

To cite this document: TOURNOUX Pierre-Ugo, LOCHIN Emmanuel, LACAN Jérôme,
BOUABDALLAH Amine, ROCA Vincent. On-the-fly erasure coding for real-time video
applications. IEEE Transactions on Multimedia, vol. 13, n° 4, pp. 797-812. ISSN 1520-9210

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 4867

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@inp-toulouse.fr

1

On-the-fly erasure coding for real-time video
applications

Pierre Ugo Tournoux1,2, Emmanuel Lochin1,2, Jérôme Lacan2, Amine Bouabdallah1,2 and Vincent Roca3
1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France

2 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France
3 INRIA, Planète research team, Grenoble, France

Index Terms—Reliability, Delay recovery, Erasure code, Video-
conferencing.

Abstract—This paper introduces a robust point-to-point trans-
mission scheme: Tetrys, that relies on a novel on-the-fly erasure
coding concept which reduces the delay for recovering lost data
at the receiver side. In current erasure coding schemes, the
packets that are not rebuilt at the receiver side are either
lost or delayed by at least one RTT before transmission to
the application. The present contribution aims at demonstrating
that Tetrys coding scheme can fill the gap between real-time
applications requirements and full reliability. Indeed, we show
that in several cases, Tetrys can recover lost packets below one
RTT over lossy and best-effort networks. We also show that
Tetrys allows to enable full reliability without delay compromise
and as a result: significantly improves the performance of time
constrained applications. For instance, our evaluations present
that video-conferencing applications obtain a PSNR gain up to
7dB compared to classic block-based erasure codes.

I. I NTRODUCTION

Multimedia applications, even over best effort networks,
are more and more pervasive today. This is the sign of
an important need by end-users for such applications, no
matter their location and the connection technology being
used. If the networking conditions are sometimes appropriate,
users might also experience long transmission delays and
significant packet losses. When this happens, providing the
level of data delivery timeliness and reliability required by
multimedia applications seems to be really challenging [1].
In this context, this work aims at providing a transport-level
reliability mechanism, called Tetrys, compliant with real-time
applications requirements and able to recover lost packets in
a given time threshold.

Currently there are two kinds of reliability mechanisms
based respectively on retransmission and redundancy schemes.
Automatic Repeat reQuest (ARQ) schemes recover all lost
packets thanks to retransmissions. This implies that the re-
covery delay of a lost packet needs at least to wait one
supplementary Round Trip Time (RTT). However, this can
be problematic if this delay exceeds the threshold of the
application (i.e. the threshold above the application considers
a packet outdated).

A well-known solution to prevent this additional delay is
to add redundancy packets to the data flow. This can be done
with the use of Application Level Forward Error Correction

(AL-FEC) codes1. The addition ofn − k repair packets to a
block of k source packets allows to rebuild all of thek source
packets if a maximum ofn− k packets are lost among then
packets sent. In practice, only Maximum-Distance Separable
codes (MDS), such as Reed-Solomon codes [2], have this
optimal property, whereas other families of codes (like LDPC
[3] or Raptor codes [4]) need to receive a few number of
extra symbols in addition to thek strict minimum. However,
if more than(n − k) losses occur within a block, decoding
becomes impossible. In order to increase robustness (e.g. to
tolerate longer bursts of losses), the sender can choose to
increase the block size (i.e. then parameter) with the price
of an increase of the decoding delay in case of erasure. In
order to improve robustness while keeping a fixed delay,
the sender can also choose to add more redundancy while
keeping the same block size with the price of a decrease
of the goodput (which is not necessarily affordable by the
application). These trade-off betweenpacket decoding delay;
block lengthand throughputare, for instance, addressed in
[5]. Another approach is proposed in [6] where the authors
use non-binary convolutional-based codes. They show that
the decoding delay can be reduced with the use of a sliding
window, instead of a block of source data packets, to generate
the repair packets. However, both mechanisms do not integrate
the receivers’ feedbacks and thus, cannot provide any full
reliability service.

Finally, an hybrid solution named Hybrid-ARQ which com-
bines ARQ and AL-FEC schemes is often used. This is an
interesting solution to improve these various trade-off [7].
However, when retransmission is needed, the application-to-
application delay still depends on the RTT which might be not
acceptable with real-time applications.

The present contribution totally departs from the above
schemes. In fact, it inherits from the following two indepen-
dent works on erasure coding which have converged to an on-
the-fly coding mechanism where feedbacks from the receivers
are considered during the encoding process:

1) In [8], Sundararajanet al.have proposed a coding scheme
which includes feedback messages on the reverse path.
The goal of this feedback path is to decrease the encoding
complexity at the sender side without impacting on the

1AL-FEC codes are FEC codes for the erasure channel where symbols
(i.e. packets) are either received without any error or lost (i.e. erased) during
transmission.

