
HAL Id: hal-02555108
https://hal.science/hal-02555108

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Maximizing Mobiles Energy Saving Through Tasks
Optimal Offloading Placement in two-tier Cloud

Houssemeddine Mazouzi, Nadjib Achir, Khaled Boussetta

To cite this version:
Houssemeddine Mazouzi, Nadjib Achir, Khaled Boussetta. Maximizing Mobiles Energy Saving
Through Tasks Optimal Offloading Placement in two-tier Cloud. the 21st ACM International Con-
ference, Oct 2018, Montreal, France. pp.137-145, �10.1145/3242102.3242133�. �hal-02555108�

https://hal.science/hal-02555108
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Maximizing Mobiles Energy Saving Through Tasks
Optimal Offloading Placement in two-tier Cloud: a

Theoretical and an Experimental Study

Houssemeddine MAZOUZIa, Khaled BOUSSETTAa,b, Nadjib ACHIRa

aLaboratory L2TI, Institut Sup Galilée, Université Paris 13, Sorbonne Paris Cité 99
Avenue J-B Clement, 93430 Villetaneuse, France

b Laboratory Agora, CITI, Inria/INSA Lyon, 56 Boulevard Niels Bohr, 69100
Villeurbanne, France

Abstract

In this paper, we focus on tasks offloading over two tiered mobile edge com-

puting environment. We consider several users with energy constrained tasks

that can be offloaded over edge clouds (cloudlets) or on a remote cloud with

differentiated system and network resources capacities. We investigate of-

floading policy that decides which tasks should be offloaded and determine

the offloading location on the cloudlets or on the cloud. The objective is

to minimize the total energy consumed by the users. We formulate this

problem as a Non-Linear Binary Integer Programming. Since the central-

ized optimal solution is NP-hard, we propose a distributed linear relaxation

heuristic based on Lagrangian decomposition approach. To solve the sub-

problems, we also propose a greedy heuristic that computes the best cloudlet

selection and bandwidth allocation following tasks’ energy consumption. We

∗Corresponding author
Email addresses: mazouzi.houssemeddine@univ-paris13.fr (Houssemeddine

MAZOUZI), khaled.boussetta@univ-paris13.fr (Khaled BOUSSETTA),
nadjib.achir@univ-paris13.fr (Nadjib ACHIR)

Preprint submitted to Computer Communications May 8, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0140366419301720
Manuscript_92291733a105576377abeb810c269e53

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0140366419301720
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0140366419301720


compared our proposal against existing approaches under different system pa-

rameters (CPU resources), variable number of users and for six applications,

each having specific traffic pattern, resource demands and time constraints.

Numerical results show that our proposal outperforms existing approaches.

In addition to the theoretical approach, we evaluate our offloading policy

using real experiments. In this case, we setup a real testbed composed of

client terminal, offloading server located either at the edge or at a remote

Cloud. We also implemented our proposal as an offloading middleware on

both the client and the offloading server. Using this testbed, we were able

to evaluate our offloading decision policy for multi-users context with three

real Android OS applications, with different traffic patterns and resource de-

mands. We also discuss the performance of our proposal for each application

and we analyze the multi-users effect.

Keywords:

computation offloading; mobile cloud computing; mobile edge computing;

cloudlet; Lagrangian decomposition; Offloading Middleware.

1. Introduction1

In recent years, mobile devices have undergone a major transformation,2

moving from small devices with limited capabilities to important everyday3

accessories with important capabilities. This recent advances in hardware4

and software mobile technology have led to an exponential growth in mo-5

bile application markets. Unfortunately, even as mobile applications become6

more and more intensive, the computing power of mobile devices remains lim-7

ited compared to what we can find in data-centers and cloud. Furthermore,8

2



because the limited weight and size and therefore the life of the battery, a9

powerful approach to improving the performance of mobile applications and10

reducing the shortage of mobile device resources is required. One possible ap-11

proach is to enable mobile devices to offload some of their intensive workloads12

to remote high-performance virtual machines. Unfortunately, even though13

clouds have rich computing and storage resources, they are generally geo-14

graphically far away from users. In this case, this approach may suffer from15

significant and fluctuating delays on the Internet. This finding is particularly16

problematic for some mobile applications, such as augmented reality or cloud17

gaming, which requires a reduced response time.18

To reduce this long access delay, an emerging tendency is to push the cloud19

to the network edge, mainly located within existing wireless Access Points20

(APs), ADSL box or Base Stations (BSs). This proximity gives users the21

opportunity to offload their tasks to this Edge cloud or cloudlets. This new22

paradigm is known as "Mobile Edge Computing (MEC)". A cloudlet23

can be seen as a small data center, and because of this geographical proximity24

between users and cloudlets, the access delay on the task offloading can be25

greatly reduced, compared to remote clouds, and thus significantly improving26

user experiences. In this paper, we focus on multi-user MEC, where users27

offload their applications to edge servers or cloudlets. In this case, both the28

wireless bandwidth and the computing resources must be shared among the29

users.30

The work presented in this paper is an extension of our previous work [1].31

In [1], we present a computation offloading policy for multi-users multi-32

cloudlets environment, named Efficient cloudlet Selection Offloading policy33

3



(ECESO). Our objective is to determine which users should offload their tasks34

and to which cloudlet in order to minimize the overall energy consumed by35

the users. Basically, ECESO assigns each user to the best cloudlet in order36

to reduce the energy consumption of all users, according to the available net-37

work and system resources. We formulate this problem as a Binary Integer38

Programming (BIP) and we propose a distributed linear relaxation heuristic39

based on Lagrangian decomposition approach. Our policy consists of two40

decision levels:41

• The local offloading decision level that concerns the users associated42

with the same access point (AP), in order to solve the offloading sub-43

problem of this AP.44

• The global offloading decision level ensures that the offloading solution45

given by the local offloading decision level complies with the cloudlet46

resource constraints.47

In addition to this theoretical approach, we added in this paper a complete48

experimental approach in order to evaluate our proposal. Our objective49

was to evaluate our proposed policy with real Android mobile applications,50

we also designed and implemented a computation offloading middleware for51

Android-based terminals. This middleware was integrated on both the mobile52

terminal and the offloading server. Basically, we integrated our offloading53

policy to the mobile terminal via a client offloading middleware in order to54

decide if the task should be executed locally or offloaded to the edge/remote55

cloud. In the remote virtual machine, we also integrated a server offloading56

middleware to ensure that the offloaded tasks are correctly executed. Using57

4



this testbed we were able to run multi-users offloading experiments in local58

edge and in the cloud, with the aim to compare the observed performances59

to the placement decision made by our proposal ECESO.60

The rest of paper is organized as follows: Section 2 presents related work,61

and section 3 describes the modeled system. Problem formulation and solving62

are detailed in Section 4. Theoretical and experimental evaluation of our63

offloading policy is discussed in section 5. Finally, a conclusion is drawn in64

Section 6.65

2. Related Work66

Several works were proposed to explore computation offloading in order67

to improve the performance of the mobile devices. Some work focused on68

the wireless bandwidth allocation in order to take offloading decision, such69

as Meng-Hsi Chen et al. [2], Xu Chen et al. [3], Songtao Guo et al. [4, 5],70

and Keke Gai et al. [6]. The work presented by Meng-Hsi et al. is one of71

the first works supporting multi-user computation offloading in mobile cloud72

computing. It decides which task must be performed in the remote cloud73

and which task must be performed locally. Then, it allocates the wireless74

bandwidth to each offloaded task in order to reduce the energy consumption75

of the mobile device. Xu Chen et al. policy was designed to a single cloudlet76

mobile-edge environment. Each user tries to offload its tasks, accordingly77

with the available wireless bandwidth to reduce the energy consumption.78

Another offloading approach for multi-users was presented by Songtao Guo79

et al. The offloading policy decides which tasks should be offloaded and80

allocates the wireless bandwidth to each offloaded task. Then, it allocates81

5



the local processor frequency. Lastly, Keke Gai et al. propose a scheduler to82

assign the tasks between the local mobile device and the remote cloud in order83

to save energy consumption. In a multi-cloudlet scenario, the computational84

capacity of each cloudlet is limited, unlike these heuristics, the computation85

offloading policy must select the best cloudlet to each user with the purpose86

to achieve high performance.87

More recently, many works focus on cloudlets placement heuristics in the88

MEC environment. The main goal is to find how many cloudlets are needed89

and where place them, such as Mike Jia et al. [7, 8], Hong Yao et al. [9],90

and Longjie Ma et al. [10]. Mike Jia et al. heuristic tries to find the best91

cloudlets placement in a large network, then select a cloudlet to perform92

the computation tasks of each AP. The K-median clustering based on user93

density is used to place the cloudlets. Then each AP is statically assigned to a94

cloudlet. Similarly, Hong Yao et al. was designed to support heterogeneous95

cloudlets environment. Finally, Longjie Ma et al. was introduced to find96

the minimal number of cloudlets that must be placed to improve the user97

experience quality. However, the density of mobile-users are dynamic and98

changes over time. So, static assignment of the APs to cloudlets may decrease99

the performance of the computation offloading. To confirm this assumption,100

our heuristic ECESO consider dynamic cloudlet selection and the wireless101

bandwidth allocation with the aim of minimizing energy consumption of102

mobile devices.103

Anwesha Mukherjee et al. [11, 12] and Mike Jia et al. [13] focus on the104

dynamic cloudlet selection in order to reduce the offloading cost. Anwesha105

Mukherjee et al. designed a multi-level offloading policy to optimize the106

6



energy consumption. The users offload to the nearest cloudlet in the first step.107

