D3 cryptographic co-processor for ECB-
AES and CPU for the other operations. We
benchmarked them and identified that perfor-
mance was behind expectations.

Therefore we explored the inner working of
the dm-crypt module and identified a possible
optimization: extended requests. Indeed, send-
ing a single encryption or decryption request to
the atmel-aes driver for a full 4kB page (in-
stead of eight consecutive requests) enables ma-
jor performance improvements. Although this
idea is pretty natural, we describe the architec-
tural implications, and provide detailed perfor-
mance evaluations achieved with modified the low
level drivers. With this optimization, a mixed
implementation limited to the old SAMA5D3
ECB-AES co-processor features roughly the same
performance as that of the new SAMA5D2
board with an XTS-AES co-processor. It there-
fore opens news perspectives to accelerate FDE
on Linux: old systems without XTS-AES co-
processor support will be greatly accelerated for
intensive encryption/decryption tasks.

This work also discusses the possibility of
having an extended request mode support in
the SAMA5D2 XTS-AES cryptographic co-
processor. If the current cryptographic co-
processor design, limited to 512-byte blocks max-
imum, prevents this optimization, we explain how
to solve the problem. We hope that the design of
future boards will be updated accordingly to en-
able faster XTS-AES and FDE operations with
the proposed extReq optimization.

REFERENCES 11

REFERENCES

Alomari, M., Samsudin, K., and Ramli, A.
(2014). Implementation of a parallel XTS en-
cryption mode of operation. Indian Journal
of Science and Technology, 7(11):1813–1819.

ATMEL (2017a). SAMA5D2 board. http:
//www.atmel.com/tools/ATSAMA5D2-
XULT.aspx.

ATMEL (2017b). SAMA5D3 board. http:
//www.atmel.com/tools/ATSAMA5D3-
XPLD.aspx.

Brož, M., Kozina, O., Wagner, A., Meurer,
J., and Virgovic, M. (2020). dm-crypt:
Linux kernel device-mapper crypto target.
https://gitlab.com/cryptsetup/cryptsetup/
wikis/DMCrypt.

Brož, M. and Matyáš, V. (2015). Selecting a new
key derivation function for disk encryption.
In 11th International Workshop on Secu-
rity and Trust Management (STM), Springer
LNCS, Volume 9331.

Dworkin, M. (2010). Recommendation for
block cipher modes of operation: The
XTS-AES mode for confidentiality on stor-
age devices. Technical report, National
Institute of Standards and Technology
(NIST). Special publication 800-38E,
https://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-38e.pdf.

Fruhwirth, C. (2005a). Hard disk encryption with
dm-crypt, luks, and cryptsetup. Linux Mag-
azine, 61:65–71.

Fruhwirth, C. (2005b). New methods in
hard disk encryption. Technical report.
http://clemens.endorphin.org/nmihde/
nmihde-A4-ds.pdf.

Fruhwirth, C. (2018). Luks on-disk format
specification version 1.2.3. Technical report.
https://gitlab.com/cryptsetup/cryptsetup/
wikis/LUKS-standard/on-disk-format.pdf.

Götzfried, J. and Müller, T. (2014). Analysing
android’s full disk encryption feature. Jour-
nal of Wireless Mobile Networks, Ubiqui-
tous Computing, and Dependable Applica-
tions (JoWUA), 5(1):84–100.

Gueron, S. (2012). Intel advanced en-
cryption standard instructions set -
rev 3.01. Technical report. https:
//software.intel.com/sites/default/files/
article/165683/aes-wp-2012-09-22-v01.pdf.

Hoban, A., Laurent, P., Betts, I., and Tahhan, M.
(2013). Unleashing linux*-based secure stor-

age performance with intel aes new instruc-
tions. Technical report, Intel corporation.

IEEE Computer Society (2008). IEEE stan-
dard for cryptographic protection of data
on block-oriented storage devices. IEEE std
1619-2007.

Khati, L., Mouha, N., and Vergnaud, D. (2017).
Full disk encryption: Bridging theory and
practice. In RSA Conference, Topics in
Cryptology, Springer LNCS, Volume 10159.

Kunz, O. (2016). Android full-disk en-
cryption. Technical Report Royal Hol-
loway Univ. of London Technical Report,
RHUL–ISG–2016–8.

LLC, P. I. (2010). The billion dol-
lar lost laptop problem: bench-
mark study of U.S. organizations.
http://www.intel.com/content/dam/doc/
white-paper/enterprise-security-the-billion-
dollar-lost-laptop-problem-paper.pdf.

Martin, L. (2010). XTS: A mode of AES for en-
crypting hard disks. IEEE Security & Pri-
vacy, 8(3):68–69.

Norcott, W. D. and Capps, D. (2003).
Iozone filesystem benchmark. http://
www.iozone.org/.

Removed. Reference removed to respect
anonymity rules.

Rogaway, P. (2011). Evaluation of some blockci-
pher modes of operation. Cryptography Re-
search and Evaluation Committees (CRYP-
TREC) for the Government of Japan.

Visconti, A., Bossi, S., Ragab, H., and Calò, A.
(2015). On the weaknesses of pbkdf2. In 14th
International Conference on Cryptology and
Network Security (CANS), Springer LNCS,
Volume 9476.

http://www.atmel.com/tools/ATSAMA5D2-XULT.aspx
http://www.atmel.com/tools/ATSAMA5D2-XULT.aspx
http://www.atmel.com/tools/ATSAMA5D2-XULT.aspx
http://www.atmel.com/tools/ATSAMA5D3-XPLD.aspx
http://www.atmel.com/tools/ATSAMA5D3-XPLD.aspx
http://www.atmel.com/tools/ATSAMA5D3-XPLD.aspx
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
http://www.intel.com/content/dam/doc/white-paper/enterprise-security-the-billion-dollar-lost-laptop-problem-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/enterprise-security-the-billion-dollar-lost-laptop-problem-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/enterprise-security-the-billion-dollar-lost-laptop-problem-paper.pdf
http://www.iozone.org/
http://www.iozone.org/