2

communication transfer. This scheme allows to reduce
the number of transmissions and as a result, the average
decoding delay in the context of multiple receivers. In
their evaluation, the authors neglect transmission delays
and the resulting delays from the losses observed by
different receivers. A noticeable contribution of their
work is the concept ofseen packetby which the receiver
acknowledges the degrees of freedom of the linear system
corresponding to the received packets. This scheme has
the main benefit of optimizing buffers occupancy while
reducing the encoding complexity;

2) Independently, Lacan and Lochin also proposed in [9] an
on-the-fly coding system using feedbacks in the context
of point-to-point communications with high transmission
delays. Basically, the principle is to add repair packets
generated as a linear combination of all the source data
packets sent but not yet acknowledged. This scheme
was proposed in order to enable full-reliability in Delay
Tolerant Networks (DTN) and more specifically in Deep
Space Networks (DSN) where an acknowledgment path
might not exist and where the experienced delay might
prevent the efficient use of standard ARQ schemes.

Unlike current reliability methods, these on-the-fly coding
schemes allow to fill the gap between systems without re-
transmission and fully reliable systems by means of retrans-
missions. In our work, we propose to deeply investigate the
recovery delay of the lost packets, which is one essential
characteristic of these on-the-fly coding schemes, and we show
that this delay is both tunable and independent of the RTT.
The main contributions of this paper are the application of
Tetrys [10] (augmented with the concept ofseen packets[8])
to the context of real-time applications and the analysis of the
performances achieved with a probabilistic approach.

We present the Tetrys mechanism in Section II and illustrate
the simplicity of its configuration compared to FEC codes in
Section IV. Then we demonstrate in Section V that Tetrys
offers significant gains compared to standard erasure coding
schemes, in particular in terms of delay versus reliability
trade-off in the context of video-conferencing. An exhaustive
analytical study of the mechanism is given in Section III.
It is followed by a performance analysis in Section VI, that
complements the experiments of Section V, and demonstrates
that Tetrys is able to determine the minimal amount of
redundancy required to fulfill the application requirements. We
finally conclude this work in Section VII.

II. PROPOSAL DESCRIPTION

This section describes the Tetrys mechanism and the inte-
gration of the seen packet concept [8]. We choose to introduce
the main Tetrys principle in Section II-A to allow the reader a
quick understanding of the present coding scheme used while
Section II-B further details Tetrys internal mechanisms.

A. Tetrys in a nutshell

Let us start with a quick overview of Tetrys. The Tetrys
sender uses an elastic encoding window buffer (denoted
BS) which includes all the source packets sent and not yet

Pi The ith source packet sent

R(i..j)
A repair packet built as a linear combination of the
source packetsi to j: R(i..j) =

∑j

k=i α
(i,j)
k Pk

k
The number of source packets between the
transmission of two repair packets

n

The total number of source plus repair packets for
each group ofk source packets is denotedn (to keep
the usual definition) and is always equal tok + 1 for
Tetrys

R
The redundancy ratio:R = (n− k)/n = 1− (k/n)
wherek/n is the code rate. With Tetrys, we always
haveR = 1/(k + 1)

∆R
The difference between the redundancy ratio and the
packet loss rate:∆R = R − p

p The packet loss rate (PLR) experienced

b

The average burst size in case of a Gilbert Elliot
channel. This value equals to1 in the particular case
of a Bernoulli channel. Therefore this parameter also
defines the type of erasure channel used

Li The ith lost packet

Fsack
The feedback (i.e. acknowledgment) transmission
frequency, at the receiver

BS
The sender’s (elastic) encoding window, composed of
source packets not yet acknowledged

BR
The receiver’s buffer where the packets received and
decoded are kept until they are no longer needed to
decode

TABLE I
NOTATIONS.

acknowledged. LetPi be the source packet with sequence
numberi. Everyk source packets, the sender sends a (single)
repair packetR(i..j), which is built as a linear combination
(with random coefficients) of all the packets currently in
BS. The receiver is expected to periodically acknowledge the
received or decoded packets. Each time the sender receives an
acknowledgment, it removes the acknowledged packets from
BS. A receiver can decode lost packets as soon as the rank
of the linear system, which corresponds to the available repair
packets, is higher or equal to the number of lost packets. In
most cases, the decoding is successful as soon as the number
of lost packets is lower or equal to the number of repair packets
received.

It results that: (1) Tetrys is tolerant to any burst of source,
repair or acknowledgement losses, as long as the amount of
redundancy exceeds the packet loss rate (PLR), and (2) the lost
packets are recovered within a delay that does not depend on
the RTT , which is a key property for real-time applications.
These properties will be thoroughly studied in the remaining
of this paper.

1) A simple data exchange:Fig. 1 illustrates a simple
Tetrys exchange. Herek = 2 which means that a repair packet
is sent each time two source packets have been sent. The right
side of this figure shows the list of packets that are lost and not
yet rebuilt, as well as the repair packets kept by the receiver in
order to recover them. During this data exchange, packetP2 is
lost. However, the repair packetR(1,2) successfully arrives and
allows to rebuildP2. The receiver sends an acknowledgement
for packetsP1 andP2, in order to inform the sender that it can

3

Missing Pkts
Packets

Available Redundancy

R(9,10)

P10

P9

R(1..8)

P8

P7

R(1..6)

P5

R(1..4)

P4

P3

R(1,2)

P2

P1

R(1,2)

R(1..6)

P6

P2

P3

P3 P4

P3 P4

P3 P4

P3 P4

P3 P4

P3 P4

P3 P4

R(1..8)R(1..6)

Fig. 1. A simple data exchange with Tetrys (k = 2).

compute the next repair packets from packetP3. Unfortunately
this acknowledgement is lost. However this loss does not
compromise the following transmissions and the sender simply
continues to compute repair packets fromP1. After this, we
see thatP3, P4 andR(1..4) packets are also lost. These packets
are rebuilt thanks toR(1..6) and R(1..8) since the number
of repair packets becomes higher or equal to the number of
losses.