According to the resource availability in this cloudlet, it can perform the tasks108

or offload the task to another cloudlet and so on. Mike Jia et al. introduced a109

heuristic to balance the load between the cloudlet. Its main goal is to migrate110

some tasks from overloaded cloudlets to underloaded cloudlets to reduce the111

execution time. These works propose dynamic cloudlet selection heuristics,112

but they do not consider the wireless bandwidth in a multi-user environment.113

In our previous work [14], we introduce D2M-ECOP a new offloading policy114

for multi-cloudlet MEC environment. D2M-ECOP focuses on selecting the115

best cloudlet dynamically to perform the tasks of each user. This proposition116

achieves high perform in muli-cloudlet MEC environment. However, it does117

not consider the offloading to the remote cloud in case of overloaded of the118

cloudlet, which can affect the performance of the computation offloading in119

such scenario.120

All the offloading policies presented above focus on reducing the offloading121

cost and try to offload the tasks to a predetermined offloading server, a122

remote cloud or cloudlet. Consequently, the performance of computation123

offloading can be decreased due to the dynamic density of users in such124

environment. Therefore, designing a new offloading policy is mandatory.125

The new policy must consider many offloading servers for whom a user can126

offload its tasks, and compute optimal task placement by considering two-tier127

MEC environment.128

Other works of the literature have proposed computation offloading plat-129

forms for mobile application. Eduardo Cuervo et al. [15] implement Maui130

plateform for Windows Phone terminals. This platform uses interface and131

7



annotations programming paradigm [16] to indicate which task to offload.132

Byung-Gon Chun et al. [17] have proposed offloading platform named Clonecloud,133

which uses Android Virtual Machine to offload tasks on the remote cloud.134

Clonecloud uses threads-based offloading strategy to offload tasks in order135

to reduce the completion time of the application. Similarly, Jose Benedetto136

et al. [18] design MobiCOP, which is an Android computation offloading137

platform based on Google cloud computing platform. Unfortunately, all the138

platforms described above have been designed to make the offloading pos-139

sible but not to choose where to offload. In addition, they do not consider140

offloading to a multi-cloudlet MEC environment. In this paper, we developed141

a new computation offloading platform dedicated to multi-cloudlet MEC en-142

vironment. Using this plateform, we set up a real experimentation in order143

to validate our offloading policy.144

3. System description and modeling145

This section presents the MEC system modeling. It describes the compu-146

tation offloading tasks model, and the network communication model. Then,147

it details the offloading cost considered in our offloading problem. Table 1148

presents all the variables used to modeling our multi-user multi-cloudlet com-149

putation offloading problems.150

8



Table 1: Notations and definitions used in the problem modeling

Symbol Notations and Definitions
K the number of cloudlets available in the network.
M the number of APs in the network.
Nm the number of users associated to the AP m.
fm,n the local computing capacity of the nth user of the mth AP.
Fk the computing capacity of the cloudlet k.
ck the computing resource allocation on cloudlet k.

dwm,n
the amount of data to download by the nth user of the mth AP
from the MEC.

upm,n the amount of data uploaded to the MEC from the nth user of the mth AP.
Bup
m,n the allocated upload data rate for the nth user of the mth AP.

Bdw
m,n the allocated download data rate for the nth user of the mth AP.

P tx
m,n power consumption when the Wi-Fi interface is transforming data.
P rx
m,n power consumption when the Wi-Fi interface is receiving data.
P Idle
m,n power consumption when the Wi-Fi interface is in Idel state

tm,n
the maximum tolerated delay according the QoS of the task of the nth user
of the mth AP.

T tm,n,k the communication time when nth user of the mth AP offload to cloudlet k.
T lm,n the local processing time for nth user of the mth AP.
T em,n,k the remote processing time for nth user of the mth AP in cloudlet k.
Z lm,n the local energy consumption for nth user of the mth AP.
Zem,n,k the remote energy consumption for nth user of the mth AP in cloudlet k.

γm,n
the computational resource required by the task of the nth user
of the mth AP.

λm the Lagrangian multiplier of the subproblem m.

xkm,n
the offloading decision variable for the task of nth user of
the mth AP in the cloudlet k.

ym,n
the category to which belong the tasks
(static or dynamic offloading decision task).

9



3.1. MEC Environment151

Figure 1: MEC environment

We consider the MEC environment illustrated in Figure 1. The infras-152

tructure is composed ofM APs, K deployed cloudlets and one remote cloud.153

In the remainder, we will refer to the cloud as the (K + 1)th offloading154

server. Similarly to [8], we assume that the number of cloudlets is less than155

the number of access points (K < M).156

LetM denote the set of APs. The remote cloud and the cloudlets consti-157

tute a set, denoted K, of offloading servers. All these servers offer computa-158

tion resources to perform offloaded tasks. In each server k ∈ K, the resources159

are characterized by a fixed capacity, denoted Fk, of computational resource160

10



units. A computational resource unit is expressed in Ghz and is defined as161

the number of cycles per second allocated to perform a task. We denote ck162

the number of cycles per second allocated by servers k to perform any given163

offloaded task. Similarly to [4, 3], we consider that ck, ∀k ∈ K, is fixed and164

does not change during the computation. We also assume that the number165

of computation resources units, Fk, is limited in cloudlets while it is infinite166

in the cloud. Formally, ∀k ∈ {1, 2, ..., K}, Fk � FK+1 =∞.167

3.2. Tasks Requirements168

Let consider that the system is observed at a given time. Extension to169

continuous observation time is possible by discretizing the time into contigu-170

ous observation intervals. For each observation time, we assume that each171

AP m ∈M is associated to a set of users, denoted Nm of size Nm.172

Let (m,n) denote the nth user associated with themth AP. At observation173

time, we assume that each user (m,n), ∀m,n ∈ (M,Nm), have exactly one174

task, denoted rm,n. This task is characterized by the number of CPU cycles175

needed for its computation, denoted in the following as γm,n. The purpose176

of this work is to decide if a task should be performed locally, on the user’s177

terminal or remotely in one of the K servers. To this end, and similarly178

to [19], we distinguish two offloading decision tasks:179

1. The static offloading decision task180

2. The dynamic offloading decision task181

For the first category, the tasks are always offloaded. The offloading182

decision is taken when the application is designed. In this case, the tasks183

must be performed remotely on the cloudlets or cloud either because they184

11



require some specific hardware/software environment (e.g. GPU, operating185

systems) which are not available on the user’s terminal or in order to fulfill186

some application’s constraints (e.g. security issues). Accordingly, for static187

offloading decision task, our objective is to select in which server k ∈ K the188

task must be offloaded.189

For the second category, the offloading decision is taken at runtime. These190

tasks can be executed either locally or offloaded to one of the k ∈ K offloading191

servers. In this case, our objective is to decide if a dynamic offloading decision192

task has to be executed locally (on the user’s device) or if it should be193

offloaded, and if so, to which offloading server k ∈ K.194

Finally, in order to differentiate between the two categories, we associate195

to each task rm,n a binary variable ym,n, equal to 0 if rm,n is a dynamic196

offloading decision task and to 1 if rm,n is a static offloading decision task.197

3.3. Local Processing time198

In the case where a task, rm,n, is performed locally, the execution time of199

the task only depends on the computing capabilities of the user’s terminal.200

Indeed, the transmission time is equal to zero. In the following, we assume201

that the user’s device can allocate, at a given observation time, a computation202

capacity, denoted as fm,n, to perform the task locally. We also assume that203

this computing capacity remains unchanged throughout the execution of the204

task. This capacity is expressed as the number of cycles per second. We can205

therefore deduce the local processing time of the task rm,n as follows:206

T lm,n =
γm,n
fm,n

(1)

12



3.4. Remote Processing time207

In the case where the task rm,n is offloaded on server k then the following208

steps are required:209

1. In order to perform task rm,n remotely on server k a given amount of210

data must be uploaded from the user’s terminal to server k, denoted211

hereinafter as upm,n and expressed in bits. The time required to trans-212

mit this data depends on the bandwidth available for the user’s (m,n)213

terminal at the AP m and also to the delay from the AP m to the214

server k on the backhaul network. Lets denote by Bup
m,n the upload215

bandwidth allocated to the user m,n in the AP m to transmit the data216

required for the task rm,n. We will detail in section 3.5 how to compute217

this bandwidth when a given number of users associated to a same AP218

must offload their tasks. Accordingly, we can then derive the transmis-219

sion time to upload the data of an offloaded task rm,n from user (m,n)220

terminal to its AP m as follows:221

T upm,n =
upm,n
Bup
m,n

(2)

Similarly, let Bbh
m,k denotes the end to end backhaul bandwidth between222

the AP m and the offloading server k. We can express the transmission223

time of the data associated with an offloaded task rm,n from AP m to224

server k as follow:225

T bh,km,n =
upm,n
Bbh
m,k

(3)

2. This uploaded data is then used by the offloaded server k to perform226

13



the task. The remote computing time of task rm,n can be expressed as227

the ratio of the CPU cycles required for the task’s computing (γm,n) to228

the number of cycles per second allocated at server k (ck):229

T e,km,n =
γm,n
ck

(4)

3. Finally, when the task’s computation is finished, the server k returns230

back the results to the user’s terminal. We denotes by dwm,n the231

amount or results data returned back to the user (m,n). This quantity232

is also expressed in bits. We can thus derive the transmission time of233

task rm,n from server k to AP m as follow:234

T k,bhm,n =
dwm,n
Bbh
m,k

(5)

In the same way, We can also express the transmission time to download235

the remote computation result of the offloaded task rm,n from AP m236

to user (m,n) terminal as follows:237

T dwm,n =
dwm,n
Bdw
m,n

(6)

Here, Bdw
m,n denotes the allocated bandwidth to transmit the offloaded238

task results from the AP m to user (m,n).239

Finally, we can then compute the completion of task rm,n when the latter240

is offloaded on server k as follows:241

T km,n = T upm,n + T bh,km,n + T e,km,n + T k,bhm,n + T dwm,n (7)

