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A

. Many applications in machine learning or signal processing involve nonsmooth optimization problems. This nonsmoothness brings a low-dimensional structure to the optimal solutions. In this paper, we propose a randomized proximal gradient method harnessing this underlying structure. We introduce two key components: i) a random subspace proximal gradient algorithm; ii) an identi cation-based sampling of the subspaces. Their interplay brings a signi cant performance improvement on typical learning problems in terms of dimensions explored.

. I

In this paper, we consider composite optimization problems of the form min ∈ℝ ( ) + ( )

( )
where is convex and di erentiable, and is convex and nonsmooth. This type of problem appears extensively in signal processing and machine learning applications; we refer to e.g. [ ], [ ], [ ], among a vast literature. Large scale applications in these elds call for rst-order optimization, such as proximal gradient methods (see e.g. the recent [ ]) and coordinate descent algorithms (see e.g. the review [ ]).

In these methods, the use of a proximity operator to handle the nonsmooth part plays a prominent role, as it typically enforces some "sparsity" structure on the iterates and eventually on optimal solutions, see e.g. [ ]. For instance, the popular ℓ -norm regularization ( = • ) promotes optimal solutions with a few nonzero elements, and its associated proximity operator (called soft-thresholding, see [ ]) zeroes entries along the iterations. This is an example of identi cation: in general, the iterates produced by proximal algorithms eventually reach some sparsity pattern close to the one of the optimal solution. For ℓ -norm regularization, this means that after a nite but unknown number of iterations the algorithm "identi es" the nal set of non-zero variables. This active-set identi cation property is typical of constrained convex optimization (see e.g. [ ]) and nonsmooth optimization (see e.g. [ ]).

The study of identi cation dates back at least to [ ] who showed that the projected gradient method identi es a sparsity pattern when using non-negative constraints. Such identi cation has been extensively studied in more general settings; we refer to [ ], [ ], [ ] or the recent [ ], among other references. Recent works on this topic include: i) extended identi cation for a class of functions showing strong primal-dual structure, including TV-regularization and nuclear norm [ ]; ii) identi cation properties of various randomized algorithms, such as coordinate descent [ ] and stochastic methods [ , , ].

The knowledge of the optimal substructure would allow to reduce the optimization problem in this substructure and solve a lower dimension problem. While identi cation can be guaranteed in special cases (e.g. using duality for ℓ -regularized least-squares [ , ]), it is usually unknown beforehand and proximal algorithms can be exploited to obtain approximations of this substructure. After some substructure identi cation, one could switch to a more sophisticated method, e.g. updating parameters of rst-order methods ([ ]). Again, since the nal identi cation moment is not known, numerically exploiting identi cation to accelerate the convergence of rst-order methods has to be done with great care.

In this paper, we propose randomized proximal algorithms leveraging on structure identi cation: our idea is to sample the variable space according to the structure of . To do so, we rst introduce a randomized descent algorithm going beyond separable nonsmoothness and associated coordinate descent methods: we consider "subspace descent" extending "coordinate descent" to generic subspaces. Then, we use a standard identi cation property of proximal methods to adapt our sampling of the subspaces with the identi ed structure. This results in a structure-adapted randomized method with automatic dimension reduction, which performs better in terms of dimensions explored compared standard proximal methods and the non-adaptive version.

Though our main concern is the handling of non-separable nonsmooth functions , we mention that our identi cationbased adaptive approach is di erent from existing adaptation strategies restricted to the particular case of coordinate descent methods. Indeed, adapting coordinate selection probabilities is an important topic for coordinate descent methods as both theoretical and practical rates heavily depend on them (see e.g. [ , ]). Though the optimal theoretical probabilities, named importance sampling, often depend on unknown quantities, these xed probabilities can sometimes be computed and used in practice, see [ , ]. The use of adaptive probabilities is more limited; some heuristics without convergence guarantees can be found in [ , ], and greedy coordinates selection are usually expensive to compute [ , , ]. Bridging the gap between greedy and xed importance sampling, [ , , ] propose adaptive coordinate descent methods based on the coordinate-wise Lipschitz constants and current values of the gradient. The methods proposed in the present paper, even when specialized in the coordinate descent case, are the rst ones where the iterate structure enforced by a non-smooth regularizer is used to adapt the selection probabilities.

The paper is organized as follows. In Section , we introduce the formalism for subspace descent methods. First, we formalize how to sample subspaces and introduce a rst random subspace proximal gradient algorithm. Then, we show its convergence and derive its linear rate in the strongly convex case. Along the way, we make connections and comparisons with the literature on coordinate descent and sketching methods, notably in the special cases of ℓ and total variation regularization. In Section , we present our identi cation-based adaptive algorithm. We begin by showing the convergence of an adaptive generalization of our former algorithm; next, we show that this algorithm enjoys some identi cation property and give practical methods to adapt the sampling, based on generated iterates, leading to re ned rates. Finally, in Section , we report numerical experiments on popular learning problems to illustrate the merits and reach of the proposed methods.

.

R

The premise of randomized subspace descent consists in repeating two steps: i) randomly selecting some subspace; and ii) updating the iterate over the chosen subspace. Such algorithms thus extend usual coordinate descent to general sampling strategies, which requires algorithmic changes and an associated mathematical analysis. This section presents a subspace descent algorithm along these lines for solving ( ). In Section . , we introduce our subspace selection procedure. We build on it to introduce, in Section . , our rst subspace descent algorithm, the convergence of which is analyzed in Section . . Finally, we put this algorithm into perspective in Section . by connecting and comparing it to related work.

. . Subspace selection. We begin by introducing the mathematical objects leading to the subspace selection used in our randomized subspace descent algorithms. Though, in practice, most algorithms rely on projection matrices, our presentation highlights intrinsic subspaces associated to these matrices; this opens the way to a ner analysis, especially in Section . when working with adaptive subspaces.

We consider a family C = {C } of (linear) subspaces of ℝ . Intuitively, this set represents the directions that will be favored by the random descent; in order to reach a global optimum, we naturally assume that the sum of the subspaces in a family matches the whole space.

De nition (Covering family of subspaces). Let C = {C } be a family of subspaces of ℝ . We say that C is covering if it spans the whole space, i.e. if C = ℝ .

Example . The family of the axes

C = { ∈ ℝ : = ∀ ≠ } for = , .
., is a canonical covering family for ℝ .

From a covering family C, we call selection the random subspace obtained by randomly choosing some subspaces in C and summing them. We call admissible the selections that include all directions with some positive probability; or, equivalently, the selections to which no non-zero element of ℝ is orthogonal with probability one.

