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ABSTRACT : Human activity puts pressures on coastal zone altering dissolved organic matter             

quality. No specific self-differentiating fluorescence signal of the anthropogenic DOM in the            

coastal zone is found in the literature. Solar irradiation were conducted on mixed samples of               

River water, sea water, wastewater treatment plant effluent. Excitation Emission Matrices of            

Fluorescence were used to monitor the fate of wastewater treatment plant effluent. Multilinear             

regression of CP/PARAFAC components contribution depending on mixing composition were          

done and was excellent. Kinetics of decreasing contribution versus irradiation time were            

investigated. Second order Kinetics were found for C1 and C2. Distinction between fluorescence             

signal of endmembers was undoable. Wastewater treatment plant endmember after          

photodegradation was highly predominant.  

 

Keywords : Fluorescent Organic Matter, EEM-PARAFAC , multilinear regression,         

photodegradation, Coastal zone 

1. Introduction 

Coastal zone is a transitional zone between the terrestrial and oceanic zones (Huguet et al.                

2009) and mixing zone between marine/oceanic waters inputs and the freshwater riverine inputs             

(Parlanti et al. 2000a). Dissolved organic matter (DOM) play an important role in physical,              

chemical functioning of aquatic ecosystems (Hansell 2009) and biogeochemical processes          

(Hansell & Carlson 2014a) and is a heterogenous mixture of organic compounds of both aromatic               

and aliphatic nature (Hansell & Carlson 2014b). Chromophoric Dissolved Organic Matter           

(CDOM) is a fraction of DOM which can interact with light (Coble 1996a; Coble 2007; Lei et al.                  

2018) and is ubiquitous in aquatic environmental media (Nelson & Siegel 2013) with a subgroup               
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fluorescing FDOM (Coble 1996b; Mostofa et al. 2012). DOM plays a key role in global carbon                

cycle (Hansell 2001) and is highly influenced by continental inputs (Fichot & Benner 2012;              

Yamashita et al. 2013) and by autochthonous sources (Romera-Castillo et al. 2011). Most of              

organic matter in the coastal zone is of terrestrial origin (Hedges et al. 1997; Parlanti et al.                 

2000b).  

 

Human activity has contributed to increased inputs of terrestrial CDOM in aquatic ecosystems              

(Massicotte et al. 2017). Urbanization is increasing and expected to triple between 2000 and 2030               

(Seto et al. 2012) with higher population density and migration to the coastal zone (Hugo 2011a;                

Hugo 2011b). In turn, it changes land cover, hence quality and quantity of DOM in rivers (Seto et                  

al. 2012). Anthropogenic sources of organic matter vary from industrial (Carvalho et al. 2008),              

agricultural (Manninen et al. 2018), wastewater treatment plants effluents (Maizel & Remucal           

2017) , landfill leachates (Oloibiri et al. 2017). Moreover, it has been found (Williams et al.                

2016) that anthropogenic influence on urban watersheds caused distinct DOM composition.           

However, contribution of anthropogenic signal of FDOM in coastal zone is not yet well defined               

and evaluated in the literature. Biogeochemistry of natural waters is impacted significantly by             

photo-reactivity of CDOM (Andrew et al. 2013; Lønborg et al. 2016) since photochemistry             

affects bioavailability of DOM (Moran & Zepp 1997; Oleinikova et al. 2017), microbial activity              

(Piccini et al. 2009)and production of DOM of different character (Zhu, Yang, et al. 2017).  

 

Partial information can be extracted from global analytical techniques (DOC, TOC, BOD,            

etc…) due to complex composition of DOM. And these techniques are time consuming and              

require elaborated sample preparation. Optical properties of CDOM and FDOM provides a            

valuable tool in delineating DOM sources (Osburn et al. 2016a) and tracking DOM fluxes of               
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terrigenous origin into ocean (Osburn et al. 2016b) enables online or real-time monitoring in              

various media (Helms et al. 2013; Cohen et al. 2014). There are so many advantages of                

fluorescence spectroscopy which is useful, less time-consuming, inexpensive, precise qualitative          

and quantitative technique (Fellman et al. 2010; Zhu et al. 2014) used among varying scientific               

fields (Gao et al. 2017b). Excitation Emission Matrix fluorescence spectroscopy (EEM) has            

furthered scientific research in aquatic systems (Kim & Kim 2015; Dainard et al. 2015; Sgroi et                

al. 2017; Cheng et al. 2018). It enables characterization of optical properties of FDOM due to its                 

high sensitivity, good selectivity and non-destruction of samples (Coble 1996c). Coupled with            