14



3.5. Shared wireless access bandwidth242

As introduced in the last section, the available bandwidth in upload and243

download for each user in an AP depends on the number of concurrent trans-244

missions, which means in our case the number of offloaded tasks. In the245

following we denote by πm the number of tasks that are offloaded through246

AP m ∈M to a server k ∈ K.247

In this paper, we consider that access points use 802.11n technology.248

However, this work can be easily extended to cellular technologies by con-249

sidering existing models from the literature. As we will emphasize in section250

20, the key point here is the fact that the available bandwidth is inversely251

proportional to the number of offloaded tasks, which makes our optimization252

problem non-linear.253

In order to estimate the bandwidth at each AP, we adopt the Bianchi254

analytical model of WiFi channels [20, 21] where the characteristics of DCF255

mechanisms in 802.11n are considered. The parameters are summarized in256

Table 2.257

Table 2: The characteristics of DCF mechanisms in IEEE 802.11n

Parameter Value
MAC header 272 bits
PHY header 128 bits
ACK 112 bits + PHY header
W(wireless bandwidth) 150 mbps
CW (Contention Window) 15
R (Maximum backoff counter) 7
% (slot time) 9 µs
φ (propagation time) 1 µs
SIFS, DIFS 10 µs, 28 µs

15



Using the Bianchi model [20, 21], the bandwidth of an AP where πm users258

are competing for a transmission can be expressed by the following formula:259

B(πm) =
E(Playload information transmitted in a slot time)

E(length of a slot time)
(8)

=
ps.E

(1− pb).%+ ps.T s + (pb− ps).T c
(9)

Where260

• ps denote the probability that a successful transmission occurs in a slot261

time.262

ps = πmτ(1− τ)πm−1

Here, τ denotes the stationary probability that one mobile device trans-263

mits a packet in a slot time. It can be expressed as:264

τ =
1

1 +
1− p

2(1− pR+1)
[
∑R

j=0 p
j.(2jCW − 1)− (1− pR+1)]

(10)

Where p is the probability of a collision during the transmission of a265

packet. We can express it as:266

p = 1− (1− τ)πm−1 (11)

16



Fixed point method can be used to solve equations 10 and 11 to deter-267

mine the value of τ .268

• E is the average time to transmit the packet payload information of

size d. It can be computed as follows:

E =
d

W
∗ CW

CW − 1
(12)

• pb denotes the probability that the channel is busy. It can be computed

as follows:

pb = 1− (1− τ)πm (13)

• T s is the average time the channel is sensed busy because of a successful269

transmission. Let TMPDU , TACK , SIFS and DIFS denote the time to270

transmit the MPDU (including MAC header, PHY header), the time271

to transmit an ACK, the SIFS time and the DIFS time, respectively.272

T s = (TMPDU + SIFS + TACK +DIFS) ∗ CW

CW − 1
+ φ

Here, TMPDU , TACK and DIFS denote the time to transmit the MPDU273

(including MAC header, PHY header), the time to transmit an ACK,274

and the DIFS time, respectively.275

• T c is the average time the channel is sensed busy by each station during276

a collision.277

T c = TMPDU + SIFS + TACK +DIFS + φ

17



Using equation 9 we can compute the allocated bandwidth to transmit278

the input data of offloaded task rm,n from user (m,n) to its AP m as follows:279

Bup
m,n =

B(πm)

πm
(14)

In the same way, we can obtain the allocated bandwidth to transmit the280

offloaded task results from the AP m to user (m,n) as follows:281

Bdw
m,n =

B(πm)

πm
(15)

3.6. Completion time constraint282

Let Tm,n denotes the total processing time of task rm,n. From the above283

system description, one can see that Tm,n depends on the processing time and284

eventually, in case of offloading, upload and download transmission times.285

Precisely, if a task rm,n is performed locally, then Tm,n = T lm,n. Otherwise, if286

a task rm,n is offloaded on server k the Tm,n = T km,n.287

Hence, to integrate applications’ Quality of Services requirements, we288

associate to each offloadable task a time constraint threshold. Precisely, we289

define a maximum completion time threshold, denoted tm,n to any task rm,n,290

∀(m,n) ∈ (M,Nm).291

The completion time is a hard constraint for any task, rm,n, ∀(m,n) ∈292

(M,Nm). In other words, the optimal offloading policy must satisfy the293

following constraint:294

Tm,n < tm,n (16)

As stated before, the purpose of our offloading policy is to determine295

18



which tasks should be offloaded and to which server in order to satisfy the296

completion time constraint. In addition to this constraint, our purpose is to297

determine the optimal offloading policy which minimizes the overall energy298

consumed by the user’s terminals. In the following sections we will detail299

energy consumption models for both, local and remote tasks processing.300

3.7. Energy consumption: local processing301

Following the model proposed in [22] of power consumption due to tasks302

processing on portable devices, we can then derive the total amount of energy303

consumed to process task rm,n locally as follows:304

Z lm,n = κ ∗ (fm,n)3 ∗ T lm,n = κ ∗ (fm,n)2 ∗ γm,n (17)

where κ is the effective switched capacitance, which depends on the chip305

architecture, and is used to adjust the processor frequency. Similarly to306

[22], we set κ = 10−9.307

3.8. Energy consumption: Remote Processing308

The total amount of energy consumed by the user’s device to perform the309

task remotely is equal to the energy used when the device 1) turns the radio310

in the transmission mode to send the data to the remote server, 2) turn the311

radio in idle mode to wait the task completion and finally 3) turn the radio312

in the reception mode in order to receive the result data from the remote313

server. The consumed energy can thus be expressed as follows:314

19



Zkm,n = P tx
m,n ∗ T upm,n + P idle

m,n ∗ (T bh,km,n + T e,km,n + T k,bhm,n ) + P rx
m,n ∗ T dwm,n (18)

where P tx
m,n is the power consumption when the radio interface is in transmis-315

sion mode, P rx
m,n is the power consumption when the radio interface is in the316

reception mode and P idle
m,n is the power consumption when the radio interface317

in idle mode. As is commonly assumed [22], we suppose that318

P idle
m,n ≤ P rx

m,n ≤ P tx
m,n (19)

4. Problem Formulation and Solving319

As introduced earlier, the objective of this paper is to propose an efficient320

offloading policy that decides which tasks should be offloaded and to which321

offloading server (cloudlets or cloud), while minimizing the total energy con-322

sumed by the mobiles. Given our system description and according to the323

QoS and offloading servers’ resources capabilities constraints, our problem324

can be formulated as follows:325

20



Minimize
M∑
m

Nm∑
n

Zm,n

Subject to:

C1 :
K+1∑
k=1

xkm,n ≤ 1,∀m ∈M, (m,n) ∈ Nm

C2 : ym,n −
K+1∑
k=1

xkm,n ≤ 0,∀m ∈M, (m,n) ∈ Nm

C3 : Tm,n ≤ tm,n,∀m ∈M, (m,n) ∈ Nm

C4 :
M∑
m

(
Nm∑
n

xkm,n ∗ ck) ≤ Fk,∀k ∈ K

C5 : xkm,n ∈ {0, 1}, ∀m ∈M, (m,n) ∈ Nm, k ∈ K

(20)

As indicated above, our objective is to minimize the total amount of326

energy consumed by the mobiles. Here xkm,n is the offloading decision of the327

task of the user (m,n) to the offloading server k, which means that xkm,n = 1328

if the user (m,n) offloads its task to the offloading server k, and 0 otherwise.329

Zm,n is the amount of energy consumed by the task of the user n on the AP330

m, and can be computed as following:331

Zm,n = (1−
K+1∑
k=1

xkm,n) ∗ Z lm,n +
K+1∑
k=1

xkm,n ∗ Zkm,n

Constraint C1 ensures that each task is assigned at most to one offloading332

server. Constraint C2 guarantee that any static offloading decision task must333

21



be assigned to exactly one offloading server, and a dynamic offloading decision334

task may be assigned to at most one offloading servers. The next constraint335

C3 ensures that the QoS required by the task, in terms of completion time,336

must be less than a given threshold. The processing time of task rm,n can be337

expressed as following:338

Tm,n = (1 −
K+1∑
k=1

xkm,n) ∗ T lm,n +
K+1∑
k=1

xkm,n ∗ T km,n

The next constraint C4 shows that it is not possible to exceed the offload-339

ing capacity of the offloading server. Finally, constraint C5 ensures that the340

decision variable, xkm,n, is a binary variable.341

Theorem 1. The problem defined by equations 20 is a Non-Linear Binary342

Integer Problem (NLBIP) with an exponential function and constraints. It343

is an NP-hard problem.344

Proof. Let us consider a special case where the same number of users are345

associated with each AP and all tasks are static offloading decision. So, all346

the tasks must be offloaded to the cloudlets and the bandwidth allocated347

to each user is known in advance. Thus, the special case is Linear Binary348

Integer Problem (LBIP). In fact, this special case can be easily reduced to349

the General Assignment Problem (GAP) with assignment restrictions, which350

is NP-hard as shown in [23]. Since the special case is NP-hard, the problem351

20 is also NP-hard.352

One possible approach to resolve the above problem is to use some de-353

composition techniques such as Lagrangian relaxation. Thus, we introduce354

22



the Lagrangian multipliers λ = [λk, k ∈ K]T on the constraint C5, since it is355

considered as a complicating constraint [24]. Here, λk denotes the price of all356

the tasks performed by the kth offloading server. The Lagrangian function is357

given by:358

L(X,λ) =
M∑
m

Nm∑
n

(Zm,n +
K+1∑
k

λkx
k
m,n ∗ ck)−

K+1∑
k

λkFk

In this case, the Lagrange dual problem for the primal problem (20) is

then given by:

max
λ

min
X

L(X,λ)