B. A broader view of Tetrys

We now detail the key concepts of Tetrys, namely the
encoding and decoding process, the notion of seen packet,
and the use of acknowledgments.

1) Encoding process:A repair packet is sent everyk source
packets. This packet is computed as a linear combination of
all the source packets currently inBS, as follows:

R(i..j) =

j
∑

l=i

α
(i,j)
l .Pl

where all packets betweenPi and Pj belong toBS, with
α
(i,j)
l are coefficients randomly chosen in a finite fieldF2m

with m ∈ N
∗, and where the multiplication of a coefficient

by a packet is defined in [11]. From a practical point of
view, instead of transmitting all the coefficients along with the
associated repair packet (which introduces a potentially large
transmission overhead), we use a Pseudo-Random Number
Generator (or PRNG, e.g. [12]) and only transmit the seed
which has been used.

Thek value is directly related to the code rate which is equal
to k

k+1 . This is of course a key parameter that should ideally
be adjusted dynamically depending on the network conditions.
For the sake of simplicity, the code rate is chosen fixed. In
section III-A, we analytically detail the code rate and evaluate
with simulations its impact on the overall performance. We
finally provide some guidelines to correctly set this value in
Section VI.

2) Decoding process:Decoding (i.e. recovering lost source
packets) consists in solving the system of linear equations
currently available at the receiver side. The available source
packets (received or decoded) are stored by the receiver as long

as they might be used by the source to build the next repair
packetsR(i..j) while the repair packets are also stored as long
as they can be used to recover lost packets. More precisely,
when a new repair packetR(i..j) arrives, all the available
source packets that are part ofPi .. Pj are subtracted from
R(i..j). The result isR(L1..Ll), where(L1..Ll) ∈ (Pi..Pj) is
the subset of packets of the linear combination that have been
lost.

Let us assume that thel source packets(L1..Ll) have been
lost and thatl repair packets have been received and stored in
BR. LetRi be theith packet of the set ofl repair packets (for
the sake of readability, this notation does not mention the set
of source packets used by the linear combination). We obtain:

(R1, .., Rl)T = G · (L1, .., Ll)
T

with:

G =

αR1

L1
.. αR1

Ll

. .. .

. .. .

αRl

L1
.. αRl

Ll

(1)

and whereαRi

Lj
is the coefficient used to encode thejth lost

packet inRi. If G can be inverted, the lost packets(L1..Ll)
are recovered with:

(L1, .., Ll)
T = G−1 · (R1, .., Rl)T

Once the decoding is successful, all of thesel repair packets
can now be removed fromBR. If the matrix G is singular,
the repair packet whose coefficients are linearly dependent is
discarded, and the receiver has to wait one more repair packet
to do another attempt.

A solution to improve the probability of having an invertible
matrix could consist in using super-regular matrices [13].
However the dynamic nature of Tetrys makes this solution
complex to set up. Furthermore, it can be observed that with
random coefficients,G has an extremely high probability of
being invertible if the finite field is chosen sufficiently large
[14].

3) Seen packet:A lost packet is considered as "seen" by
a receiver when it receives a fresh repair packet built from a
linear combination that includes this lost packet (i.e. the lost
packet was part ofBS at the time the repair packet has been
created). Even if a seen packet cannot be decoded immediately,
the received repair packet contains enough information to
recover this packet later. This explains why a "seen" packet
acknowledges a source data packet as if it has been effectively
received. Of course, when several lost packets are covered by
one repair packet, only the oldest lost packet is considered as
seen.

4) Acknowledgment packet:A receiver periodically sends
acknowledgment packets. Each acknowledgment contains the
list (in the form of a SACK vector [15]) of the packets seen or
effectively received or decoded. Upon receiving this acknowl-
edgment, the sender removes the acknowledged packets from
the encoding window (BS). Therefore these packets are no
longer included in the linear combinations used to encode the
next repair packets [8]. This reduces the encoding/decoding

4

complexity. We choose to set the acknowledgment transmis-
sion frequencyFSACK , as a function of the currentRTT :
FSACK = s × RTT where typical values fors are ranging
from 0.25 to 2 [16]. While the choice ofFSACK does not
impact on the reliability of the mechanism, there is a trade-
off to find between the increase ofFSACK which reduces the
encoding/decoding complexity (evaluated in Section III-D) and
the transmission overhead and acknowledgement processing
cost.