De nition (Admissible selection). Let C be a covering family of subspaces of ℝ . A selection is de ned from the set of all subsets of C to the set of the subspaces of ℝ as

( ) = = C
for = {C , . . . , C }.

In the de nition and the following, we use the natural set addition (sometimes called the Minkowski sum): for any two sets C, D ⊆ ℝ , the set C + D is de ned as

{ + : ∈ C, ∈ D } ⊆ ℝ . The selection is admissible if ℙ[ ∈ ⊥ ] < for all ∈ ℝ \ { }.
Admissibility of selections appears on spectral properties of the average projection matrix onto the selected subspaces. For a subspace ⊆ ℝ , we denote by ∈ ℝ × the orthogonal projection matrix onto . The following lemma shows that the average projection associated with an admissible selection is positive de nite; this matrix and its extreme eigenvalues will play a major role in our developments.

Lemma (Average projection). If a selection is admissible then

P := [ ]
is a positive de nite matrix.

( )

In this case, we denote by min (P) > and max (P) ≤ its minimal and maximal eigenvalues.

Proof. Proof. Note rst that for almost all , the orthogonal projection ( ) is positive semi-de nite, and therefore so is P. Now, let us prove that if P is not positive de nite, then is not admissible. Take a nonzero in the kernel of P, then

⊤ P = ⇐⇒ ⊤ [ ] = ⇐⇒ [ ⊤ ] = . Since ⊤ ( ) ≥
for almost all , the above property is further equivalent for almost all to ⊤ ( ) = ⇐⇒ ( ) = ⇐⇒ ∈ ( ) ⊥ . Since ≠ , this yields that ∈ ( ) ⊥ for almost all which is in contradiction with being admissible. Thus, if a selection is admissible, P := [ ] is positive de nite (so min (P) > ).

Finally, using Jensen's inequality and the fact that is a projection, we get P = [ ] ≤ ≤ , which implies that max (P) ≤ .

Although the framework, methods, and results presented in this paper allow for in nite subspace families (as in sketching algorithms); the most direct applications of our results only call for nite families for which the notion of admissibility can be made simpler.

Remark (Finite Subspace Families). For a covering family of subspaces C with a nite number of elements, the admissibility condition can be simpli ed to ℙ[C ⊂ ] > for all .

Indeed, take ∈ ℝ \ { }; then, since C is covering and ≠ , there is a subspace C such that C ≠ . Observe now that C ⊂ yields ≠ (since ⊥ ⊂ C ⊥ , the property = would give C = which is a contradiction with C ≠ ). Thus, we can write

ℙ[ ∈ ⊥ ] = ℙ[ = ] = -ℙ[ ≠ ] ≤ -ℙ[C ⊂ ] < .
Building on this property, two natural ways to generate admissible selections from a nite covering family C = {C } = ,..., are:

• Fixed probabilities: Selecting each subspace C according to the outcome of a Bernoulli variable of parameter > . This gives admissible selections as ℙ[C ⊆ ] = > for all ; • Fixed sample size: Drawing subspaces in C uniformly at random. This gives admissible selections since ℙ[C ⊆ ] = / for all .

Example (Coordinate-wise projections). Consider the family of the axes from Example and the selection generated with xed probabilities as described in Remark . The associated projections amount to zeroing entries at random and the average projection P is the diagonal matrix with entries ( ); trivially min (P) = min and ≤ max (P) = max .

. . A random subspace proximal gradient algorithm. An iteration of the proximal gradient algorithm decomposes in two steps (sometimes called "forward" and "backward"):

= -∇ ( ) ( a) + = prox ( ) ( b)
where prox stands for the proximity operator de ned as the mapping from

ℝ to ℝ prox ( ) = argmin ∈ℝ ( ) + - . ( )
This operator is well-de ned when is a proper, lower semi-continuous convex function [ , Def. . ]. Furthermore, it is computationally cheap to compute in several cases, either from a closed form (e.g. for ℓ -norm, ℓ /ℓ -norm, see among others [ ] and references therein), or by an e cient procedure (e.g. for the D-total variation, projection on the simplex, see [ , ]).

In order to construct a "subspace" version of the proximal gradient ( ), one has to determine which variable will be updated along the randomly chosen subspace (which we will call a projected update). Three choices are possible:

(a) a projected update of , i.e. projecting after the proximity operation; (b) a projected update of ∇ ( ), i.e. projecting after the gradient; (c) a projected update of , i.e. projecting after the gradient step.

Choice (a) has limited interest in the general case where the proximity operator is not separable along subspaces and thus a projected update of still requires the computations of the full gradient. In the favorable case of coordinate projection and = • , it was studied in [ ] using the fact that the projection and the proximity operator commute. Choice (b) is considered recently in [ ] in the slightly di erent context of sketching. A further discussion on related literature is postponed to Section . .

In this paper, we will consider Choice (c), inspired by recent works highlighting that combining iterates usually works well in practice (see [ ] and references therein). However, taking gradient steps along random subspaces introduce bias and thus such a direct extension fails in practice. In order to retrieve convergence to the optimal solution of ( ), we slightly modify the proximal gradient iterations by including a correction featuring the inverse square root of the expected projection denoted by Q = P -/ (note that as soon as the selection is admissible, Q is well de ned from Lemma ).

Formally, our Random Proximal Subspace Descent algorithm RPSD, displayed as Algorithm , replaces ( a) by

= Q -∇ and = + ( - ) -. ( )
That is, we propose to rst perform a gradient step followed by a change of basis (by multiplication with the positive de nite matrix Q), giving variable ; then, variable is updated only in the random subspace : to in , and keeping the same value outside. Note that does not actually have to be computed and only the " Q-sketch" of the gradient (i.e.

Q∇

) is needed. Finally, the nal proximal operation ( b) is performed after getting back to the original space (by multiplication with Q -):

+ = prox Q - . ( )
Contrary to existing coordinate descent methods, our randomized subspace proximal gradient algorithm does not assume that the proximity operator prox is separable with respect to the projection subspaces. Apart from the algorithm of [ ] in a di erent setting, this is an uncommon but highly desirable feature to tackle general composite optimization problems.

Algorithm : Randomized Proximal Subspace Descent -RPSD

: Input: Q = P - : Initialize , = prox (Q -( )) : for = , . . . do : = Q -∇ : = + ( - ) - : + = prox Q - : end for
Let us provide a rst example, before moving to the analysis of the algorithm in the next section.

Example (Interpretation for smooth problems). In the case where ≡ , our algorithm has two interpretations. First, using prox = , the iterations simplify to

+ = - Q ∇ Q - = - Q Q -∇ Q - ∇ •Q -( )
.