Canonical Polyadic / Parallel Factor Analysis (CP/PARAFAC) enables deconvolution of          

overlapping independent EEM spectra into distinct components (Stedmon & Bro 2008a). In            

addition, the use of this technique EEM/PARAFAC in tracing the DOM fractions which is              

cost-effective and rapid in chemistry and aquatic ecology fields is in fact a significant advance in              

those fields (Stedmon et al. 2003a).  

 

To the best of our knowledge, there is no previously found pattern or specific               

self-distinguishing fluorescence signal of anthropogenic organic matter in the coastal zone. The            

present study is focussing on wastewater treatment plants effluent discharge in urban river             

systems. Laboratory endmember mixing experiments was conducted of river water , sea water             

and wastewater treatment plant, to define contributions after mixing and solar irradiation            

experiment. The present study is the first of its kind to develop and propose a multivariate linear                 

regression for the prediction of FDOM signal and its photodegradation kinetic as a function of               

the mixing composition and solar exposure. 
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2. Material and methods 

 

2.1 Sampling Sites 

Gapeau river originates at Signes city (43° 17′ 24″ N, 5° 52′ 59″ E) and run till the sea at city                      

of Hyères (43°06′42″ N, 6°11′33″ E) in southeastern part of France (figure 1) with a length of                 

34.4 km (Ollier 1972) and watershed of 544 km2 (Ducros et al. 2018) with a pluvial regime.                 

River water (RW) was sampled roughly 500 m before wastewater treatment plant which is              

located at ( 43°08'38.6"N 6°05'36.1"E) whereas wastewater treatment plant effluent (WW) was            

sampled at its output directly. Wastewater treatment plant of La Crau city has a daily volume of                 

0.17 m3/s. Sea water (SW) was sampled at the coastal area of Hyères city at roughly seven meters                  

far from beach ( 43°06'10.4"N 6°10'38.3"E ). Plastic bottle of one liter (cleaned with ethanol               

100% and three times rinsed with 18.2 MΩ at 25 °C MilliQ water) was used in sampling.   
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Fig. 1. Locations of sampling sites in Southeastern France. RW , WW , SW are the points from                  

left to right colored in red. 
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2.2. Materials of irradiation experiment 

2.2.1. Filtration  

RW , SW , WW samples were filtered using MilliPore filters (Type GNWP 0.20 µm, 47 mm                  

diameter) and filtration kit pre-rinsed with acidified water (10% HNO3). Filterates were put in a               

new one liter dark glass bottle (pre-rinsed with 10 % HNO3 and 3 times with 18.2 MΩ·cm at 25                   

°C MilliQ-water) and transferred to refrigerator at 4 ℃ in the dark. Filtrates were used for                

preparation of 15 mixtures. The measured pH for RW, WW ,SW were 7.4 ± 0.4 .  

2.2.2. Preparation of mixtures 

Fifteen 50 mL quartz vials were washed with reverse osmosis water then transferred to 10 %                 

HNO3 bath for 24 hours then rinsed three times with 18.2 MΩ·cm at 25 °C Milli Q-water. Then                  

burnt in oven at 450 ℃ for 24 hours to ensure the elimination of organic/inorganic carbon.                

Fifteen mixtures were fabricated. The exact mixing percentages for each mixture are summarized             

in table S1 in supplementary information SI. Percentages were taken by weight, assuming a              

density of 1.00, 1.00 and 1.025 for WW, RW and SW respectively. A serial number was given to                  

the vial according to its corresponding mixture (table S1). Each vial was shaken gently by hand                

to insure homogeneity of mixtures.  

 

  

 

2.2.3. Irradiation experiments 
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The mixtures were prepared in quartz vials which then were transferred on August 28th 2015                

in the evening to the roof of laboratory MIO/Toulon University (43° 08' 11.2" N 6° 01' 16.7" E).                  

These quartz vials were put at sufficient distances to insure receiving same solar irradiation              

conditions. The irradiation started on August 28th 2015 (Day zero) and finished on September              

11th 2015 for a total of ten days of irradiation.  