We can see that the Lagrange dual problem is separable into two levels.359

The first level is the inner minimizing and consists of M subproblems for360

the M APs. The second level is the outer maximization and represents the361

master problem that consider the global variable and constraint C4.362

4.1. Local Computation Offloading Decision Heuristic363

As introduced in the last section, we decompose the Lagrange Dual prob-364

lem into M subproblems. Each subproblem concerns one AP and aims to365

offload the task which belongs to the users associated to that AP. This sub-366

problem can be formulated as following:367

Minimize
Nm∑
n

(Zm,n +
K+1∑
k

λk · xkm,n · ck)

Subject to:

constraints C1 - C3 and C5 (21)

23



From the last formulation, we can observe that we need to compute the368

bandwidth allocated to each user. Unfortunately, according to equation 8 this369

bandwidth depends on the number of users that offload their tasks (πm). To370

overcome this dependency problem, we use a branching heuristic. Basically, it371

consists of finding the optimal value of πm, that gives the minimum offloading372

cost of the subproblem 21. We can easily derive a lower bound for πm, since373

the minimum number of tasks that should be offloaded by the users are the374

tasks that are considered as static offloading decision tasks. Similarly, we can375

also derive an upper bound for πm, which corresponds to the total number376

of tasks (Nm) belonging to the users of the AP m. Consequently, we have377

to add one additional constraint C6 to the subproblem formulation (21), as378

following:379

C6 :
Nm∑
n

K+1∑
k

xkm,n = πm (22)

To solve our subproblem, we propose a distributed greedy heuristic to se-380

lect which user should offload its task and to which offloading server (cloudlet).381

Our proposed heuristic is illustrated in the algorithm 1. Basically, we start382

our algorithm by finding the best offloading server for all static offloading383

tasks, that minimize the Lagrangian cost Zkm,n+λk · ck under the constraints384

C1−C3 and C5−C6. There after, since the wireless bandwidth at the AP385

maybe not enough to offload all the remaining dynamic offloading decision386

tasks, we propose to define an order to determine which task must be of-387

floaded at first. To do this, we compute for each dynamic offloading decision388

24



task an offloading priority defined as following:389

am,n = Z lm,n −min
k∈K

(Zkm,n) (23)

This offloading priority depicts the potential gain, in terms of energy390

saving, between a local execution or an offloading of the task. The idea here391

is that when am,n increases, the offloading of the task is preferred since more392

energy is saved at the mobile. Finally, once the number of the offloading393

task is equal to the current offloading capacity (πm), the remaining tasks are394

assigned to being performed locally by the users.395

Algorithm 1 ECESO offloading heuristic
Output: output the offloading decisions X and cost Z ;
1: for each value of πm do
2: allocate bandwidth using equation 14 and 15 ;
3: offload each static offloading decision task to the offloading server k

that minimizes Zkm,n + λkck under constraints C1− C3 and C5− C6.
4: compute am,n for every dynamic offloading decision task ;
5: Sort dynamic offloading decision tasks in decreasing order of anm ;
6: offload each dynamic offloading decision task to the offloading server k

that minimizes Zkm,n + λkck under constraints C1− C3 and C5− C6.
Otherwise, the task must be performed locally.

7: update the best offloading cost Z and decisions X ;
8: end for

4.2. Global Offloading Decision and Lagrangian Adjustment Heuristics396

The outer level of the Lagrangian dual problem refers to the global of-397

floading decision problem. It ensures a feasible offloading solution of the398

primal problem. As known, the optimal solution of the Lagrange dual re-399

quires an exhaustive search of all solutions’ space and Lagrange multiplier400

25



values which is a difficult task in general. Consequently, we need to adopt an401

alternative approach. In this work, we use the Subgradient-based heuristic402

proposed in [24]. This heuristic has three steps, first solve the subproblems,403

using our proposed heuristics, for the current value of λ. Then, we check if404

the obtained solution is feasible or not. If so, we use a Lagrangian Adjust-405

ment Heuristic (LAH) to get a feasible solution using local searches. The idea406

of LAH is to check if every offloading server respect the constraint C4. When407

an offloading server does not respect this constraint, LAH tries to migrate408

some tasks offloaded from this offloading server to other offloading servers409

that respects all constraints. Finally, we update the Lagrange multipliers as410

following:411

λk(t+ 1) = λk(t) + θ(t) ∗ (
M∑
m

(
Nm∑
n

xkm,n ∗ ck)− Fk) (24)

where θ(t) is the update step. In this work, we use Held and Karp formula [24]

to update this step as following:

θ(t) = η(t) ∗ Z∗ −Z(t)∑K+1
k=1 (

∑M
m

∑Nm

n xkm,n ∗ ck − Fk)2
(25)

where η(t) is a decreasing adaptation parameter 0 < η(0) ≤ 2, Z∗ is the best412

obtained solution of the problem 20 and Z(t) refers to the current solution413

26



of the Lagrangian Dual. We have:414

η(t+ 1) =


ϑ ∗ η(t) if Z(t) did not increase

η(t) otherwise

(26)

As suggested in [24], we set the values of ϑ = 0.9 and η(0) = 2. The415

master problem repeats these steps until the stop conditions, which are the416

maximum number of iterations Itmax and the maximum error ε (θ(t) < ε).417

5. Performance Evaluation418

5.1. Numerical Assessment419

5.1.1. System Parameters420

In this section, we evaluate the performance of our offloading policy by421

evaluating several performance metrics, i.e. the average number of offloaded422

tasks and the energy saving from the offloading under different settings. The423

MEC environment consists of a metropolitan area, which is composed of 20424

APs and four cloudlets already deployed among the network. In addition, two425

network topologies are considered. The ring topology, in which the cloudlets426

are equidistantly deployed in the AP, i.e: cloudlet 1 is collocated with the427

AP 1, cloudlets 2 with the AP 6, cloudlet 3 with the AP 11 and cloudlet428

4 with the AP 16. The second topology is generated by GT-ITM [25] tool,429

where the cloudlets are randomly deployed. In order to get a better un-430

derstanding of the offloading policies performances, we consider real mobile431

applications. Table 3 illustrates the characteristics of the used applications,432

27



where γ indicates the computing resources required to perform the applica-433

tions, up represents the data that must be transmitted to the remote server,434

dw the data that should be received from the remote server and t the maxi-435

mum tolerated delay according to the QoS required by the application. The436

first three applications are static offloading decision tasks, and the remaining437

applications are dynamic offloading decision tasks [19].438

Table 3: The characteristic of the real-world applications used for our tests.

Application γ(m,n) up(m,n) dw(m,n) t(m,n)
(Giga CPU

cycles)

(Kilobyte) (Byte) (Second)

static offloading decision tasks

FACE 12.3 62 60 5
SPEECH 15 243 50 5.1
OBJECT 44.6 73 50 13

dynamic offloading decision tasks

Linpack 50 10240 120 62.5
CPUBENCH 3.36 80 80 4.21
PI BENCH 130 10240 200 163

In addition, we consider two cloudlets configurations, in which we use439

real-world setting, used by the public cloud provider such as: Amazon AWS440

and Microsoft azure [3, 4, 10], to simulate the behavior of ECESO real-441

world scenarios. In the first configuration, each cloudlet has a computing442

capacity of 1000 Giga cycles/s, and allocates 10 Giga cycles to perform every443

offloaded task (Fk = 1000 and ck = 10). In the second configuration, we444

consider heterogeneous cloudlets, where cloudlets 1 and 2 have a computing445

capacity of 500Giga cycles/s and cloudlets 3 and 4 have a computing capacity446

of 1500 Giga cycles/s. Both upload and download bandwidths of each AP are447

28



set to 150 mbps and the bandwidth allocated to each user is estimated using448

the parameter settings used in Bianchi model [21]. Regarding the backhaul449

network, we use the parameters presented in [26]. Moreover, as in [8], we450

assume a homogeneous users distribution in the network. As in [22], we451

also consider that the power consumed in transmission mode is equal to the452

power consumed in the reception mode and is equal to ten times the power453

consumed in idle mode. We set P idle
m,n to 100 mWatts. The local computing454

capability of each user was randomly chosen from Fm,n ∈ [0.8, 1, 1.2] Giga455

cycles/s. Finally, we consider that each user randomly chooses an application456

from those described in the table 3.457

In order to evaluate the performances of our proposal, we propose to458

compare it with the following offloading policies:459

• DOTA [10, 8]: In DOTA, each AP is associated with the nearest460

cloudlet. In this case, all users connected to this AP offload their tasks461

to the same cloudlet. When a cloudlet is overloaded, the tasks are462

migrated to the remote cloud.463

• CBL [13, 7]: Using CBL we also associate each AP to the nearest464

cloudlet. Thus, all users connected to that AP have to offload their465

tasks into that same cloudlet. However, unlike DOTA, when the466

cloudlet is overloaded, the tasks are migrated to another cloudlet.467

• FCO [2, 3]: In this policy, all users offload their tasks to the cloud.468

In order to compare these offloading policies, we also define comparison469

metrics depicting the gain of a given offloading policy P . This gain represents470

29



the benefit of the offloading policy P compared to case where the task is471

offloaded to the cloud (i.e. FCO policy). We formulate the gain as following:472

gain of P = 100 ∗ (cost of FCO− cost of P)
cost of FCO

5.1.2. Results Analysis473

In Figure 2, we plot the gain of our policy (ECESO) compared to the474

gain of DOTA and CBL, when considering a network topology following the475

configuration 1 with homogeneous cloudlet characteristics. As expected, we476

can observe that the gain decreases when the number of users increases. This477

is manly due to the fact that the backhaul cost increases when the number478

of offloaded task increases. We can also observe that the performances of479

ECESO, DOTA and CBL are almost equivalent, except when the number of480

users exceeds 300, where we notice that our approach is slightly better. This481

is due to the fact that ECESO tries to maximize the bandwidth allocated to482

each user and offload in priority the tasks with the greatest impact on the483

cost. Consequently, less tasks are offloading compared to the other offloading484

policies.485

In Figure 3, we compare the performances of ECESO, BCL and DOTA486

when heterogeneous cloudlets are deployed, for both ring and GT-ITM topolo-487

gies. As we can see, when few number of users are considered (< 100), the488

performances of the three policies are equivalent. However, when the number489

of users increases ECESO outperforms both BCL and DOTA, for both config-490

urations of network topologies. This is due to the fact that when we increase491

the number of users both cloudlets 1 and 2 cannot support all the offloaded492

tasks. In this case, DOTA policy start to migrate the overloaded tasks to the493

30



50 100 150 200 250 300 350 400
Number of users in the network

7.0

7.5

8.0

8.5

9.0

9.5

G
ai

n(
%

)