As [ Q ] = , this corresponds to a random subspace descent on • Q -with unbiased gradients. Second, we can write it with the change of variable = Q -as

+ = -Q - Q ∇ .
As [Q - Q] = P, this corresponds to random subspace descent on but with biased gradient. We note that the recent work [ ] considers a similar set-up and algorithm; however, the provided convergence result does not lead to the convergence to the optimal solution (due to the use of the special semi-norm).

. . Analysis and convergence rate. In this section, we provide a theoretical analysis for RPSD, showing linear convergence for strongly convex objectives. Tackling the non-strongly convex case requires extra-technicalities; we thus choose to postpone the corresponding convergence result to the appendix for clarity.

Assumption (On the optimization problem). The function is -smooth and -strongly convex and the function is convex, proper, and lower-semicontinuous.

Note that this assumption implies that Problem ( ) has a unique solution that we denote ★ in the following.

Assumption (On the randomness of the algorithm). Given a covering family C = {C } of subspaces, we consider a sequence , , .., of admissible selections, which is i.i.d.

In the following theorem, we show that the proposed algorithm converges linearly at a rate that only depends on the function properties and on the smallest eigenvalue of P. We also emphasize that the step size can be taken in the usual range for the proximal gradient descent.

Theorem (RPSD convergence rate). Let Assumptions and hold. Then, for any ∈ ( , /( + )], the sequence ( ) of the iterates of RPSD converges almost surely to the minimizer ★ of ( ) with rate

+ -★ ≤ -min (P) + , where = max (P) -Q ( ★ -∇ ( ★ )) .
To prove this result, we rst demonstrate two intermediate lemmas respectively expressing the distance of towards its xed points (conditionally to the ltration of the past random subspaces F = ({ ℓ } ℓ ≤ )), and bounding the increment (with respect to P = , P the norm associated to P). Lemma (Expression of the decrease as a martingale). From the minimizer ★ of ( ), de ne the xed points

★ = ★ = Q ★ -∇
★ of the sequences ( ) and ( ). If Assumption holds, then

-★ | F -= --★ + -★ P - --★ P .
Proof. Proof. By taking the expectation on (conditionally to the past), we get

-★ | F -= --★ + ( --) | F - = --★ + --★ , ( --) | F -+ ( --) | F - = --★ + --★ , P( --) + ( --), ( --) | F - = --★ + --★ , P( --) + --, ( --) | F - = --★ + -+ -★ , P( --) ,
where we used the fact that -and are F --measurable and that is a projection matrix so = ⊤ = . Then, using the fact ★ = ★ , the scalar product above can be simpli ed as follows

-+ -★ , P( --) = -+ -★ -★ , P( --+ ★ -★ ) = ---★ , P( --★ ) + --★ , P( -★ ) + -★ , P( -★ ) - -★ , P( --★ ) = -★ , P( -★ ) ---★ , P( --★ )
where we used in the last equality that P is symmetric.

Lemma (Contraction property in P-weighted norm). From the minimizer ★ of ( ), de ne the xed points ★ = ★ = Q ★ -∇ ★ of the sequences ( ) and ( ). If Assumptions and hold, then

-★ P - --★ P ≤ -min (P) + --★ .
Proof. Proof. First, using the de nition of and ★ ,

-★ P = Q ( -∇ ( ) -★ + ∇ ( ★ )), PQ ( -∇ ( ) -★ + ∇ ( ★ )) = -∇ ( ) -★ + ∇ ( ★ ), Q ⊤ PQ ( -∇ ( ) -★ + ∇ ( ★ )) = -∇ ( ) -( ★ -∇ ( ★ )) .
Using the standard stepsize range ∈ ( , /( + )], one has (see e.g. [ , Lemma . ])

-★ P = -∇ ( ) -( ★ -∇ ( ★ )) ≤ -+ -★ .
Using the non-expansiveness of the proximity operator of convex l.s.c. function [ , Prop. . ] along with the fact that as ★ is a minimizer of ( ) so

★ = prox ( ★ -∇ ( ★ )) = prox (Q -★ ) [ , Th.
. ], we get

-★ = prox (Q -( -)) -prox (Q -( ★ )) ≤ Q -( --★ ) = Q -( --★ ), Q -( --★ ) = --★ , P( --★ ) = --★ P where we used that Q -⊤ Q -= Q -= P.
Combining the previous equations, we get

-★ P - --★ P ≤ -+ --★ P .
Finally, the fact that P ≥ min (P) for positive de nite matrix P enables to get the claimed result.

Relying on these two lemmas, we are now able to prove Theorem . by showing that the distance of towards the minimizers is a contracting super-martingale.

Proof. Proof.[Proof of Theorem .] Combining Lemmas and , we get

-★ | F -≤ -min (P) + --★
and thus by taking the full expectation and using nested ltrations (F ), we obtain

-★ ≤ -min (P) + -★ = -min (P) + -Q ( ★ -∇ ( ★ )) .
Using the same arguments as in the proof of Lemma , one has

+ -★ ≤ -★ P ≤ max (P) -★
which enables to conclude

+ -★ ≤ -min (P) + max (P) -Q ( ★ -∇ ( ★ )) .
Finally, this linear convergences implies the almost sure convergence of ( ) to ★ as

+∞ = + -★ ≤ +∞ = -min (P) + < +∞
implies that +∞ = + -★ is nite with probability one. Thus we get

= ℙ +∞ = + -★ < +∞ ≤ ℙ -★ →
which in turn implies that ( ) converges almost surely to ★ .

. . Examples and connections with the existing work. In this section, we derive speci c cases and discuss the relation between our algorithm and the related literature. 