 

 

2.2.4. Solar irradiation/insolation  measurement 

 

Daily solar insolation data were measured on place in volts using photovoltaic cell (Solar Cell                

9V/109 mA) for each day of irradiation. A mean irradiance of 2 343 volts per day was detected.                  

During this period the irradiation is between 5 to 6 kWh.m-2 corresponding to 39 mW.cm-2               

(www.meteofrance.com).  

2.3. Excitation Emission Matrix  EEM fluorescence spectroscopy   

 

2.3.1. Irradiated water Sampling 

 

Three mL aliquots from each 50 mL exposed quartz vial were sampled and transferred into                

10x10 mm quartz cell at different irradiation times. EEMs of solar irradiation experiment sample              

were performed using fluorescence spectrophotometer (F4500, Hitachi). Ultrapure Perkin Elmer          

deionized water was measured to check spectrofluorimeter stability and measure daily the Raman             

peak intensity. Scan speed was set at 2,400 nm.min-1. Emission spectra were collected at 5 nm                
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intervals between 220 and 420 nm, while excitation spectra were measured between 200 and 400               

nm at 5 nm intervals. Slit widths for both excitation and emission wavelengths were set at 5 nm.  

 

2.3.2. EEM Data processing 

 

2.3.2.1. Raman measurement  

Water Raman scans of Perkin Elmer blanks were measured for each irradiation day (from Aug.               

28th to Sept. 11th 2015) using the same fluorescence spectrophotometer (F4500, Hitachi). Scans             

used an excitation wavelength of 350 nm whereas the emission intensities were measured from              

350 nm to 650 nm with a step of 1 nm. Scan speed was 240 nm.mn-1 with the same slit width of                      

5 nm on excitation and emission monochromators. 

 

2.3.2.2. Raman Normalization  

Each excitation emission matrix values corresponding to each mixture were normalized to the              

integrated Raman signal measured at the corresponding irradiation date. The integrated Raman            

signal was calculated by integration the area under the curve from 370 nm to 420 nm (Lawaetz &                  

Stedmon 2009) and used for EEMs normalisation.  

  

Spectral contribution of each CP/PARAFAC components to total EEM fluorescence was            

determined using CP/PARAFAC algorithm (Bro 1997; Stedmon & Markager 2005a). Finally, the            

150 Raman-corrected EEMs were modelled using a MATLAB software (MathWorks R2015b)           

based on Nway toolbox and DOMFluor toolbox (Stedmon & Bro 2008b). Raman and Rayleigh              

scattering were removed according to Zepp method (Zepp et al. 2004). No inner filter correction               

was done as samples were in linearity domain. Nonnegativity constraints were applied for             
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CP/PARAFAC components for excitation and emission loadings. Accepted correct number of           

CP/PARAFAC components and model validation was taken according to evaluation of           

CONCORDIA score and split-half analysis. No outliers were found in the dataset and a three               

components model was validated. Once decomposition is done, for each mixture, contributions of             

each components were normalised to the maximum value in the whole EEM dataset, which is, in               

that work, the initial one before the start of solar irradiation for all experiments, according to the                 

following equation :  

 

 C i
T n =

c 
i
T n

max(c ) 
i
T n ∀n  (eq.1) 

 

 

Where     : 

 

T n is the nth day of irradiation. c i Tn is value of contribution of CP/PARAFAC component i and                  

C i Tn the normalised to the maximum contribution of CP/PARAFAC component i from 1 to 3               

components.  

 

2.4. Multi-linear regression  

 

Considering f RW , f SW which are the percentage (w/w) of RW and SW in the quartz vial                  

mixture respectively, a multi-linear regression was conducted for all f RW, f SW of a fixed              

CP/PARAFAC component i for each irradiation day T n, considering the following general            

multilinear regression formula : 
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Y  = a 0 +a 1.X 1+a 2.X 2+…+a n.X n (eq. 2) 

 

2.4.1. Multilinear regression of three endmember 

 

RW, SW and WW mixture is constrained by mass total sum of three content fraction that                 

should be equal to 100 according to the following equation :  

  

f SW+f RW+f WW=100                                                                                   (0<f i <100)  (eq.3) 

 

Where f SW, f RW, f WW are content fraction of SW, RW and WW in mass respectively. All percent                  

fractions obviously positive and less than or equal to 100.  