Receiver’s bufferSender’s buffer

P1

P2

R(1,2)

P3

P6

R(2..4)

Sack(2, 4, 5)

Sack(1)

P7

P8

P1

P4

P5

Sack(2..8)
R(3,6..8)

P9

P10

R(2..6)

R(9,10)

Sack(9, 10)
P11

P12

R(11,12)

P11

P10 P9

P9 P8 P7 P6 P3

P7 P6 P3

P6 P5 P4 P3 P2

P5 P4 P3 P2

P2 P1

P4 P3 P2 P1

P3 P2 P1
R(1,2)

R(1,2) P4

P4 P5R(1,2)

P6R(1,2)

R(1,2) P1..3R(2..4) R(2..6)

P4 P5 P6 P7

P3 P6 P7 P8 P9

P3 P6 P7 P8 P9 P10

P9 P10 P11

P9 P10 P11

P2 P3 P4 P5 P6 P7 P8

P11R(11,12) P12

P4R(1,2)

P4..6
P8 P7 P6 P3

P4 P5R(2..4)

R(2..4)

R(2..4)

P2 P3

P12 P11

Fig. 2. A more elaborate data exchange, with selective acknowledgements
and seen packets (k=2). Rebuilt packets are overlined.

5) A complete example:Let us consider the example of
Fig. 2, where we assume the receiver sends back acknowledg-
ments to a fixed frequencyFsack. The sender first transmits
packetsP1, P2 andR(1,2). Since the repair packetR(1,2) is the
only one to be received, the receiver considers thatP1 andP2

have been either lost or delayed. Then, the receiver acknowl-
edges packetP1 sinceR(1,2) contains a linear combination of
P1 which is considered as "seen". More generally, each time a
repair packet is received, the receiver can acknowledge one of
the source packets that are included in the linear combination.
Then, the sender transmitsP3 andP4. Just after, the sender
receives an acknowledgement for packetP1. So the sender
creates a new repair packet starting fromP2: R(2..4). The
receiver getsP4 and R(2..4), meaning that the sender has
received the previous SACK packet. Then, the receiver sends
a new SACK packet which acknowledgesP2, P4, P5. The
receiver cannot rebuild packetsP1 to P3 since he did not
receive enough repair packets. As a result, the receiver stores
R(1,2) andR(2..4) for a future use. Since no loss occurs after
that point, upon receiving a third repair packet, the receiver can
now rebuild the missing packets. The received source packets
included in the linear combination are subtracted, which results
in R(1,2), R

′

(2..4), R
′

(2..6) such as:

(R(1,2), R
′

(2..4), R
′

(2..6))
T = G · (P1, P2, P3)

T

with:

G =

α
R(1,2)

P1
α
R(1,2)

P2
0

0 α
R(2..4)

P2
α
R(2..4)

P3

0 α
R(2..6)

P2
α
R(2..6)

P3

(2)

whereα
R(i..j)

Pz
is the coefficient used to encodePz within

the repair packetR(i..j).
With the assumption thatG is invertible,G−1 is obtained

thanks to a Gauss-Jordan elimination and packetsP1 to P3

are given by:

(P1, P2, P3)
T = G−1 · (R′

(1,2), R
′

(2..4), R
′

(2..6))
T

These packets can be then considered as decoded. However,
before removing them fromBR, the receiver must still wait
the reception ofR(3,6..8) to be sure that the sender will not
use these packets anymore to build new repair packets.

This example highlights the importance of several metrics:
the decoding delay, the buffer size at the sender and at the
receiver, and the number of operations needed to encode
and decode. All these metrics will be studied and analyzed
thoroughly in the Section III-A.

III. E VALUATION OF THE TETRYS PARAMETERS

This section includes both analytical and experimental eval-
uations of Tetrys. To that purpose, we have implemented a
Tetrys prototype in C language. It borrows the finite field
operations from Luigi Rizzo’s Reed-Solomon codec [11]. For
decoding, a Gauss-Jordan matrix inversion has been devel-
oped. This algorithm is modified in order to determine, in the
case of a singular matrix, the repair packet which is a linear
combination of the other received packets. This useless repair
packet is then discarded and the decoder waits for additional
repair packets. During experiments, the coefficients for the
linear combination are randomly chosen on the finite fieldF28 ,
except in Section III-H where other finite fields are used.

A. Tetrys general analytical model

We propose in this part a model allowing to assess the key
properties of the Tetrys mechanism. We assume the packet
losses follow a Bernoulli law of parameterp. Under this
assumption, we introduce a Markov chain:{Yn, n > 0}, which
represents the difference between the number of lost packets
and the number of received repair packets observed after the
reception of each repair packet. As in section Sec. II, we
assume to decode whenYj = 0. This assumption is valid if the
finite field is chosen sufficiently large (see [14] for theoretical
arguments and Section III-H for simulation results).

As a first step, we focus on the probability distribution of
{Yn, n > 0}. Then, we use this distribution to estimate the
decoding delay, the average buffer size and the computation
complexity of the algorithm.

The evaluation of{Yn, n > 0} is done after each Tetrys
block. We define a block as a set ofk+1 consecutive packets
that begins at the first source packet sent after a repair packet
and ends at the next repair packet. We point out that our
definition of block does not correspond to the usual definition
in coding theory which is a set of symbols encoded together.

5

In our context, a repair packet can be encoded from a set of
source data packets belonging to several blocks.