˜ = -∇ ˜ = ˜ + ( - ) ˜ -, + = prox ˜ i.e.
no change of basis is needed anymore, even if is non-separable. Furthermore, the convergence rates simpli es to ( -min /( + )) which translates to ( -min /( + ) ) for the optimal = /( + ). In the special case where is separable (i.e. ( ) = = ( )), we can further simplify the iteration. In this case, projection and proximal steps commute, so that the iteration can be written . . . Projections onto vectors of xed variations. The vast majority of randomized subspace methods consider the coordinate-wise projections treated in . . . This success is notably due to the fact that most problems onto which they are applied have naturally a coordinate-wise structure; for instance, due to the structure of (ℓ -norm, group lasso, etc). However, many problems in signal processing and machine learning feature a very di erent structure. A typical example is when is the D-Total Variation

+ = prox -∇ ( ) + ( - ) i.e. + =        prox -∇ ( ) = arg min ( ) + , ∇ ( ) + - if ∈
( ) = = | --| ( )
featured for instance in the fused lasso problem [ ]. In order to project onto subspaces of vectors of xed variation (i.e. vectors for which = + except for a prescribed set of indices), one can de ne the following covering family

C = {C , .., C -} with C = ∈ ℝ : = + for all ∈ { , .., -} \ { }
and an admissible selection consisting in selecting uniformly elements in C. Then, if selects C , ..., C , the update will live in the sum of these subspaces, i.e. the subspace of the vectors having jumps at coordinates , , .., . Thus, the associated projection in the algorithm writes 

-                           - ( )
Note also that has the same value for coordinates [ , + ), equal to the average of these values. As mentioned above, the similarity between the structure of the optimization problem and the one of the subspace descent is fundamental for performance in practice. In Section . , we exploit the identi cation properties of the proximity operator in order to automatically adapt the subspace selection, which leads to a tremendous gain in performance.

. . . Comparison with sketching. In sharp contrast with the existing literature, our subspace descent algorithm handles non-separable regularizers . A notable exception is the algorithm called SEGA [ ], a random sketch-andproject proximal algorithm, that can also deal with non-separable regularizers. While the algorithm shares similar components with ours, the main di erences between the two algorithms are

• biasedness of the gradient: SEGA deals with unbiased gradients while they are biased for RPSD;

• projection type: SEGA projects the gradient while we project after a gradient step (option (b) vs. option (c) in the discussion starting Section . ). These di erences are fundamental and create a large gap in terms of target, analysis and performance between the two algorithms. The practical comparison is illustrated in Section . . . .

A

This section presents an extension of our randomized subspace descent algorithm where the projections are iterate-dependent. Our aim is to automatically adapt to the structure identi ed by the iterates along the run of the algorithm.

The methods proposed here are, up to our knowledge, the rst ones where the iterate structure enforced by a nonsmooth regularizer is used to adapt the selection probabilities in a randomized rst-order method. As discussed in the introduction, even for the special case of coordinate descent, our approach is di erent from existing techniques that use xed arbitrary probabilities [ , ], greedy selection [ , , ], or adaptive selection based on the coordinate-wise Lipschitz constant and coordinates [ , , ].

We present our adaptive subspace descent algorithm in two steps. First, we introduce in Section . a generic algorithm with varying selections and establish its convergence. Second, in Section . , we provide a simple general identi cation result. We then combine these two results to provide an e cient adaptive method in Section . . . . Random subspace descent with time-varying selection. For any randomized algorithm, using iterate-dependent sampling would automatically break down the usual i.i.d. assumption. In our case, adapting to the current iterate structure means that the associated random variable depends on the past. We thus need further analysis and notation.

In the following, we use the subscript ℓ to denote the ℓ-th change in the selection. We denote by L the set of time indices at which an adaptation is made, themselves denoted by ℓ = min{ > ℓ-: ∈ L}.

In practice, at each time , there are two decisions to make (see Section . ): (i) if an adaptation should be performed; and (ii) how to update the selection. Thus, we replace the i.i.d. assumption of Assumption with the following one.

Assumption (On the randomness of the adaptive algorithm). For all > , is F -measurable and admissible. Furthermore, if ∉ L, ( ) is independent and identically distributed on [ ℓ , ]. The decision to adapt or not at time is F -measurable, i.e. ( ℓ ) ℓ is a sequence of F -stopping times.

Under this assumption, we can prove the convergence of the varying-selection random subspace descent, Algorithm . A generic result is given in Theorem and a simple speci cation in the following example. The rationale of the proof is that the stability of the algorithm is maintained when adaptation is performed sparingly.

Algorithm : Adaptive Randomized Proximal Subspace Descent -ARPSD

: Initialize , = prox (Q -( )), ℓ = , L = { }. : for = , . . . do : = Q ℓ -∇ : = + ( - ) - : + = prox Q - ℓ :
if an adaptation is decided then

: L ← L ∪ { + }, ℓ ← ℓ + : Generate a new admissible selection : Compute Q ℓ = P - ℓ and Q - ℓ : Rescale ← Q ℓ Q - ℓ- :
end if : end for Theorem (ARPSD convergence). Let Assumptions and hold. For any ∈ ( , /( + )], let the user choose its adaptation strategy so that:

• the adaptation cost is upper bounded by a deterministic sequence:

Q ℓ Q - ℓ-
≤ a ℓ ; • the inter-adaptation time is lower bounded by a deterministic sequence: ℓℓ-≥ c ℓ ;

• the selection uniformity is lower bounded by a deterministic sequence: min (P ℓ-) ≥ ℓ-; then, from the previous instantaneous rateℓ-:=ℓ-/( + ), the corrected rate for cycle ℓ writes

( -ℓ ) := ( -ℓ-)a /c ℓ ℓ . ( )
Then, we have for any ∈ [ ℓ , ℓ+ )

+ -★ ≤ ( -ℓ ) -ℓ ℓ = ( -) c -Q ★ -∇ ★ .
This theorem means that by balancing the magnitude of the adaptation (i.e. a ) with the time before adaptation (i.e. c ) from the knowledge of the current rate ( --), one can retrieve the exponential convergence with a controlled degraded rate ( -). This result is quite generic, but it can be easily adapted to speci c situations. For instance, we provide a simple example with a global rate on the iterates in the forthcoming Example .

For now, let us turn to the proof of the theorem. To ease its reading, the main notations and measurability relations are depicted in Figure . Proof. Proof. We start by noticing that, for a solution ★ of ( ), the proof of Theorem introduces the companion variable ★ = Q ★ -∇ ★ which directly depends on Q, preventing us from a straightforward use of the results of Section . . However, de ning ★ ℓ = Q ℓ ★ -∇ ★ , Lemmas and can be directly extended and combined to show for any ∈ [ ℓ , ℓ+ )

-★ ℓ | F -≤ - min (P ℓ ) + ≤ -ℓ --★ ℓ . ( )
Since the distribution of the selection has not changed since ℓ , iterating ( ) leads to

-★ ℓ | F ℓ -≤ ( -ℓ ) -ℓ ℓ --★ ℓ . ( )
We focus now on the term ℓ --★ ℓ corresponding to what happens at the last adaptation step. From the de nition of variables in the algorithm and using the deterministic bound on

Q ℓ Q - ℓ-, we write ℓ --★ ℓ | F ℓ -≤ Q ℓ Q - ℓ-( ℓ -+ ℓ -( ℓ --ℓ -) -Q ℓ Q - ℓ- ★ ℓ- | F ℓ - ≤ Q ℓ Q - ℓ- ℓ -+ ℓ -( ℓ --ℓ -) -★ ℓ- | F ℓ - ( ) ≤ a ℓ ( -ℓ-) ℓ --★ ℓ-
.