 

Then 

f WW = 100 -f SW -f RW  (eq .4) 

 

By substituting in eq. 2 for f WW where n=3, the different terms, the following equation can be                  

obtained : 

 

C i Tn = a i,0  + a i,1 .f SW + a i,2 .f RW + a i,3 .f WW (eq.5)  

 

Where C i Tn is normalised contribution of CP/PARAFAC component number i , and a i,1 , a i,2 , a i,3               

the respective partial contribution to this contribution by the three endmember SW, RW and              

WW. To simplify, C i Tn is replaced by C* i  in the next equations 
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    By substituting for f WW by its expression in (eq.4) the following equations can be obtained : 

  

C* i  = a i,0  + a i,1 .f SW + a i,2 .f RW + a i,3 .(100 - f SW - f RW)   (eq.6) 

C* i  = a i,0  + a i, .f SW + a i,2 .fRW + a i,3 .100 - a i,3 .f SW - ai,3 .f RW    (eq.7) 

 

By arranging similar terms together and taking the common factor, the following equation can               

be obtained :   

 

C* i  = (a i,0 + ai,3 .100) + (a i,1  - a i,3 ).f SW + (a i,2  - a i,3 ).f RW   

(eq.8) 

By giving a proper term for the constant and newly modified coefficients to account for fWW                 

term as shown : 

  

A WW
i,0   = (a i,0 + a i,3 .100)  A WW

i,1   =  (a i,1  - a i,3 ) A WW
i,2  = (a i,2  - a i,3 ) 

 

The final multilinear regression equation is obtained as a function of two content fractions of                

two endmembers :  

  

C* i  = A WW
i,0  + A WW

i,1 .f SW + A WW
i,2 .f RW  (eq.9) 
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Where A WW
i,0 , A WW

i,1 and A WW
i,2 represent multilinear regression coefficients related to mixing             

equation when f WW is expressed in terms of content fraction of the other two endmembers (f RW and                 

f SW). Any circular permutation can not yield the a i,*  coefficients independently.  

 

A WW
i,0 is the constant in the multilinear regression equation which contains information about              

WW effect in the multilinear regression, AWW
i,1 is the coefficient of of content fraction of SW                

endmember which not only represent its effect but also the effect of the wastewater treatment               

plant effluent WW, A WW
i,2 is the coefficient of of content fraction of RW endmember which not                

only represent its effect but also the effect of WW. Determination of A WW
i,0 , A WW

i,1 and A WW
i,2 was                  

done for each exposition day. 

 

 

2.5. Kinetics  

The measured irradiation in volts was used as a proxy for photodegradation reaction time . The                 

determination of the kinetic order of the multilinear regression parameters/coefficients for all T n             

was conducted. These multilinear regression are expressed mathematically as a function of volts : 

  

A WW
i,0  (V) 

A WW
i,1  (V) 

A WW
i,2 (V) 

 

(eq.10) 

 

Where V is received solar irradiation in Volts (V) at each day T n. CP/PARAFAC contribution                

during irradiation experiment can be expressed as a function of content fraction of two              

endmember depending on V, which enable kinetic study: 
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C* i  (V)  = A WW
i,0  (V) + A WW

i,1 (V)  . f SW + A WW
i,2 (V)  . f RW (ep.11) 

    The zeroth, 1st , 2nd and 3rd order kinetics were calculated and compared to find out the most 

linear model which fits the data (Wright 2004). 
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3. Results and Discussion  

3.1. EEMs Results  

Figure 2. shows the excitation emission matrices EEM of fluorescence for the samples              

numbers 1, 2, 3, 13, 14, 15 which are described in table 2. These EEMs are shown after the                   

removal of Rayleigh and Raman scattering and Raman normalization.  

Sample No. :1 Sample No. : 2 Sample No. : 3 

   

Sample No. : 13 Sample No. : 15 Sample No. : 14 

   

Fig. 2. The excitation emission matrices of Samples number 1 , 2 ,3, 13 , 14 and 15  whose 

composition is (100,0,0), (0,100,0) ,(0,0,100), (50,0,0), (0,50,0) and (0,0,50) respectively 

(table S1)  
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Split-half analysis was conducted for three subsets of the EEM-dataset which asserted the             

non-existence ”finding” of any protein-like fluorescent signal. That’s because the CP/PARAFAC           

algorithm doesn’t capture what’s already not there.  