The reception of each packet is represented by a random
variable (r. v.)Xi,j , wherei > 0 and 0 6 j 6 k. With this
notation,i corresponds to the block andj to the position of
the packet in the block.

On the Bernoulli channel, we haveP [Xi,j = 1] = p
(the packet is lost), andP [Xi,j = 0] = 1 − p (the packet
is received). The variablesXi,j , where 0 6 j 6 k − 1
thus corresponds to source packets and the variablesXi,k

corresponds to the repair packets. We then define the r.v.Xi,
wherei > 0, as follows:

Xi =

k
∑

j=0

Xi,j − 1 (3)

Indeed, this sum can be expressed asXi =
∑k−1

j=0 Xi,j +
(Xi,k − 1). Then, the loss of one of the firstk (source) packet
increments the value ofXi while the reception of the repair
packet decrements the value ofXi. SinceXi is obtained from
a sum of Bernoulli variables, we haveP (Xi = u − 1) =
(

k+1
u

)

pu(1− p)k+1−u with u = 0, . . . , k + 1.
We then define the Markov chain{Yn, n > 0} as follows:

Yn =

{

Yn−1 +Xn if Yn−1 +Xn > 0
0 else

(4)

Actually, the value ofYn corresponds to the difference be-
tween the number of lost packets and the number of received
repair packets since the previous decoding. Note that this
value is considered at the end of each block,i. e. after the
transmission of a repair packet.

Theorem 1:The success of the decoding and the decoding
delay depend on the relationship betweenR andp as follows:

• if R < p, the recovery of a lost packet is not guaranteed;
• if R = p, all the lost packets are recovered, but the mean

decoding delay is infinite;
• if R > p, all the lost packets are recovered, and the the

mean decoding delay is finite;

Proof: From the definition ofXi, it can be shown that
its expectationE(Xi) is equal to(k + 1)p − 1 = p

R − 1.
If R < p, E(Xi) is strictly positive and thus the chain is
transient. Consequently, there is no guarantee to decode a lost
packet.

For R = p, E(Xi) = 0 and the chain becomes null
recurrent, i. e. any state can be reached, but in an infinite
time. Since the state0 corresponds to a decoding, it can be
deduced that any lost packet is decoded but the mean decoding
delay is infinite.

For R > p, E(Xi) < 0 and thus the state0 is positive
recurrent. This state is reached in a finite mean time and thus
any lost packet is decoded in in finite decoding delay.

Let us consider the case whereR > p. Before studying
the decoding delay in the next part, we can deduce additional
informations on the decoding process from the Markov chain.
Let us denoteai,j := P (Yn = j|Yn−1 = i) the transition
probabilities between the statesi andj. Let us now defineA
the matrix(ai,j)i,j>0 and let us denote bya(n)i,j the entries of
An.

Proposition 1: If R > p, the chain{Yn, n > 0} admits a
stationary distribution equal to :

P (Yj = i) = lim
n→∞

a
(n)
j,i (5)

for any i, j > 0.
Proof: Since the chain is irreducible and one state is

positive recurrent, all the states are positive recurrent [17].
Thus the chain admits a stationary distribution whose values
can be easily obtained with basic results in stochastic process
theory [17].

B. Analytical model of the decoding delay

To study the decoding delay, we first need to obtain the
distribution of the first hitting time. In our context, the first
hitting time is denoted byHi and is defined as follows:

Hi = {minh such thatYh = 0|Y0 = i}

Intuitively, this hitting time corresponds to the time necessary
to decode a packet knowing that, at the considered time, the
difference between the number of lost packets and the number
of received repair packets isi.

Lemma 1:The probability distribution ofHi can be ob-
tained as follows :

P (Hi = h) =
1

h!

dh(
∑

t>0 a
(t)
i,0z

t/
∑

t>0 a
(t)
0,0z

t)

dzh
|z=0 (6)

Proof: Let us define

Gi(z) =
∑

t>0

a
(t)
i,0z

t (7)

and
Fi(z) =

∑

h>0

P (Hi = h)zh (8)

the probability generating function (p. g. f.) ofHi. Following
[18, chap. 2, lemma 25], we have :

Fi(z) = Gi(z)/G0(z) (9)

The probability distribution ofHi can be then obtained from
the probability generating function by evaluating:

P (Hi = h) =
1

h!

dhFi(z)

dzh
|z=0. (10)

Combining Equations 7, 9 and 10 allows to obtain the expres-
sion of the probability distribution ofHi.

Since this Markov chain concerns the decoding delay at
the block level, we now need to refine the analysis at the
packet level. Let us consider that a packet sent in positionj
(j = 0, . . . , k− 1) of a blocki is lost. LetDj be its decoding
delay. This delay has necessarily the formk − j + h(k + 1)
because the decoding can only be performed at the reception
of a repair packet.

Proposition 2: The decoding delay of a packet sent in
positionj of a block has the following distribution :

P (Dj = k − j + h(k + 1)) =
∑

y>0

∑k

u=0

(

k

u

)

pu(1− p)k−uP (Hy+u = h)P (Yi−1 = y)
(11)

6

Proof: Recall thatYi−1 andYi are the r. v. representing
the states of the chain{Yn, n > 0} after the previous block
and at the end of the current block.