Repeating this inequality backward to the previous adaptation step ℓ -, we get

ℓ --★ ℓ | F ℓ -≤ a ℓ ( -ℓ-) ℓ -ℓ - ℓ --★ ℓ- ≤ a ℓ ( -ℓ-) c ℓ ℓ --★ ℓ- , ( )
using the assumption of bounded inter-adaptation times. Combining this inequality and ( ), we obtain that for any

∈ [ ℓ , ℓ+ ), -★ ℓ ≤ ( -ℓ ) -ℓ ℓ = a ( --) c -★ .
Using now ( ), we get

-★ ℓ ≤ ( -ℓ ) -ℓ ℓ = ( -) c -★
Finally, the non-expansiveness of the prox-operator propagates this inequality to , since we have

-★ = prox (Q - ℓ ( -)) -prox (Q - ℓ ( ★ ℓ )) ≤ Q - ℓ ( --★ ℓ ) ≤ max (Q - ℓ ) --★ ℓ = max (P ℓ ) --★ ℓ ≤ --★ ℓ .
This concludes the proof.

Example (Explicit convergence rate). Let us specify Theorem with the following simple adaptation strategy. We take a xed upper bound on the adaptation cost and a xed lower bound on uniformity:

Q ℓ Q - ℓ- ≤ a min (P ℓ ) ≥ . ( )
Then from the rate -= -/( + ), we can perform an adaptation every c = ⌈log(a)/log ( -)/( -) ⌉ ( ) iterations, so that a( -) c = ( -/ ) c and ℓ = ℓc. A direct application of Theorem ( ) gives that, for any ,

+ -★ ℓ ≤ -+ where = -Q ( ★ -∇ ( ★ ))
. That is the same convergence mode as in the non-adaptive case (Theorem ) with a modi ed rate. Note the modi ed rate provided here (of the form ( -/ ) to be compared with theof Theorem ) was chosen for clarity; any rate strictly slower thancan bring the same result by adapting c accordingly.

Remark (On the adaptation frequency). Theorem and Example tell us that we have to respect a prescribed number of iterations between two adaptation steps. We emphasize here that if this inter-adaptation time is violated, the resulting algorithm may be highly unstable. We illustrate this phenomenon on a TV-regularized least squares problem: we compare two versions of ARPSD with the same adaptation strategy verifying ( ) but with two di erent adaptation frequencies • at every iteration (i.e. taking c ℓ = ) • following theory (i.e. taking c ℓ = c as per Eq. ( ))

On Figure , we observe that adapting every iteration leads to a chaotic behavior. Second, even though the theoretical number of iterations in an adaptation cycle is often pessimistic (due to the rough bounding of the rate), the iterates produced with this choice quickly become stable (i.e. identi cation happens, which will be shown and exploited in the next section) and show a steady decrease in suboptimality. A drawback of Theorem is that the adaptation cost, inter-adaptation time, and selection uniformity have to be bounded by deterministic sequences. This can be restrictive if we do not have prior knowledge on the problem or if the adaptation cost varies a lot. This drawback can be circumvented to the price of loosing the rate per iteration to the rate per adaptation, as formalized in the following result.

Theorem (ARPSD convergence: practical version). Let Assumptions and hold. Take ∈ ( , /( + )], choose > , and set = /( + ). Consider the following adaptation strategy:

) From the observation of ℓ -, choose a new sampling with P ℓ and Q ℓ , such that min (P ℓ ) ≥ ;

) Compute c ℓ so that Q ℓ Q - ℓ- ( -ℓ-) c ℓ ≤ -where ℓ-= min (P ℓ-)/( + ); ) Apply the new sampling after c ℓ iterations ( ℓ = ℓ-+ c ℓ ).
Then, we have for any

∈ [ ℓ , ℓ+ ) + -★ ≤ ( -ℓ ) -ℓ ( -) ℓ -Q ★ -∇ ★ .
Proof. Proof. The proof follows the same pattern as the one of Theorem . The only di erence is that the three control sequences (adaptation cost, inter-adaptation time, and selection uniformity) are now random sequences since they depend on the iterates of the (random) algorithm. This technical point requires a special attention. In ( ), the adaptation introduces a cost by a factor

Q ℓ Q - ℓ-
, which is not deterministically upper-bounded anymore. However it is F ℓ --measurable by construction of Q ℓ , so we can write

ℓ --★ ℓ | F ℓ - = ℓ --★ ℓ | F ℓ -| F ℓ - ≤ Q ℓ Q - ℓ-( ℓ -+ ℓ -( ℓ --ℓ -) -Q ℓ Q - ℓ- ★ ℓ- | F ℓ -| F ℓ - ≤ Q ℓ Q - ℓ- ( -ℓ-) ℓ --★ ℓ- | F ℓ - = Q ℓ Q - ℓ- ( -ℓ-) ℓ --★ ℓ- | F ℓ -.
Using Eq. ( ), this inequality yields

ℓ --★ ℓ | F ℓ -≤ Q ℓ Q - ℓ- ( -ℓ-) ℓ -ℓ - ℓ ---★ ℓ- | F ℓ - ≤ ( -) ℓ ---★ ℓ- | F ℓ -.
where we used points ) and ) of the strategy to bound the rst terms deterministically. Finally, we obtain

ℓ --★ ℓ = ℓ --★ ℓ | F ℓ - ≤ ( -) ℓ ---★ ℓ-
then the rest of the proof follows directly by induction.

. . Identi cation of proximal algorithms. As discussed in the introduction, identi cation of some optimal structure has been extensively studied in the context of constrained convex optimization (see e.g. [ ]) and nonsmooth optimization (see e.g. [ ]). In this section, we provide a general identi cation result for proximal algorithms useful for our developments, using the notion of sparsity vector.

De nition (Sparsity vector). Let M = {M , . . . , M } be a family of subspaces of ℝ with elements. We de ne the sparsity vector on M for point ∈ ℝ as the { , }-valued vector S M ( ) ∈ { , } verifying

[S M ( )] = if ∈ M and elsewhere. ( )
An identi cation result is a theorem stating that the iterates of the considered algorithm eventually belong to some -but not all -subspaces in M. We formulate such a result for almost surely converging proximal-based algorithms as follows. This very simple result is inspired from the extended identi cation result of [ ] (but does not rely on strong primal-dual structures as presented in [ ]).