 

 

3.2. CP/PARAFAC decomposition results 

CORCONDIA analysis showed drop down between four components and five, from near 70 %               

to less than or around 30 % which surpasses acceptable threshold of 60% where as it showed a                  

value of 80.75 % for three components, indicating that a three-factor model was appropriate. The               

split-half analysis confirm this three components model. Spectral contour plots of components            

and their corresponding loadings for both the excitation and the emission wavelengths are shown              

in figure 3.  

 

C1 C2 C3 
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Fig. 3. Contour plots of CP/PARAFAC components found in EEM dataset. Spectral loadings             

of excitation and emission wavelengths of the three identified CP/PARAFAC in the present             

study.  

 

Description of excitation and emission pairs of main peak positions for CP/PARAFAC             

components are summarized in Table 1 and compared to previously identified components and             

peaks in the literature. 

 

 

 

 

 

 

 

 

 

17 

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020



Table 1  

Descriptions of CP/PARAFAC components and comparison with literature 

Component  λEX/λEM (nm) Description and references in literature 

Component C1 320/425 Component 4 (Stedmon et al. 2003b) : terrestrially derived 

organic matter 

Peak C (Coble 1996d; Coble et al. 1998) : visible humic-like 

Component 2 (Yamashita et al. 2008a) : terrestrial 

humic-like 

Component 4 (Yamashita et al. 2008b) 

Component C2  370/455 Component 3 (Stedmon et al. 2003c) 

Component G3 (Murphy et al. 2011a) 

Component 3 (Li et al. 2014a) 

Component 7 (Osburn et al. 2016a) 

Component 5 (Baghoth et al. 2011) 

Component 1 (Zhu et al. 2017a) Humic-Like 

Component 3 (Yamashita et al. 2008c) : Humic-like 

component 

Component C3  270/(340) 

470 

Peak T :  Tryptophan like fluorescence (Coble 1996d) 

Q2  (Cory & McKnight 2005) 

Small resemblance to C6 (Zhou et al. 2013) which was 

Oil-related, degradation product  
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Based on maximum peak position, these three components have been previously identified             

(Table 1). C1, showed an excitation maximum at 320 nm and an emission maximum at 425 nm                 

and a range of excitation emission wavelengths (Ex=300-350 nm, Em=400-450 nm). Previous           

studies have associated this component to UVA humic-like fluorescent CP/PARAFAC          

component and Peak C (Coble 2007) and peak “∝” (Parlanti et al. 2000c; Sierra et al. 2005). It                  

was previously found from terrestrial, anthropogenic, agricultural sources (Stedmon et al. 2003d;            

Stedmon & Markager 2005b). C2 component showed an excitation maximum at 370 nm and an               

emission maximum at 455 nm and a range of excitation emission wavelengths (Ex=340-400 nm,              

Em= 400-500 nm). In addition, spectra of C2 resembles spectra of component “G3” which has               

Exmax=350 nm, Emmax=428 nm in (Murphy et al. 2011b) who have attributed it to wastewater or               

nutrient enrichment tracer. This component has also been identified as humic-like component,            

similar to “C3” (Li et al. 2014b) which had two excitation maxima (at 250, 350 nm)                

corresponding to the same emission maxima (at 440 nm). Furthermore, C2 has very similar              

spectra to “C7” from recycled water studies, which included samples of wastewater, treated             

water, gray water (Osburn et al. 2016b). C3, showed an excitation maximum at 270 nm and an                 

emission maximum at 340 nm and 470 nm which is bimodal in emission. It’s range of excitation                 

emission wavelengths is Ex=200-300 nm, Em=300-500 nm. The 1st peak (270/340 nm) is near              

the tryptophan-like peak (Coble 1996e). This component could be protein-like component but it             

resembles noise. 
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3.3. Multivariate Linear Regression Parameters  

Numerical values of multilinear regression coefficients (eq. 9) for each CP/PARAFAC            

component C1, C2 and C3 are the following for time zero, i.e. Aug. 28th 2015. 