ECESO
DOTA
CBL

Figure 2: Offloading gain over homogeneous cloudlets configuration

31



remote cloud, which adds more offloading costs. On the other hand, CBL494

tries to migrate the overloaded tasks from cloudlets 1 and 2 to cloudlets 3495

and 4 and also some additional offloading cost but less than DOTA. How-496

ever, using ECESO, for each task, we can select the best cloudlet at the497

offloading decisions step, which reduce the additional offloading cost due to498

the migration of tasks introduced in DOTA and CBL. Finally, we notice that499

the effect of the network topology on the performances of ECESO is more500

important than the DOTA and CBL. This is due to the fact that ECESO501

uses the topology to select the cloudlets. However, DOTA and CBL assign502

statically the AP to the cloudlet.503

50 100 150 200 250 300 350 400
Number of users in the network

5

6

7

8

9

10

G
ai

n(
%

)

ECESO
DOTA
CBL

Figure 3: Offloading gain over heterogeneous cloudlets.

32



100 200 300 400 500 600 700 800 900 1000

10
12
14
16
18
20

Offloading to cloud

100 200 300 400 500 600 700 800 900 1000

10
12
14
16
18
20

Offloading to Cloudlets

100 200 300 400 500 600 700 800 900 1000

number of mobile users

10
12
14
16
18
20

c c
lo
u
d

Local execution

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) static offload apps

100 200 300 400 500 600 700 800 900 1000

10
12
14
16
18
20

Offloading to cloud

100 200 300 400 500 600 700 800 900 1000

10
12
14
16
18
20

Offloading to Cloudlets

100 200 300 400 500 600 700 800 900 1000

number of mobile users

10
12
14
16
18
20

c c
lo
u
d

Local execution

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) CPUBENCH

100 200 300 400 500 600 700 800 900 1000

10
12
14
16
18
20

Offloading to cloud

100 200 300 400 500 600 700 800 900 1000

10
12
14
16
18
20

Offloading to Cloudlets

100 200 300 400 500 600 700 800 900 1000

number of mobile users

10
12
14
16
18
20

c c
lo
u
d

Local execution

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) PIBENCH

100 200 300 400 500 600 700 800 900 1000

10
12
14
16
18
20

Offloading to cloud

100 200 300 400 500 600 700 800 900 1000

10
12
14
16
18
20

Offloading to Cloudlets

100 200 300 400 500 600 700 800 900 1000

number of mobile users

10
12
14
16
18
20

c c
lo
u
d

Local execution

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) Linpack

Figure 4: Comparison of offloaded tasks to cloudlets and the remote cloud under different
users and cloud computing capacity (ccloud in Giga cycles/s).

33



Finally, in Figure 4 we investigate how each application behaves accord-504

ing to the amount of resources allocated to tasks on the cloudlet and on the505

cloud. Precisely, we fix the computing capacity allocated to each user in the506

cloudlets to 10 Giga cycles/s and we vary this capacity between 10 to 20507

Giga cycles/s in the cloud [3, 4, 10]. As we can see, not all the applica-508

tions have the same behavior according to the amount of resources allocated509

on the cloud. Basically, all static offloading decision tasks (FACE, SPEECH,510

and OBJECT) are always offloaded to the cloudlets or the cloud have the511

same computation computing 10 Giga cycles/s. However, where the remote512

cloud has greater computing capacity than cloudlets (ccloud > ccloudlets) all513

the tasks are offloaded to the remote cloud. Figure 4(b), 4(c) and 4(d) illus-514

trate the performances of the ECESO policy for dynamic offloading decision515

tasks, CPUBENCH, PIBENCH and Linpack, respectively. The ratio of the516

offloading tasks decreases when the number of users in the network increases,517

for example, for CPUBENCH applications 100% of tasks are offloaded where518

the number of users is not greater than 200, but only 30% are offloaded where519

1000 users are in the network. This decreasing of the ratio of offloaded tasks520

is due to the wireless bandwidth in the AP. We also note that the ratio of521

the offloaded tasks depends on the application characteristics when the ap-522

plications require a lot of computing resources and transmit a huge amount523

of data (Linpack and PIBENCH) the ratio of offloaded tasks is lower. As a524

result, choose the placement of the tasks, remote cloud or cloudlet, depends525

on many factors, in the figures we noticed that the computing resource allo-526

cation in the remote cloud, the computing resource allocation in the cloudlets527

and the characteristics of the application affect directly the placement of the528

34



offloaded tasks.529

5.2. Experimental Assessment530

5.2.1. Testbed531

In addition to the numerical results presented in the previous section,532

we evaluated our proposal using real experiments. In this case, we setup a533

testbed composed of several hardware components, as illustrated in figure 5.534

The first component consists of the client device acting as a mobile terminal,535

the second component is the offloading server located either at the edge Cloud536

or the remote Cloud and finally the last component is a network topology to537

connect the client device to the offloading server.538

For the client device, even if our testbed can be used with real Android539

mobile terminal, we decided to consider an Android client using a Raspberry540

Pi 3 device. The main idea is to have a controlled experimental environment,541

since we need to measure the energy consumed by the device and also to con-542

trol the bandwidth for the client. We used a Raspberry Pi 3 Model B (RPi3)543

powered by a Quad Core Broadcom BCM2837 64bit ARMv8 processor at544

1.2 GHz and 1GB LPDDR2 of RAM at 900 MHz. On this client device, we545

installed Android 8 "Orio" as operating system and also our client offloading546

middleware. Finally, we developed and implemented three dynamic offloading547

decision tasks applications: Linpack, CPUBENCH and PI BENCH. Each of548

these bench applications was implemented as a fragment within a common549

Java Android application. The size of the APK source file is 5427.2 Kilobytes.550

The second component of our testbed is the offloading server. As shown551

in the figure 5, the offloading server can be located at the edge Cloud or at552

the remote Cloud. For the edge Cloud, we used a desktop PC powered by an553

35



Remote Offloading Server

Local Topology

Android Device

R1

R2

Switch

Raspberry Pi1

Local Network

Internet

Edge Cloud

AWS Amazon Cloud

Client Offloading Middleware

Profiler Offloading
decider

Communication interface

Application 1 Application 2

Remote Offloading Middleware

Monitor Task Handler

Communication interface

Application 1 Application 2

Edge

Pi2

Pi3

Pi10

Figure 5: An Overview Architect of Computation Offloading Platform

36



Intel I7-6700 8 cores CPU at 3.40 GHz and 16 GB DDR3 of RAM with an554

Ubuntu 18.04.2 LTS as operating system. In order to run native Android555

applications, we also installed, using VirtualBox, a virtual machine with556

Android-x86 distribution as operating system. Android-x86 [27] is an open557

source project to port Android on x86 platform. Finally, we also implemented558

and installed on this distribution our server offloading middleware. For the559

remote Cloud, we deploy our offloading server on AWS Amazon Cloud using560

the t2.medium instance. This instance is powered by high-frequency Intel561

Xeon processors with 2 vCPU and a memory of 4 GB. As for the edge Cloud,562

we also installed our server offloading middleware on this virtual machine.563

To connect the Android client device to the offloading server, we have set564

up a network topology composed of two Cisco routers. The first router is565

connected to the client via a switch (LAN) and the second router allows our566

testbed to be connected to the edge Cloud through a local network and to567

the remote Cloud via an Internet connection. To connect the two routers, we568

use a serial link allowing us to control the speed at which the data, in bits569

per second (bps), is sent between the two routers. The main objective is to570

control the bandwidth between the offloading client and the offloading server.571

In our experiments, we used the bandwidth values offered by the serial link572

which are: 1.2Kbps, 4.8Kbps, 9.6Kbps, 38.4Kbps, 72Kbps, 125Kbps, 500Kbps,573

5.3Mbps and 8Mbps.574

We also implemented and deployed our offloading middleware. This mid-575

dleware implementation is based on client-server architecture. On both the576

client and the server, our middleware is integrated to Android operating sys-577

tem as a new service which must be executed in the background by the An-578

37



droid OS. Inspired by the offloading platforms from literature [15, 18, 17, 28],579

our offloading middleware uses component-based design pattern [29]. For in-580

stance, the client offloading middleware has three main functions: the profiler581

function, the offloading decider function and the communication function.582

The objective of the profiler is to collect the information related to the appli-583

cation (i.e. task), such as the hardware usage and the network bandwidth.584

This information is stored in a local database in order to be used by a second585

function, which is the offloading decider function. The main objective of the586

offloading decider function is to decide whether the task should be executed587

locally or offloaded to the edge or to the remote Cloud. We implemented588

our offloading policy within this function. Finally, the last function is the589

communication function, which is in charge of handling the communications590

between the client offloading middleware and the remote offloading middle-591

ware. Basically, in case of offloading, this function sends both the APK source592

code and the input data corresponding to the offloaded task to the offloading593

server.594

In addition to the client offloading middleware, we also developed a re-595

mote offloading middleware. The main objective of this middleware is to596

execute the task offloaded from the client, and also to return the results ob-597