Theorem (Enlarged identi cation). Let ( ) be an ℝ -valued sequence converging almost surely to ★ and de ne sequence ( ) as = prox ( ) and ★ = prox ( ★ ). Then ( ) identi es some subspaces with probability one; more precisely for any > , with probability one, after some nite time,

S M ( ★ ) ≤ S M ( ) ≤ ∈B ( ★ , ) S M (prox ( )). ( ) 
Proof.
Proof. The proof is divided between the two inequalities. We start with the right inequality. As → ★ almost surely, for any > , will belong to a ball centered around ★ of radius in nite time with probability one. Then, trivially, it will belong to a subspace if all points in this ball belong to it, which corresponds to the second inequality.

Let us turn now to the proof of the left inequality. Consider the sets to which ★ belongs i.e. M ★ = {M ∈ M : ★ ∈ M }; as M is a family of subspaces, there exists a ball of radius ′ > around ★ such that no point in it For two vectors , ∈ { , } , we use the following notation and terminology: ( ) if [ ] ≤ [ ] for all = , .., , we say that is greater than , noted ≤ ; and ( ) we de ne the union = ∪ as [ ] = if [ ] = or [ ] = and elsewhere.

belong to more subspaces than ★ i.e. ∉ M \ M ★ . As → ★ almost surely, it will reach this ball in nite time with probability one and thus belong to fewer subspaces than ★ . This general theorem explains that iterates of any converging proximal algorithm will eventually be sandwiched between two extremes families of subspaces controlled by the pair ( ★ , ★ ). This identi cation can be exploited within our adaptive algorithm ARPSD for solving Problem ( ). Indeed, assuming that the two extreme subspaces of ( ) coincide, the theorem says that the structure of the iterate S M ( ) will be the same as the one of the solution S M ( ★ ). In this case, if we choose the adaptation strategy of our adaptive algorithm ARPSD deterministically from S M ( ), then, after a nite time with probability one, the selection will not be adapted anymore. This allows us to recover the rate of the non-adaptive case (Theorem ), as formalized in the next theorem.

Theorem (Improved asymptotic rate). Under the same assumptions as in Theorems and , if the solution ★ of ( ) veri es the quali cation constraint

S M ( ★ ) = ∈B ( ★ -∇ ( ★ ), ) S M (prox ( )) (QC)
for any > small enough, then, using an adaptation deterministically computed from (S M ( )), we have

-★ = O -min (P ★ ) +
where P ★ is the average projection matrix of the selection associated with S M ( ★ ) and O stands for Big O in probability, ie. stochastic boundedness.

Proof. Proof. Let ★ = ★ -∇ ( ★ ) and observe from the optimality conditions of ( ) that ★ = prox ( ★ ). We apply Theorem and the quali cation condition (QC) yields that S M ( ) will exactly reach S M ( ★ ) in nite time. Now we go back to the proof of Theorem to see that the random variable de ned by

= ℓ if ∈ ( ℓ , ℓ + c ℓ ] if ∈ ( ℓ + c ℓ , ℓ+ ]
for some ℓ also converges almost surely to ★ . Intuitively, this sequence is a replica of ( ) except that it stays xed at the beginning of adaptation cycles when no adaptation is admitted. This means that S M ( ) which can be used for adapting the selection will exactly reach S M ( ★ ) in nite time. From that point on, since we use an adaptation technique that deterministically relies on S M ( ), there are no more adaptations and thus the rate matches the non-adaptive one of Theorem . Finally, using the almost sure niteness of the identi cation time and Markov's inequality, we get the claimed result.

This theorem means that if , M, and C are chosen in agreement, the adaptive algorithm ARPSD eventually reaches a linear rate in terms of iterations as the non-adaptive RPSD. In addition, the term min (P) present in the rate now depends on the nal selection and thus on the optimal structure which is much better than the structure-agnostic selection of RPSD in Theorem . In the next section, we develop practical rules for an e cient interlacing of , M, and C.

. . Identi cation-based subspace descent. In this section, we provide practical rules to sample e ciently subspaces according to the structure identi ed by the iterates of our proximal algorithm. According to Theorem , we need to properly choose C with respect to and M to have a good asymptotic regime. According to Theorem , we also need to follow speci c interlacing constraints to have a good behavior along the convergence. These two aspects are discussed in Section . . and Section . . , respectively.

The qualifying constraint (QC) may seem hard to verify at rst glance but for most structure-enhancing regularizers, it simpli es greatly and reduces to usual nondegeneracy assumptions. Broadly speaking, this condition simply means that the point ★ = ★ -∇ ( ★ ) is not borderline to be put to an identi ed value by the proximity operator of the regularizer prox . For example, when ( ) = , the qualifying constraint (QC) simply rewrites ★ = ⇔ ∇ ( ★ ) ∈] -, [; for is the TV-regularization ( ), the qualifying constraint means that there is no point (in any ball) around ★ -∇ ( ★ ) such that prox ( ) has a jump that ★ does not have. In general, this corresponds to the relative interior assumption of [ ]; see the extensive discussion of [ ].

. . . How to update the selection. We provide here general rules to sample in the family of subspaces C according to the structure identi ed with the family of M. To this end, we need to consider the two families C and M that closely related. We introduce the notion of generalized complemented subspaces.

De nition (Generalized complemented subspaces). Two families of subspaces M = {M , . . . , M } and C = {C , . . . , C } are said to be (generalized) complemented subspaces if for all = , . . . ,

(C M ) ⊆ C C + M = ℝ
Example (Complemented subspaces and sparsity vectors for axes and jumps). For the axes subspace set (see Section . . ) For the jumps subspace sets (see Section . . ) . The jumps of a point ∈ ℝ is de ned as the vector jump( ) ∈ ℝ ( -) such that for all we have: jump( ) = if ≠ + and otherwise.

C = {C , . . . , C } with C = { ∈ ℝ : = ∀ ≠ }, ( ) a complemented identi cation set is M = {M , . . . , M } with M = { ∈ ℝ : = }, ( 
C = {C , .., C -} with C = ∈ ℝ : = + for all ≠ ( ) a complemented identi cation set is M = {M , .., M -} with M = { ∈ ℝ : = -} , ( 
The practical reasoning with using complemented families is the following. If the subspace M is identi ed at time (i.e. [S M ( )] = ⇔ ∈ M for all ≥ ), then it is no use to update the iterates in C in preference, and the next selection should not include C anymore. Unfortunately, the moment after which a subspace is de nitively identi ed is unknown in general; however, subspaces M usually show a certain stability and thus C may be "less included" in the selection. This is the intuition behind our adaptive subspace descent algorithm: when the selection is adapted to the subspaces in M to which belongs, this gives birth to an automatically adaptive subspace descent algorithm, from the generic ARPSD.