For 

 C1 = 100.45 - 0.99 *f SW -0.93*f RW   with coefficient of determination r2 value of 0.99  

C2 = 98.67 -0.97  *f SW  -0.92*f RW  with r2 value of 0.99  

C3 = 72.84 -0.66 *f SW -0.64*f RW  with r2 value of 0.84 

 

From the above substituted equations, it can be seen that the correlation coefficient is greater               

than 0.95 for C1 and C2 indicating multilinear regression is excellent. Values of the intercept are                

always greater than values of coefficients of f SW and f RW by two orders of magnitude. These values                 

of the parameters/coefficients of the multilinear regression are calculated after the Raman unit             

corrections of the EEM-dataset. Knowing that values of the intercept account for effect of f WW on                

contribution of CP/PARAFAC component, these results show that contribution of          

CP/PARAFAC component decreases with increasing f SW or f RW. Indeed, all of coefficients f SW, f RW               

have negative sign. As a consequence, it can be observed that for f SW =100 or f RW=100,                

contributions are weak compared to the f WW=100, i.e f SW=f RW=0. These indicated that most of              

fluorescence contributions are due to WW endmember considering the blank fluorescence a i,0 as             

negligible. Considering that WW is the principal contributor to the all components contribution,             

there is no specific end member response for SW and RW in these mixtures.  
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Fig. 4. The variation with irradiation time (volts as proxy for time) of the parameters of                

multilinear regression ( Intercept , absolute values of f RW coefficient, absolute values of f SW              

coefficient) for C1 and C2 . 

 

The intercept and the coefficients of f RW and f SW of CP/PARAFAC C1 (shown in black) has a                  

faster degradation rate than their counterparts of C2 (shown in blue) as shown in figure 4. which                 

in agreements with the values of the kinetic rate constants as shown in table 6 .  

3.4. Determination of kinetic decay coefficient and its kinetic order 

The irradiation experiment showed continuous decrease of fluorescence signal with irradiation            

time. No stable signal or significant fluorescence increase was observed like in other works (;               

Song et al. 2015; Zhu et al. 2017b). Integrated rate law linear equations of zeroth, 1st, 2nd, and 3rd                   

kinetic order were investigated for each coefficient A WW
i,0 , A WW

i,1 and A WW
i,3 to determine kinetics              

of photodegradation for each multilinear regression parameter. Kinetic order was chosen           

according to the best coefficient of determination according to kinetic integrated order law,             
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selecting linear correlation coefficient which must be greater than the threshold 0.75 after             

eliminating outliers (Wright 2004). Results are presented in table 2 for kinetic order, and kinetic               

constant are presented in table 3. It was found that all kinetics are 2nd order and are in agreement                   

with a previous work (Yang et al. 2014). Long term photodegradation of fluorescent organic              

matter is a bimolecular reaction probably involving exited organic matter and organic matter             

itself. Other work assumed first order kinetic under solar simulated irradiation (Wu et al. 2016)               

but experiment were done during 12h and under 2.80 mW.cm-2 (visible) and 70.00 mW.cm-2,              

corresponding to the starting point of present irradiation experiment that could be assumed as              

pseudo-first order kinetic. On the same time, Hee et al 2018 didn’t find variation with a 4,2                 

mW.cm-2, during 10 hours of exposition.  

 

Table 2  

Kinetic order of coefficients of multilinear regression for each CP/PARAFAC with its            

corresponding r 2 of 2nd order kinetics to the right. “NA” means that correlation coefficient for 2nd                

order rate was less than 0.75, and was dismissed.  

C1  C2  C3 

A WW
1,0 

interpt 

r 2 A WW
1,1 

(f SW) 

r 2 A WW
1,2 

(f RW) 

r 2 A WW
2,1 

interpt 

r 2 A WW
2,1 

(f SW) 

r 2 A WW
2,

2 

(f RW) 

r 2 A WW
3,1 

interpt 

A WW
3,2 

(f SW) 

A WW
3,3 

(f RW) 

2 0.94 2 0.95 2 0.96 2 0.83 2 0.78 2 0.82 NA NA NA 

 

Table 2 clearly shows that the kinetic order of photodegradation reaction for each parameter of                

the multi-linear regression for CP/PARAFAC components C1 and C2 are second-order kinetics            

and the corresponding coefficient of determination r2 is greater than 0.75 . For the third               
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CP/PARAFAC component C3 , no order could be found since this component is noise-like              

component (table 3) and it was neglected from the analysis. 

 

 

 

Table 3  

Kinetic constant for coefficients of multilinear regression for each CP/PARAFAC component.           