tained at the end of the execution. This remote offloading middleware is598

also composed of three main functions: task handler function, monitor func-599

tion and communication function. The main objective of the task handler600

function is to load and execute the APK source code of each received task.601

The task handler is also in charge of maintaining an isolated execution en-602

vironment between the received tasks by executing each task in a separated603

38



thread. At the end of the task execution the task handler gathers the results604

and, using the communication function, sends it back to the client offloading605

middleware. Finally, monitor function saves information (i.e. logs) related606

to the task execution.607

5.2.2. Discussion608

The first purpose of the experiments was to characterize the benchmark609

applications: Linpack, CPU-Bench and PI-Bench. Each of these applications610

was parameterized in order to study the system under three CPU resource611

requirement situations: 1) Light, 2) Medium and 3) Full. Precisely, Linpack612

is a software that performs matrix calculations. To generate light processing613

requirements, we parameterized Linpack with 17 square matrix sizes, ranging614

from 1 to 17. Medium and full configurations were generated by multiplying615

the above matrix sizes by a factor of 40 and 70, respectively. CPU-Bench is616

a software that generates a random floating point and a random integer of a617

predefined size n. To generate light, medium and full configurations, we set618

n = 106, 107 and 108, respectively. Finally, three CPU resource requirement619

situations for Pi-Bench are obtained by computing pi with an approximation620

of 103, 104 and 105 decimal places. All the shown results are average values621

obtained after executing 10 runs with the same experiments setting.622

Using our testbed, we measured the number of CPU cycles (γm,n), the623

quantity of uploaded data (upm,n) and the quantity of downloaded data624

(dwm,n) of the three bench applications, under Light, Medium and Full con-625

figurations. The results are shown in Table 4. One can observe that all626

the measured parameters are different from those reported from the liter-627

ature [19] in table 3, except downloaded data for Linpack. New versions628

39



and the possibility to execute these applications by setting some parameters629

might explain such a gap. Notice also that due to our implementation of630

these three bench applications as fragments within the same Java Android631

application, the quantity of the downloaded data is always equal to the size632

of the APK source file (5427.2 bytes). Among the three bench applications,633

Linpack is the one that generates the lowest number of CPU cycles. Under634

Full configuration, it is also the one that leads to the highest number of CPU635

cycles.636

Table 4: The characteristic of the bench apps

Application γm,n upm,n dwm,n
(Giga CPU cycles) (Kilobyte) (Byte)

Linpack

Light 0.2033 5427,2 120
Medium 547.406 5427,2 120
Full 2909.11 5427,2 120

PIBENCH

Light 2.203 5427,2 56
Medium 45.539 5427,2 56
Full 1310.882 5427,2 56

CPUBENCH

Light 8.696 5427,2 30
Medium 293.613 5427,2 30
Full 745.435 5427,2 30

Figure 6 shows the energy consumption measured in our testbed for Lin-637

pack easy, when it is executed locally on the mobile terminal, on the edge638

with 1 or 2 vCPU and on the clouds located at Paris or at the Ohio, both639

allocating 2 vCPU. The x axis represents the bandwidth of the serial link640

40



104 105 106

The bandwidth (bps)

10 2

10 1

100

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 6: Linpack easy : Energy Consumption

that we have varied from 1.2 Kbps to 8 Mbps. Notice that logarithmic scale641

is used for x and y axis. As one can see, when the offered bandwidth is642

restricted to less than 500Kbps, the lowest energy consumption is obtained643

for local execution. Above 500kbps, offloading Linpack easy on the edge with644

2vCPU offers better energy performances. Starting from 5.3Mbps offloading645

on the cloud located at Paris outperforms the local execution. These exper-646

imental results prove that, even for applications that require light process-647

ing resources, offloading could be energetically beneficial when the available648

bandwidth to the remote server is sufficiently high.649

Another situation fostering the remote execution is observed when the650

task’s processing needs is important. This is clearly illustrated for Linpack651

medium in figure 7. We can notice a certain hierarchy in the performances:652

first the closest edge, then the remote cloud, and lastly the local execution.653

41



104 105 106

The bandwidth (bps)

10 1

100

101

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 7: Linpack medium: Energy Consumption

104 105 106

The bandwidth (bps)

101

102

103

Av
er

ag
e 

tim
e 

of
 1

00
 p

in
g 

(M
ill

iS
ec

)

edge: cloudlet
aws: Paris
aws: Ohio

Figure 8: Round Trip Time between the terminal and different locations

42



A noticeable discrepancy can be observed in figure 7 between the clouds at654

Paris and at Ohio. We believe that this is related to differentiated network655

latency from our lab to these two clouds. The average Round Trip Time656

(RTT) measured from the terminal toward different remote servers is drawn657

in figure 8. We can see that the RTT for the edge and the cloud in Paris658

are very close to each other, while the RTT to the cloud in Ohio increases659

significantly for larger bandwidth values.660

104 105 106

The bandwidth (bps)

100

101

102

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 9: Linpack full : Energy Consumption

As shown in Figure 9, the observations made for Linpack medium are661

reinforced for the full variant. Because Linpack full is a CPU-intensive ap-662

plication, it is obvious that its completion time is mainly dominated by the663

computation duration. The transmission delay is proportionally negligible.664

This explains why the effect of differentiated RTT between Paris and Ohio665

is hardly observable in figure 9. However, the performance gap between the666

43



edge and the clouds is very apparent and almost insensitive to the band-667

width, when the latter reaches 72Kbps. We can deduce that the local edge668

offers higher CPU capacity than those provided at the clouds, despite the fact669

that both have allocated 2vCPU resources. This discrepancy illustrates the670

impact of the heterogeneity of the hardware and the software technologies,671

which are used in a multi-tier mobile edge computing infrastructure.672

104 105 106

The bandwidth (bps)

10 2

10 1

100

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 10: CPUBench easy : Energy Consumption

Energy consumption for CPU-Bench easy, medium and full are shown673

in figures 10, 11 and 12, respectively. The general observations regarding674

Linpack holds for CPUBench. However, for CPU-Bench easy one can see675

in figure 10 that when the bandwidth is restricted to less than 125Kbps the676

cloud in Paris and the local edge have almost the same performances, with677

a very slight advantage for the cloud at Paris. This can be explained by678

the fact that transmission duration over networks that exhibit important679

44



104 105 106

The bandwidth (bps)

10 1

100

101

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 11: CPUBench medium: Energy Consumption

104 105 106

The bandwidth (bps)

10 1

100

101

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 12: CPUBench full : Energy Consumption

45



delays represent a significant proportion part with respect to the completion680

time of an offloaded light task. As shown in figure 8 when the bandwidth681

is restricted to less than 125Kbps the Round Trip Time from the terminal682

toward the local edge is elevated and quite similar to the RTT to the cloud683

at Paris.684

Figures 13, 14 and 15 are relative to Pi-Bench. Compared to the previous685

bench applications one can notice for easy and medium cases that the edge686

with 2vCPU outperforms significantly the edge with 1vCPU. We believe that687

this is due to the multi-threaded nature of this application. The computation688

time is lower in 2vCPU compared to 1vCPU thanks to the ability of the689

former edge to process in parallel the computation of this multi-threaded690

application. The advantage of offloading such multithreaded application in a691

multi-CPU sever is clearly shown in figure 15 for the CPU-intensive case. The692

clouds in Paris and Ohio, where 2vCPU resources are allocated, outperform693

the 1vCPU edge.694

Completion time for PiBench easy, medium and full are shown in Fig-695

ures 16, 17 and 18, respectively. One can remark that this completion time696

curves have the same shape and follow the same hierarchy than those ob-697

served in energy consumption figures 14 and 15. Actually, in all our ex-698

periments we noticed that the consumed energy on the terminal is quasi-699

stationary during the execution time of an offloaded task. Consequently, the700

consumed energy is proportional to the completion time of an offloaded task.701

This observation holds for Linpack and CPU-Bench, as well1. The corollary702

to this finding is that in case of offloading, the remote location that minimizes703

1To save space, we choose not to show the completion time for Linpack and CPU-Bench

46



104 105 106

The bandwidth (bps)

10 2

10 1

100

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 13: PiBench easy : Energy Consumption

104 105 106

The bandwidth (bps)

10 1

100

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 14: PiBench medium: Energy Consumption

47



104 105 106

The bandwidth (bps)

101

102
E

ne
rg

y 
co

ns
um

pt
io

n 
(J

ou
le

s)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 15: PiBench full : Energy Consumption

the completion time is also the one that optimize the consumed energy. This704

statement has been validated in all the experiments that we have run, for the705

three bench applications, under different CPU and network configurations.706

When a task is executed locally, the measured energy is also quasi-707

stationary during the processing time. However, as illustrated in figures 6,708

7, 9, 10, 11, 12 13, 14 and 15 the difference of consumed energy between709

local and remote execution is of several order of magnitude. Yet, in almost710

all the experiments that we have run, we noticed that the decision among711

local and offloading that minimize the completion time is also the one that712

optimize the consumed energy. The unique observed exception case to this713

rule is Pi-Bench easy when the bandwidth is restricted to 9.6Kbps. Com-714

paring figure 16 to 13, we can remark that when the bandwidth is restricted715

to 9.6Kbps the local execution minimize the completion time, while energy716

48



consumption is minimized when Pi-Bench easy is offloaded on the 2vCPU717

edge.718

104 105 106

The bandwidth (bps)

102

103

104

C
om

pl
et

io
n 

tim
e 

in
 (m

ill
iS

ec
)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 16: PiBench easy : completion time

From figures 6, 7, 9, 10, 11, 12 13, 14 and 15 we can easily identify the719

locations that optimize the consumed energy for different applications and720

network configurations. The right column in table 5, shows the location that721

minimizes the consumed energy that we derived from experimental results722

for the three bench applications under different processing loads and network723

configurations. The left column indicates the optimal locations obtained724

by our proposed framework ECESO. To fit with the applications that we725

evaluated in our testbed, we applied the measured parameters indicated in726

table 4 to ECESO. We can see that in the majority of the cases the theoretical727

solution match with the placement derived from the experimentation results.728

The few mismatches are indicated in red. For Linpack, the ECESO placement729

49



104 105 106

The bandwidth (bps)