Table summarizes the common points and di erences between the adaptive and non-adaptive subspace descent methods. Note that the two options introduced in this table are examples on how to generate reasonably performing admissible selections. Their di erence lies in the fact that for Option , the probability of sampling a subspace outside the support is controled, while for Option , the number of subspaces is controlled (this makes every iteration computationally similar which can be interesting in practice). Option will be discussed in Section . . and illustrated numerically in Section .

Notice that, contrary to the importance-like adaptive algorithms of [ ] for instance, the purpose of these methods is not to adapt each subspace probability to local steepness but rather to adapt them to the current structure. This is notably due to the fact that local steepness-adapted probabilities can be di cult to evaluate numerically and that in heavily structured problems, adapting to an ultimately very sparse structure already reduces drastically the number of explored dimensions, as suggested in [ ] for the case of coordinate-wise projections. Coordinate-wise projections. Using the subspaces ( ) and ( ), a practical adaptative coordinate descent can be obtained from the following reasoning at each adaptation time = ℓ-:

C = {C , .., C } Algorithm        = Q -∇ = + ( - ) - + = prox Q - Selection Option C ∈ with probability C ∈ with probability if ∈ M ⇔ [S M ( 
• Observe S M ( ) i.e. the support of .

• Take all coordinates in the support and randomly select coordinates outside the support. Compute associated P ℓ , Q ℓ , and Q - ℓ . Notice that min (P ℓ ) = ℓ = /|null( )|. • Following the rules of Theorem , compute

c ℓ = log Q ℓ Q - ℓ-
+ log( /( -)) log( /(ℓ-))

with ℓ-= ℓ- /( + )

for some small xed < ≤ /( ( + )) ≤ inf ℓ ℓ . Apply the new sampling after c ℓ iterations (i.e. ℓ = ℓ-+ c ℓ ).

Finally, we notice that the above strategy with Option of Table produces moderate adaptations as long as the iterates are rather dense. To see this, observe rst that Q ℓ Q - ℓ-is a diagonal matrix, the entries of which depend on the support of the corresponding coordinates at times ℓ-and ℓ-. More precisely, the diagonal entries are described in the following table :   is in the support at ℓ-ℓ-

Q ℓ Q - ℓ- yes yes no yes ℓ = |null( ℓ -) | yes no ℓ-= |null( ℓ -) | no no ℓ - ℓ = |null( ℓ -) | |null( ℓ -) |
Thus, as long as the iterates are not sparse (i.e. in the rst iterations, when |null( )| ≈ is small), the adaptation cost is moderate so the rst adaptations can be done rather frequently. Also, in the frequently-observed case when

Let us give a simple example in ℝ : for = .

-.

, S M ( ) = , then

ℙ[C ⊆ ] = ℙ[C ⊆ ] = ℙ[C ⊆ ] = ℙ[C ⊆ ] = ℓ := / |null( ) | = / P ℓ = ℓ ℓ Q ℓ = / √ ℓ / √ ℓ Q - ℓ = √ ℓ √ ℓ
the support only decreases (S M ( ℓ -) ≤ S M ( ℓ -)), the second line of the table is not active and thus Q ℓ Q - ℓ-= , so the adaptation can be done without waiting. Vectors of xed variations. The same reasoning as above can be done for vectors of xed variation by using the families ( ) and ( ). At each adaptation time = ℓ-:

• Observe S M ( ) i.e. the jumps of ;

• The adapted selection consists in selecting all jumps present in and randomly selecting jumps that are not in . Compute P ℓ , Q ℓ , and Q - ℓ (to the di erence of coordinate sparsity they have to be computed numerically).

• For a xed > , compute

c ℓ = log Q ℓ Q - ℓ-
+ log( /( -)) log( /(ℓ-))

.

Apply the new sampling after c ℓ iterations (i.e. ℓ = ℓ-+ c ℓ ).

. N

We report preliminary numerical experiments illustrating the behavior of our randomized proximal algorithms on standard problems involving ℓ /TV regularizations. We provide an empirical comparison of our algorithms with the standard proximal (full and coordinate) gradient algorithms and a recent proximal sketching algorithm.

. . Experimental setup. We consider the standard regularized logistic regression with three di erent regularization terms, which can be written for given ( , ) ∈ ℝ + ( = , . . . , ) and parameters , > 

+ TV( ) ( c) 
We use two standard data-sets from the LibSVM repository: the a a data-set ( = , = ) for the TV regularizer, and the rcv _train data-set ( = , = , ) for the ℓ and ℓ , regularizers. We x the parameters = / and to reach a nal sparsity of roughly %. The subspace collections are taken naturally adapted to the regularizers: by coordinate for ( a) and ( b), and by variation for ( c). The adaptation strategies are the ones described in Section . . . We consider ve algorithms: For the produced iterates, we measure the sparsity of a point by S M ( ) , which corresponds to the size of the supports for the ℓ case and the number of jumps for the TV case. We also consider the quantity: Number of subspaces explored at time = = S M ( ) .

We then compare the performance of the algorithms on three criteria:

• functional suboptimality vs iterations (standard comparison);

• size of the sparsity pattern vs iterations (showing the identi cation properties);

• functional suboptimality vs number of subspaces explored (showing the gain of adaptivity).

In the following, x is often given in percentage of the possible subspaces, i.e. x% of |C |, that is x% of for coordinate projections and x% of for variation projections.

  . . . Projections onto coordinates. A simple instantiation of our setting can be obtained by considering projections onto uniformly chosen coordinates (Example ); with the family C = {C , .., C } with C = { ∈ ℝ : = ∀ ≠ } and the selection consisting of taking C according to the output of a Bernoulli experiment of parameter . Then, the matrices P = diag( [ , .., ]), and Q commute, and, by a change of variables ˜ = Q -and ˜ = Q -, Algorithm boils down to

  elsewhere which boils down to the usual (proximal) coordinate descent algorithm, that recently knew a rebirth in the context of huge-scale optimization, see [ ], [ ], [ ] or [ ]. In this special case, the theoretical convergence rate of RPSD is close to the existing rates in the literature. For clarity, we compare with the uniform randomized coordinate descent of [ ] (more precisely Th. with = , = , ≤ ) which can be written as ( -/ ) in ℓ -norm. The rate of RPSD in the same uniform setting (Example with = = / ) is -( + ) with the optimal step-size.