Values in parenthesis are standard deviation for kinetic constant. All values should be             

multiplied by 106 . NA : Not Available 

 C1 C2 C3 

A WW
*,0 

interpt 

9.68(1.00) 4.85(0.78) NA 

A WW
*,1 

(f SW) 

-987.35(92.31) -542.80(101.97) NA 

A WW
*,2 

(f RW ) 

-977.67(83.84) -552.56(91.70) NA 

 

Values of kinetic constant for intercept for both C1 and C2 are smaller than those values                

of kinetic constant for A WW
1,1 which is coefficient of f SW and A WW

1,2 which is coefficient of f RW                 

(table 3). This result could be interpreted as follows: C1 and C2 contributions of RW and SW are                  

more sensitive to photodegradation than WW which in turn decays approximately 100 times             

slower under irradiation suggesting its dominance in the residual fluorescence of both C1 and C2               

after long term irradiation. Hence even if there is no specific endmember CP/PARAFAC             
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contribution, it exist a photosensitivity difference between WW and RW or SW. Under long              

irradiation, WW contribution is more resilient and refractory to photodegradation. This difference            

of behavior depending on endmember mixing was already observed between terrestrial and            

autochthonous organic matter (Zhu et al. 2017c). Small differences were also observed on             

reclaimed water using fluorescence matrix regional integration between humic-like and          

protein-like under high irradiation (Wu et al. 2016). Therefore, it can be said that wastewater               

treatment plant fluorophores are somehow similar to natural fluorophores but more refractory to             

photodegradation. Anthropogenic dissolved organic matter, in the present study, remains and           

constitute the greatest contribution of CP/PARAFAC components along irradiation process.          

Fluorescence signal going to the coastal zone should mainly come from WW endmember. 

 

Comparing C1 versus C2 degradation kinetic, it was observed that humic-like FDOM is more               

reactive than protein-like FDOM (Yang et al. 2014). However, results above demonstrated that             

it’s not so simple. CP/PARAFAC components are constituted by several types of FDOM             

fluorophores which behave differently depending on their origin and photosensitivity.  

 

(Timko et al. 2015) found increasing rates of photochemical fluorescent DOM loss with              

increasing pH studied thru measurements on the EEMs not between the parameters of multilinear              

regression between CP/PARAFAC components and mixing composition . However, pH of RW ,             

SW and WW were constant (pH =7.4 ± 0.4) in this study suggesting no effect of pH in the results                   

of the kinetic analysis 
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4. Conclusions  

In this study, fluorescent conservative behaviour and natural solar changes on three             

endmember mixing laboratory experiment were investigated leading to the following conclusions  

 

(1) Multilinear regression model for contribution of CP/PARAFAC components is excellent and            

could be done for the three endmembers in addition to being able to study the kinetic evolution.  

(2) Two of the three fluorescence CP/PARAFAC extracted component (C1 “terrestrial humic            

like” and C2 “humic-like of longer wavelength”) showed a second order photodegradation            

toward the irradiation process whatever the endmember mixture composition. 

(3) Search for specific self-distinguishing fluorescence signal or signature for river water,            

wastewater treatment plants and sea water couldn’t be done in this work, which could be               

attributed to the complexity of the anthropogenic and natural dissolved organic matter. 

(4) The fluorescence signal of wastewater treatment plant effluent is predominant in the studied              

coastal zone, according to the results of photodegradation kinetic constant which favour            

anthropogenically-impacted organic matter contribution (100 times less sensitive to         

photobleaching). However, its exact contribution couldn’t be found due to inability to calculate             

or find its coefficient a i,3   in the multilinear regression model independently. 

(5) In human impacted coastal zone, residual fluorescent organic matter comes from wastewater             

treatment plant effluent, and no specific fluorescence signal either from sea water or from              

wastewater treatment plant effluent could be detected near the coast.  
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Table S1  

Percentages by weight of RW , SW ,WW used in the preparation of fifteen mixtures in                

Quartz vials for mixing and solar irradiation experiment 

Sample Serial Number 

Endmember 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

fRW 100 0 0 75 50 25 75 50 25 0 0 0 50 25 25 

fSW 0 100 0 25 50 75 0 0 0 25 50 75 25 25 50 

fWW 0 0 100 0 0 0 25 50 75 75 50 25 25 50 25 

 