103

104
C

om
pl

et
io

n 
tim

e 
in

 (m
ill

iS
ec

)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 17: PiBench medium: completion time

104 105 106

The bandwidth (bps)

105

C
om

pl
et

io
n 

tim
e 

in
 (m

ill
iS

ec
)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 18: PiBench full : completion time

50



solution fits with the best placement observed via experiments in 22 cases730

among 27 tested configurations. Thus compared to experiments, our proposal731

have determined the optimal task execution location in 81.4% of the cases.732

To quantify the under-performance of ECESO in terms of consumed energy,733

we calculate the relative difference of the experimentally consumed energy734

among: 1) the case where task’s computational location is computed by our735

proposal ECESO (left column in table 5) 2) the case where optimal placement736

solution is derived from experiments observations (right column in table 5).737

Averaging over the 27 possible cases, the under-performance of ECESO in738

terms of consumed energy with respect to an optimal placement derived from739

experimental results, is limited to 1.962%.740

The near-optimality of ECESO, is also confirmed for Pi-Bench and CPU-741

Bench. For Pi-Bench, the optimal placement is achieved by ECESO in742

85.18% of the studied cases, with an average under-performance of 2.57% of743

consumed energy. For CPU-Bench optimal placement is obtained by ECESO744

in 70.37% of the cases with an average under-performance of 3.76% of con-745

sumed energy.746

Finally, in the last set of experiments, we assessed the effect of multi-users747

context on offloading performances. We incrementally varied the number of748

users. However, due to the constraints on the available infrastructure nodes,749

at the time when we ran our experiments, we fixed the allocated resources750

both at the cloud and the edge to 1vCPU and we limited the number of751

mobile terminals to ten. Yet, we believe that the general tendencies, which752

we will comment hereafter, still hold for larger scale.753

To save space, we also choose to discuss for the multi-users context case754

51



Table 5: Offloading decisions for each application: ECESO vs Experiments

Bandwidth ECESO Experimentation
Easy Medium Full Easy Medium Full

Linpack

1 200 Local 2vCPU 2vCPU Local 1vCPU 1vCPU
4 800 Local 2vCPU 2vCPU Local 2vCPU 2vCPU
9 600 Local 2vCPU 2vCPU Local 2vCPU 2vCPU
38 400 Local 2vCPU 2vCPU Local 2vCPU 2vCPU
72 000 Local 2vCPU 2vCPU Local 2vCPU 1vCPU
125 000 Local 2vCPU 2vCPU Local 2vCPU 1vCPU
500 000 Local 2vCPU 2vCPU Local 2vCPU 2vCPU

5 300 000 Local 2vCPU 2vCPU Local 2vCPU 2vCPU
8 000 000 Local 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU

PiBench

1 200 Local 2vCPU 2vCPU Local 1vCPU 2vCPU
4 800 2vCPU 2vCPU 2vCPU Local 2vCPU 2vCPU
9 600 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
38 400 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
72 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
125 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
500 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU

5 300 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
8 000 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU

CPUBench

1 200 2vCPU 2vCPU 2vCPU Local Paris 2vCPU
4 800 2vCPU 2vCPU 2vCPU 2vCPU Paris 2vCPU
9 600 2vCPU 2vCPU 2vCPU Paris 2vCPU 2vCPU
38 400 2vCPU 2vCPU 2vCPU Paris 1vCPU 1vCPU
72 000 2vCPU 2vCPU 2vCPU Paris 2vCPU 2vCPU
125 000 2vCPU 2vCPU 2vCPU 1vCPU 2vCPU 2vCPU
500 000 2vCPU 2vCPU 2vCPU 2vCPU 1vCPU 1vCPU

5 300 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
8 000 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU

52



only the results of CPUBench. Our choice is motivated by the fact that755

following the one-user experiments results (see table 5)), CPUBench is the756

only application in our benchmark for which we observed three offloading757

decisions: local, edge and cloud.758

1 2 3 4 5 6 7 8 9 10
Nomber of users that offload

102

103

104

Av
er

ag
e 

C
om

pl
et

io
n 

tim
e 

in
 (m

ill
iS

ec
)

1200 bps
4800 bps
9600 bps
38400 bps
72000 bps
125000 bps
500000 bps
5300000 bps
8000000 bps

Figure 19: Multi-users completion time of CPUBench easy in the cloud

The completion time of CPU-Bench when it is offloaded on the cloud is759

represented in figures 19, 20, and 21, for easy, medium and full mode, re-760

spectively. Each curve in those figures is associated to an access bandwidth,761

between 1.2 kbps to 8Mbps. The x -axis represents the number of offload-762

ing users, while the y-axis represents in logarithmic scale the completion763

time in milliseconds. One can see that the completion time increases sig-764

nificantly with the number of users, especially for bandwidth capacities less765

than 500kbps. The contention among several users on the access network766

increases the transmission delay, especially when the bandwidth capacity is767

53



1 2 3 4 5 6 7 8 9 10
Nomber of users that offload

103

104

Av
er

ag
e 

C
om

pl
et

io
n 

tim
e 

in
 (m

ill
iS

ec
)

1200 bps
4800 bps
9600 bps
38400 bps
72000 bps
125000 bps
500000 bps
5300000 bps
8000000 bps

Figure 20: Multi-users completion time of CPUBench medium in the cloud

1 2 3 4 5 6 7 8 9 10
Nomber of users that offload

103

104

Av
er

ag
e 

C
om

pl
et

io
n 

tim
e 

in
 (m

ill
iS

ec
)

1200 bps
4800 bps
9600 bps
38400 bps
72000 bps
125000 bps
500000 bps
5300000 bps
8000000 bps

Figure 21: Multi-users completition time of CPUBench full in the cloud

54



quite low. This effect is observed even for CPU-Bench in full, despite the768

fact the processing delay versus transmission delay is quite important for this769

mode. Compared to offloading on the edge, which is shown in figures 22 23770

and 24, one can see that the completion time in the edge increases slightly771

with the number of users, but the slope is much lower than for the cloud.772

1 2 3 4 5 6 7 8 9 10
Nomber of users that offload

102

103

104

Av
er

ag
e 

C
om

pl
et

io
n 

tim
e 

in
 (m

ill
iS

ec
)

1200 bps
4800 bps
9600 bps
38400 bps
72000 bps
125000 bps
500000 bps
5300000 bps
8000000 bps

Figure 22: Multi-users completion time of CPU-Bench easy in 1vCPU edge

Completion time of 10 concurrent CPU-Bench users with local, edge and773

cloud execution locations is shown in figures 25, 26, and 27, for easy, medium774

and full mode, respectively. The x -axis represents in logarithmic scale the775

access bandwidth, which varies between 1.2 Kbps to 8Mbps, while the y-axis776

represents in logarithmic scale the completion time in milliseconds.777

As shown in figure 25, local execution is the best placement for CPU-778

Bench in easy mode when bandwidth capacity is extremely constrained: less779

than 9,6Kbps. Indeed, in such condition, the transmission delay is very high780

55



1 2 3 4 5 6 7 8 9 10
Nomber of users that offload

103

104

Av
er

ag
e 

C
om

pl
et

io
n 

tim
e 

in
 (m

ill
iS

ec
)

1200 bps
4800 bps
9600 bps
38400 bps
72000 bps
125000 bps
500000 bps
5300000 bps
8000000 bps

Figure 23: Multi-users completion time of CPU-Bench medium in 1vCPU edge

1 2 3 4 5 6 7 8 9 10
Nomber of users that offload

103

104

Av
er

ag
e 

C
om

pl
et

io
n 

tim
e 

in
 (m

ill
iS

ec
)

1200 bps
4800 bps
9600 bps
38400 bps
72000 bps
125000 bps
500000 bps
5300000 bps
8000000 bps

Figure 24: Multi-users completion time of CPU-Bench full in 1vCPU edge

56



and is proportionally much important than the processing delay, even when781

the application is executed in the edge or the cloud. Faster execution in the782

edge or in the cloud can not compensate the large transmission time when783

the access bandwidth is extremely low and shared among many (10) users.784

For such case, it is not worth it to offload and it is better to execute the task785

locally on the mobile terminal. For bandwidth capacity larger than 10Kbps,786

the experiments results show that the best decision is to offload on the edge.787

This result is interesting because it indicates that even when 10 users are788

contending on a quite limited bandwidth capacity of about 10Kbps, it still789

worth it to offload a computational intensive task such as CPU-Bench to790

the edge. Figures 25, 26, and 27 show that in almost all the cases the best791

offloading location is the edge. The only exception is for easy mode with a792

bandwidth access set to 5.3Mbps. As shown in figure 8, for higher bandwidth793

capacity (larger than few Mbps) the transmission delay to the edge is almost794

similar to the cloud. The difference is less than 10 milliseconds. In these795

cases, the completion time is almost the same on the edge and on the cloud,796

especially when the computational resources required by a task are low, which797

is the case for CPU-Bench in easy mode.798

In table 6, we compare the best offloading decision of CPU-Bench with 10799

users, which we observed through experiments (figures 25, 26, and 27) to the800

decision obtained by our proposed algorithm ECESO. Each line is associated801

to a given bandwidth capacity at the access network. Thus combining with802

the three modes of CPU Bench, we have in total 27 cases. Table 6 show that803

the decision of ECESO matches with the best placement observed through804

experiments in 66.7% of the cases. The mismatches are due to the conser-805

57



100 2 × 100 3 × 100 4 × 100 6 × 100

 Bandwidth in bps

102

103

104

Av
er

ag
e 

C
om

pl
et

io
n 

tim
e 

in
 (m

ill
iS

ec
)