Figure :

 : Figure :Summary of notations about iteration, adaptation and ltration. The ltration F -is the sigmaalgebra generated by { ℓ } ℓ ≤ -encompassing the knowledge of all variables up to (but not ).

Figure :

 : Figure :Comparisons between theoretical and harsh updating time for ARPSD.

  )as M C = { } = C and C + M = ℝ . In this case, the sparsity vector S M ( ) corresponds to the support of (indeed[S M ( )] = i ∈ M ⇔ = ).Recall that the support of a point ∈ ℝ is de ned as the size-vector supp( ) such that supp( ) = if ≠ and otherwise. By a slight abuse of notation, we denote by |supp( )| the size of the support of , i.e. its number of non-null coordinates and |null( )| = -|supp( )|.

  ) as M C = span({ }) = C and C +M = ℝ . Here S M ( ) corresponds to the jumps of (indeed [S M ( )] = i ∈ M ⇔ = + ).

  . . . Practical examples and discussion. We discuss further the families of subspaces of Example when selected with Option of Table .

  in Sample elements uniformly in C {C : ∈ M i.e. [S M ( )] = } and add all elements in {C : ∉ M i.e. [S M ( )] = }

Table :

 : Strategies for non-adaptive vs. adaptive algorithms

. . Illustrations for coordinate-structured problems.

. . . Comparison with standard methods. We consider rst ℓ -regularized logistic regression ( a); in this setup, the non-adaptive RPSD boils down to the usual randomized proximal gradient descent (see Section . . ). We compare the proximal gradient to its adaptive and non-adaptive randomized counterparts.

First, we observe that the iterates of PGD and ARPSD coincide. This is due to the fact that the sparsity of iterates only decreases (S M ( ) ≤ S M ( + )) along the convergence, and according to Option all the non-zero coordinates are selected at each iteration and thus set to the same value as with PGD. However, a single iteration of %-ARPSD costs less in terms of number of subspaces explored, leading the speed-up of the right-most plot. Contrary to the adaptive ARPSD, the structure-blind RPSD identi es much later then PGD and shows poor convergence. While the focus of SEGA is not to produce an e cient coordinate descent method but rather to use sketched gradients, SEGA and RPSD are similar algorithmically and reach similar rates (see Section . ). As mentioned in [ , Apx. G ], SEGA is slightly slower than plain randomized proximal coordinate descent ( % RPSD) but still competitive, which corresponds to our experiments. Thanks to the use of identi cation, ARPSD shows a clear improvement over other methods in terms of e ciency with respect to the number of subspaces explored. . . Illustrations for total variation regularization. We focus here on the case of total variation ( c) which is a typical usecase for our adaptive algorithm and subspace descent in general. Figure displays a comparison between the vanilla proximal gradient and various versions of our subspace descent methods.

We observe rst that RPSD, not exploiting the problem structure, fails to reach satisfying performances as it identi es lately and converges slowly. In contrast, the adaptive versions ARPSD perform similarly to the vanilla proximal gradient in terms of sparsi cation and suboptimality with respect to iterations. As a consequence, in terms of number of subspaces explored, ARPSD becomes much faster once a near-optimal structure is identi ed. More precisely, all adaptive algorithms (except ARPSD, see the next paragraph) identify a subspace of size ≈ % ( jumps in the entries of the iterates) after having explored around subspaces. Subsequently, each iteration involves a subspace of size , , (out of a total dimension of ) for %, %, % ARPSD respectively, resulting in the di erent slopes in the red plots on the rightmost gure.

, , , , Finally, Figure displays runs of and % ARPSD as well as the median of the runs in bold. We notice that more than % of the time, a low-dimensional structure is quickly identi ed (after the third adaptation) resulting in a dramatic speed increase in terms of subspaces explored. However, this adaptation to the lower-dimensional subspace might take some more time (either because of poor identi cation in the rst iterates or because a rst heavy adaptation was made early and a pessimistic bound on the rate prevents a new adaptation in theory). Yet, one can notice that these adaptations are more stable for the % than for the ARPSD, illustrating the "speed versus stability" tradeo in the selection. In this appendix, we study the convergence of the subspace descent algorithms, when the smooth function is convex but not strongly convex. Removing the strong convexity from Assumption , we need existence of the optimal solutions of ( ) and thus we make the following assumption.

Assumption . The function is convex -smooth and the function is convex, proper, and lower-semicontinuous. Let ★ ≠ ∅ denote the set of minimizers of Problem ( ).

With Assumption replacing Assumption , the convergence results (Theorems and ) extend from similar rationale. Let us here formalize the result and its proof for the non-adaptive case: the next theorem establishes the convergence of RPSD, still with the usual xed stepsize in ( , / ). Theorem (RPSD convergence). Let Assumptions and hold. Then, for any with ∈ ( , / ), the sequence ( ) of the iterates of RPSD converges almost surely to a point in the set ★ of the minimizers of ( ).

To prove this result, one can rst notice that Lemma still holds, contrary to Lemma . Thus, let us provide a replacement for Lemma in the non-strongly convex setup.

Lemma . If Assumptions and holds, then for ∈ ( , / ) and for any ★ ∈ ★ (with associated ★ = ★ = Q ★ -∇ ★ ), one has

Proof. Proof. Using the same arguments as in the proof of Lemma , we can also show that

Now, using the Baillon-Haddad theorem (see [ , Cor. . ]), for ∈ ( , / ), one has

Combining with ( ),( ) directly leads to the result.

Proof. Proof.(of Theorem ) Combining Lemmas and , we get for any ★ ∈ ★ and associated

Taking the expectation on both sides and telescoping, we get that [ ∞ = ∇ ( ) -∇ ( ★ ) ] < ∞ and thus ∇ ( ) → ∇ ( ★ ) with probability one.

Eq. ( ) also implies that, as in the strongly convex case, the sequence ( -★ ) is a non-negative supermartingale with respect to the ltration (F ) and thus converges to a nite random variable (in fact, that is a common observation for randomized monotone operators; see e.g. [ , Apx. B]). As a consequence, the sequence ( ) is bounded almost surely. Let be an accumulation point of ( ); it veri es ∇ (prox (Q -)) = ∇ ( ★ ) and is thus in ★ = {Q ( -∇ ( )) : ∈ ★ }. Denote ∈ ★ such that = Q ( -∇ ( )).

Using for the same rationale as above for ★ , we can prove that the sequence converges. Therefore, we deduce that with probability one, lim -= lim inf -= . This shows that ( ) converges almost surely to . Applying the map prox • Q -to this result leads to the claimed result.
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