Since the packet sent in positionj is lost, we have:

P (Yi = y + u|Yi−1 = y) =

(

k

u

)

pu(1− p)k−u (12)

for u = 0, . . . , k. We also have:

P (Dj = k − j + h(k + 1))

=
∑

y>0

∑k
u=0 P (Dj = k − j + h(k + 1),

Yi−1 = y, Yi = y + u)

=
∑

y>0

∑k
u=0 P (Dj = k − j + h(k + 1)|Yi = y + u)

P (Yi = y + u|Yi−1 = y)P (Yi−1 = y)

=
∑

y>0

∑k
u=0 P (Hy+u = h)

P (Yi = y + u|Yi−1 = y)P (Yi−1 = y)
(13)

Combining this last expression with Equation 12 allows to
obtain the expression given in the proposition.

C. Analytical model of the matrix sizes

Like most of erasure codes, the decoding operation in Tetrys
basically consists in inverting a matrix defined over a finite
field. The size of this matrix, denoted byZ, corresponds to the
number of repair packets involved in the decoding. Compared
to classic block-based erasure codes (rateless or not), the main
difference is that no theoretical bounds exist on the size of
the matrix that must be inverted. This is due to the concept of
elastic coding window. On the other hand, thanks to the elastic
coding window, it can be observed that, with a good choice of
parameters, the sizes of the inverted matrices by Tetrys is most
of the time lower than the matrices used by classic erasure
codes. For these reasons, the study of the sizes’ distribution
of the inverted matrices is important.

The first step in this study is the analysis of the recurrence
time. This parameter, denoted byU , is the time between
the first loss after a decoding and its recovery. This time is
expressed in time units, where a unit time corresponds to the
delay between the transmission of two consecutive packets.

With the notations introduced in the previous section, if
we consider the block where the first packet is lost after a
decoding, we define the r. v.F which corresponds to the
position of the first lost packet in the block. When the first lost
packet occurs in positionj, its recovery delay, and thus the
corresponding recurrence timeU has the formk−j+h(k+1),
whereh represents the number of complete blocks included
in the recurrence time. Reciprocally, a recurrence time equal
to k − j + h(k + 1) can only be observed with a first loss at
positionj.

Lemma 2:The recurrence timeU has the following distri-
bution :

P (U = k − j + h(k + 1)) =
1

1−(1−p)k

∑k

u=0

(

k−j

u

)

pu+1(1− p)k−uP (Hu = h) (14)

Proof: Basic combinatorial arguments show that

P (F = j) = p(1− p)j/(1− (1− p)k), (15)

for j = 0, . . . , k − 1.

Since the considered packet is the first lost after the previous
decoding, the value of the nextYi is necessarily in the range
[0, k]. Thus, we have:

P (U = k − j + h(k + 1)) =
∑k

u=0 P (U = k − j + h(k + 1), Yi = u|F = j)P (F = j)
(16)

It follows that:

P (U = k − j + h(k + 1))

=
∑k

u=0 P (Dj = k − j + h(k + 1)|Yi = u)
P (Yi = u|F = j)P (F = j)

=
∑k

u=0 P (Hu = h)P (Yi = u|F = j)P (F = j)

(17)

It can easily be shown thatP (Yi = u|F = j) =
(

k−j
u

)

pu(1−
p)k−j−u. By combining this result with Equations 15 and 17,
we obtain the probability distribution ofU given in the lemma.

Proposition 3: The distribution probability ofZ, represent-
ing the sizes of the decoded matrices, is equal to:

P (Z = i) = 1
1−(1−p)k

∑

h>i

∑k−1
j=0

∑k

u=0

(

h

i

)(

k−j

u

)

ph−i+u+1(1− p)i+k−uP (Hu = h)
(18)

Proof: To obtain the matrix sizeZ from U , we can first
observe that in a recurrence time equals tok − j + h(k + 1),
h+1 repair symbols are sent. This means that the matrix size
is ranging from1 to h+1. By considering that the last repair
symbol is necessarily received, we have:

P (Z = i|U = k − j + h(k + 1)) =

(

h

i

)

ph−i(1− p)i (19)

On the other hand, we have:

P (Z = i) =
∑

h>i

∑k−1
j=0 P (Z = i|U = k − j + h(k + 1))

P (U = k − j + h(k + 1))
(20)

By combining this expression with Equations 2 and 19, we
obtain the given formula.

D. Analytical model of the buffer size

Like for the matrix sizes, the elastic coding window of
Tetrys implies that there is no theoretical bounds on the
number of packets stored in the buffer at the sender and
receiver sides. The aim of this part is to evaluate these
parameters. In this section, we consider that a packet is sent
by the sender each time unit.

1) At the sender side:We denote byBSt the number of
packets stored in the buffer at timet. Basically, the buffer
contains the packets that were not acknowledged. LetS1

denotes the time between the reception of the last SACK and
t. If we consider that a SACK is sent everys.RTT time units
and that it is lost with probabilityp, we have :

E(S1) = s.RTT (1/2+ 1/(1− p)) (21)

The factor 1/2 corresponds to the average time to wait a
received acknowledgment and the factor1/(1 − p) is the
expectation of the geometrical law of parameterp representing
the arrival of the last SACK.