Local
edge
remote cloud

Figure 25: 10 users completion time of CPU-Bench easy

100 2 × 100 3 × 100 4 × 100 6 × 100

 Bandwidth in bps

103

104

Av
er

ag
e 

C
om

pl
et

io
n 

tim
e 

in
 (m

ill
iS

ec
)

Local
edge
remote cloud

Figure 26: 10 users completion time of CPU-Bench medium

58



100 2 × 100 3 × 100 4 × 100 6 × 100

 Bandwidth in bps

103

104

105
Av

er
ag

e 
C

om
pl

et
io

n 
tim

e 
in

 (m
ill

iS
ec

)

Local
edge
remote cloud

Figure 27: 10 users completion time of CPU-Bench full

vative nature of our algorithm. For example, for extremely low bandwidth806

capacity (low than 3.2 Kbps) ECESO recommends to execute the task locally807

rather than offload it to the edge. Similarly, for easy mode with 5.3 Mbps808

bandwidth access case that we discussed above, our algorithm suggests to809

offload the task on the edge, while experiments have shown that offloading810

on the cloud can also minimize the completion time. The conservative nature811

of ECESO is mainly inherent to our modelling, which induces some assump-812

tions that appears to be conservative compared to real system behaviors, as813

observed in experiments.814

6. Conclusion815

In this paper, we propose a new computation offloading policy in two-816

tier MEC environment. The proposed offloading policy decides which users817

59



Table 6: Offloading decision for CPUBench with 10 users: ECESO vs Experiments

Bandwidth ECESO Experimentation
Easy Medium Full Easy Medium Full

1 200 Local Local Local Local 1vCPU 1vCPU
4 800 Local Local Local Local 1vCPU 1vCPU
9 600 Local Local Local 1vCPU 1vCPU 1vCPU
38 400 Local Local Local 1vCPU 1vCPU 1vCPU
72 000 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU
125 000 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU
500 000 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU

5 300 000 1vCPU 1vCPU 1vCPU Paris 1vCPU 1vCPU
8 000 000 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU

should offload, to which offloading server and allocated the wireless band-818

width accordingly. First, we formulate the problem as a Non-Linear Bi-819

nary Integer Program (NLBIP). Then, we propose an efficient heuristic to820

solve the problem using Lagrangian decomposition approach. The proposed821

heuristic uses a branching algorithm to maximize the bandwidth allocation822

and minimize the energy consumption. The numerical results show perfor-823

mance improvements in terms of the energy consumption compared to exist-824

ing offloading policies under different scenarios. Finally, we implemented our825

offloading policy on a real testbed. Using this testbed, we were able to eval-826

uate our offloading decision policy for three real Android OS applications,827

with different traffic patterns, resource demands and multi-users context.828

References829

[1] H. Mazouzi, N. Achir, K. Boussetta, Maximizing mobiles energy sav-830

ing through tasks optimal offloading placement in two-tier cloud, in:831

Proceedings of the 21st ACM International Conference on Modeling,832

60



Analysis and Simulation of Wireless and Mobile Systems, MSWIM ’18,833

ACM, New York, NY, USA, 2018, pp. 137–145.834

[2] M.-H. Chen, B. Liang, M. Dong, Joint offloading decision and resource835

allocation for multi-user multi-task mobile cloud, in: 2016 IEEE Inter-836

national Conference on Communications (ICC), IEEE, 2016, pp. 1–6.837

[3] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation of-838

floading for mobile-edge cloud computing, IEEE/ACM Transactions on839

Networking 24 (5) (2016) 2795–2808.840

[4] S. Guo, B. Xiao, Y. Yang, Y. Yang, Energy-efficient dynamic offloading841

and resource scheduling in mobile cloud computing, in: 35th Annual842

IEEE International Conference on Computer Communications, INFO-843

COM 2016, San Francisco, CA, USA, April 10-14, 2016, Vol. 2016-July,844

IEEE, 2016, pp. 1–9.845

[5] S. Guo, J. Liu, Y. Yang, B. Xiao, Z. Li, Energy-efficient dynamic compu-846

tation offloading and cooperative task scheduling in mobile cloud com-847

puting, IEEE Transactions on Mobile Computing 18 (2) (2019) 319–333.848

[6] K. Gai, M. Qiu, H. Zhao, Energy-aware task assignment for mobile849

cyber-enabled applications in heterogeneous cloud computing, Journal850

of Parallel and Distributed Computing 111 (2018) 126–135.851

[7] M. Jia, J. Cao, W. Liang, Optimal cloudlet placement and user to852

cloudlet allocation in wireless metropolitan area networks, IEEE Trans-853

actions on Cloud Computing PP (99).854

61



[8] Z. Xu, W. Liang, W. Xu, M. Jia, S. Guo, Efficient algorithms for ca-855

pacitated cloudlet placements, IEEE Transactions on Parallel and Dis-856

tributed Systems 27 (10) (2016) 2866–2880.857

[9] H. Yao, C. Bai, M. Xiong, D. Zeng, Z. Fu, Heterogeneous cloudlet de-858

ployment and user-cloudlet association toward cost effective fog comput-859

ing, Concurrency and Computation: Practice and Experience 29 (16).860

[10] L. Ma, J. Wu, L. Chen, Dota: Delay bounded optimal cloudlet de-861

ployment and user association in wmans, in: Proceedings of the 17th862

IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-863

puting, IEEE Press, 2017, pp. 196–203.864

[11] A. Mukherjee, D. De, D. G. Roy, A power and latency aware cloudlet865

selection strategy for multi-cloudlet environment, IEEE Transactions on866

Cloud Computing PP (99) (2016) 1–14.867

[12] D. G. Roy, D. De, A. Mukherjee, R. Buyya, Application-aware cloudlet868

selection for computation offloading in multi-cloudlet environment, The869

Journal of Supercomputing (2016) 1–19.870

[13] M. Jia, W. Liang, Z. Xu, M. Huang, Cloudlet load balancing in wire-871

less metropolitan area networks, in: Computer Communications, IEEE872

INFOCOM 2016-The 35th Annual IEEE International Conference on,873

Vol. 2016-July, 2016, pp. 1–9.874

[14] H. Mazouzi, N. Achir, K. Boussetta, Dm2-ecop: An efficient compu-875

tation offloading policy for multi-user multi-cloudlet mobile edge com-876

62



puting environment, ACM Trans. Internet Technol. 19 (2) (2019) 24:1–877

24:24.878

[15] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,879

R. Chandra, P. Bahl, Maui: making smartphones last longer with code880

offload, in: Proceedings of the 8th International Conference on Mobile881

Systems, Applications, and Services (MobiSys 2010), San Francisco, Cal-882

ifornia, USA, June 15-18, 2010, ACM, pp. 49–62.883

[16] R. C. Martin, Agile software development: principles, patterns, and884

practices, Prentice Hall, 2002.885

[17] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic886

execution between mobile device and cloud, in: European Conference887

on Computer Systems, Proceedings of the Sixth European conference on888

Computer systems, EuroSys 2011, Salzburg, Austria, April 10-13, 2011,889

ACM, pp. 301–314.890

[18] J. I. Benedetto, G. Valenzuela, P. Sanabria, A. Neyem, J. Navon,891

C. Poellabauer, Mobicop: A scalable and reliable mobile code offloading892

solution, Wireless Communications and Mobile Computing 2018.893

[19] Y. Gao, W. Hu, K. Ha, B. Amos, P. Pillai, M. Satyanarayanan, Are894

cloudlets necessary?, School Comput. Sci., Carnegie Mellon Univ., Pitts-895

burgh, PA, USA, Tech. Rep. CMU-CS-15-139.896

[20] I. Tinnirello, G. Bianchi, Y. Xiao, Refinements on ieee 802.11 distributed897

coordination function modeling approaches, IEEE Transactions on Ve-898

hicular Technology 59 (3) (2010) 1055–1067.899

63



[21] G. Bianchi, Performance analysis of the ieee 802.11 distributed coor-900

dination function, IEEE Journal on selected areas in communications901

18 (3) (2000) 535–547.902

[22] A. Carroll, G. Heiser, et al., An analysis of power consumption in a903

smartphone., in: USENIX annual technical conference, Vol. 14, Boston,904

MA, 2010, pp. 21–21.905

[23] S. O. Krumke, C. Thielen, The generalized assignment problem with906

minimum quantities, European Journal of Operational Research 228 (1)907

(2013) 46–55.908

[24] J. Tang, C. Yan, X. Wang, C. Zeng, Using lagrangian relaxation de-909

composition with heuristic to integrate the decisions of cell formation910

and parts scheduling considering intercell moves, IEEE Transactions on911

Automation Science and Engineering 11 (4) (2014) 1110–1121.912

[25] M. Thomas, E. W. Zegura, Generation and analysis of random graphs to913

model internetworks, Tech. rep., Georgia Institute of Technology (1994).914

[26] J. Oueis, E. Calvanese-Strinati, A. De Domenico, S. Barbarossa, On915

the impact of backhaul network on distributed cloud computing, in:916

Wireless Communications and Networking Conference Workshops (WC-917

NCW), 2014 IEEE, IEEE, 2014, pp. 12–17.918

[27] OSBoxes, Android x86.919

URL https://www.osboxes.org/android-x86/920

[28] L. López, F. J. Nieto, T.-H. Velivassaki, S. Kosta, C.-H. Hong, R. Mon-921

tella, I. Mavroidis, C. Fernández, Heterogeneous secure multi-level re-922

64



mote acceleration service for low-power integrated systems and devices,923

Procedia Computer Science 97 (2016) 118–121.924

[29] F. Foukalas, Y. Ntarladimas, A. Glentis, Z. Boufidis, Protocol reconfigu-925

ration using component-based design, in: IFIP International Conference926

on Distributed Applications and Interoperable Systems, Springer, 2005,927

pp. 148–156.928

65