This acknowledgment brings out the information on the
reception of the packet sent by the sender oneRTT ago. Thus,

7

the sender has to store theRTT.k/(k+1) source packets sent
during this period.

Finally, at the timet − S1 − RTT , some source packets
were not acknowledged because they were lost. Thanks to the
use of theack-when-seenmechanism (included in the SACK
mechanism), each received repair packet acknowledges a lost
source packet. Thus, the number of not acknowledged source
packets is the difference between the number of lost source
packets and the number of received repair packets, which is
represented by the r. v.Yn studied in Section III-B.

The average number of packets stored in the buffer is thus:

E(BSt) = RTT (k/(k+1))(s/2+ s/(1−p))+E(Yn) (22)

Since the RTT does not impact on the value ofE(Yn), we
can observe that, when we fix the other parameters (p, k ands),
the number of packets in the sender buffer is a linear function
of the RTT. This observation also holds for the parameters
representing the SACK frequency.

2) At the receiver side:The receiver has two buffers: the
source buffer, which contains the received source packets
necessary for future decoding and the repair buffer, which
contains the received repair packets not yet decoded. The
number of packets in the source buffer at the timet is denoted
BRSt and the number of packets in the repair buffer is denoted
BRRt.

We recall that, when a source packet is received by the
receiver, it is acknowledged in the future SACKs. When the
sender received the first of these SACKs, it deletes this source
packet in its buffer and does not include it in the generation
of the next repair packets. The receiver can delete this source
packet as soon as it received a repair packet which does not
include this source packet in its linear combination.

As shown in Fig. 3, it follows that the source packet is stored
in the buffer duringS2+S3+RTT , whereS2+RTT/2 is the
time needed by the sender to receive the first acknowledgment
andS3 +RTT/2 is the time needed by the sender to receive
the next repair packet.

RTT/2

RTT/2

S

Sender Receiver

S2

3

Fig. 3. Receiver buffer

Clearly,S2 follows the same law thanS1. ForS3, the same
method can be used to estimate the mean, excepted that a
repair packet is sent eachk+1 time units (instead ofs.RTT
for the SACKs).

The average time spent by a source packet in the buffer is
then:

E(S2+S3+RTT) = RTT+(k+1+s.RTT)(1/2+1/(1−p))

To obtain the number of packets stored in the buffer at a
given time, we must consider that some of these packets are
lost. Thus we have:

E(BRSt) = (k/(k + 1))(1− p)E(RTT + S2 + S3)
= (k/(k + 1))(1− p)RTT + (k + 1 + s.RTT)
((1− p)/2 + 1)

To estimate the number of repair packets in the repair
buffer, we can first estimate the probability of having no repair
packet in the buffer. This probability is equal toP (Yn = 0)
determined in Section III-B.

When there is at least one packet in the repair buffer, we
can consider the probability distribution of the recurrence time
U . Indeed, forU = k− j+h(k+1), h repair packets are sent
and we can estimate that, on average,(1− p)h repair packets
are received. It follows that the average number of packets in
the buffer during this period is(1− p)h/2. We then have:

E(BRRt) =
∑

h>0(1−p)h
∑k−1

j=0 (k−j+h(k+1))P (U=k−j+h(k+1))

2.P (Yn=0)

Following this model, we can assess the minimum buffer
size requested by Tetrys. In addition, source-based algorithms
can also be envisaged to prevent buffer overflow.

E. Experimental evaluation of the buffer size

In order to give an insight of the Tetrys requirements in
a typical case, we evaluate the data source receiver buffer
(BRSt) evolution using our Tetrys prototype. We report
only experiments over a Bernoulli channel2 for the receiver’s
buffer as the receiver’s buffer occupancy is always bigger
than the sender. The RTT, repair ratio and sending rate are
respectively set to200ms, (3/4) and100 packets per seconds.
The two parameters that might affect the requested buffer
sizes are the acknowledgment frequency (as presented Section
II) and the PLR. We studied in Fig. 4(a) the impact of
the acknowledgment frequency on the requested buffer size.
Experiments are done with a fixed loss rate (10%). For the
sake of completeness, we show the minimum, maximum and
the (5, 10, 25, 50, 75, 90, 95) percentiles (the 50 percentile is
the buffer size of the 50% highest buffer sizes) of the number
of packets in buffer during the experiment. The samples used
to compute these percentiles are selected at the reception of
each data or repair packets.

We can see that with one acknowledgment sent per packet,
one per RTT and one for two RTT the50th percentile are
respectively around20, 30 and 40 packets. The points in
Fig. 4(a) also give the mean value which overlaps the50th
percentile. This confirms that asE(BRSt) suggests, the
average number of packets kept in the buffer evolves linearly
with the acknowledgment frequency.

The other parameter of interest is the PLR, since we have
seen that when its value is closed to the repair ratio, the

2The results are in the same order of magnitude with bursty losses, using
a Gilbert-Elliott channel.

8

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.25 0.5 0.75 1.0 2.0

of

 p
ac

ke
t i

n
bu

ffe
r

Ack period (RTT)

(a) Number of data source packets in the receiver’s
buffer as a function of the acknowledgement frequency
for a PLR=0.1

 0

 20

 40

 60

 80

 100

 120

 140

0.05 0.1 0.15 0.2

of

 d
at

a
pa

ck
et

 in
 b

uf
fe

r

packet loss rate

(b) Number of source data packets in the receiver’s
buffer as a function of the PLR for one acknowledge-
ment sent per RTT

Fig. 4. Minimum, maximum and (5, 10, 25, 50, 75, 90, 95) percentiles of
the number of packets requested to decode with a 3/4 repair ratio for Tetrys

recurrence time increases. Fig. 4(b) presents the result with
an acknowledgment frequency of1 and shows the number of
packets in the buffer for a PLR varying from 1% to 20%.
We can see that the (5, 10, 25, 75, 90, 95) percentiles remain
close to their 50 percentile, implying a low number of packets
in the buffer (most of the time around 30∼ 40 for one
acknowledgement per RTT) and a reasonable peak size (a
maximum of 160 packets) the rest of the time.

F. Tetrys encoding/decoding complexity analysis

This section introduces a complexity analysis of Tetrys
operations, expressed in terms of the number of operations
performed on packets. For example, the multiplication of a
packet by a finite field coefficient or the XOR addition of two
packets are considered as one operation.

1) Encoding Complexity:This complexity corresponds to
the number of operations needed to generate one repair packet.
Following the main principle of Tetrys, the number of source
packets involved in the linear combination is the number of
packets not acknowledged, i.e. the number of source packets
in the buffer of the sender. The number of additions and
multiplications performed to generate a repair packet at time
t is exactlyBSt. An analytical expression of this parameter is
given in Equation 22. Following discussions of Section III-D,
for fixed packet loss rate and redundancy ratio, this complexity
is linear according to the RTT and to the SACK frequency.

2) Decoding Complexity:The decoding process can be split
into two separate processes. The first one is a continuous
process which consists in subtracting all the available source
packets (received or decoded) to the repair packets in which
they are involved. The second one is the core decoding process
which allows to recover a set ofZ source packets from a set
of Z repair packets. As explained before, theZ × Z-matrix
built from the finite field symbols used to generate the repair
symbols is inverted and the obtained matrix is multiplied to
the vector of repair symbols to recover the source symbols.

To evaluate the complexity of the first process, it is sufficient
to estimate the number of available source packets in the
source buffer of the receiver. This quantity,BRSt, is studied
in Section III-D. Figures 4(a) and 4(b) confirm these results
with simulation results showing the evolution of the buffer
size, and thus of this complexity, for typical parameters.

For the second process of the decoding operation, the
decoder has to invert a matrix of sizeZ and then to multiply
theZ × Z-inverted matrix by the vector ofZ repair packets.
The matrix-vector multiplication only performZ operations
on each repair packets. The inversion of a general matrix has
a cubic complexity, but it is done on finite field coefficients
and not on packets. In practical, when the entries of the matrix
are carefully chosen, it can be shown that this matrix inversion
does not strongly impact on the decoding speed for moderate
values ofZ.

The distribution of the parameterZ was analytically studied
in Section III-C for the Bernoulli channel. Simulation results
obtained for typical parameters perfectly fit these theoretical
estimations (see Figure 5). For a Gilbert-Elliott (GE) channel,
additional simulations presented on Figure 7 show the behavior
of theZ parameter on bursty channels.

To have roughly estimations of the practical decoding speed,
Tetrys decoding can be compared to a block code decoding
with dimension equal toZ. In Fig. 5 and 7, the highest average
matrix size is equal to14. As a result, we can compare
the cubic complexity of the matrix inversion process to an
erasure code of equivalent dimension defined over a non-
binary finite field such as Reed-Solomon. If we now consider
the subtraction process of source symbols from redundancy
packets, Tetrys could be compared to common Reed-Solomon
code of dimension32 (assuming the source data buffer size
from Fig. 4(b)). To roughly have an order of magnitude, the
authors in [19] show that several implementations of Reed-
Solomon code of dimension32 can reach a decoding speed
up to600 Mbps with a standard personal computer. As a result,
Tetrys is perfectly compliant with real-time video constraints
both in terms of computation overhead and memory footprint
(also practically observed with our real prototype).

G. Experimental analysis of the impacts of the channel type

1) Case of a Bernoulli channel: impact of the PLR:We first
consider the impact of the PLR,p, using a simple Bernoulli
channel model, on Tetrys performance. In Fig. 5, the Tetrys
performance in terms of average matrix size, decoding delay,
and recurrence time is illustrated as a function of the PLR,
using a Bernoulli channel, whenR = 0.25. The first y-axis

9

 0

 1

 2

 3

 4

 5

 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
 0

 10

 20

 30

 40

 50

m
at

rix
 s

iz
e

in
 #

 o
f p

ac
ke

ts

tim
e

mean burst size

mean decoding time (right y−axis)
matrix size (left y−axis)

recurrence time (right y−axis)

Fig. 5. Average matrix size, decoding delay and recurrence time as a function
of the PLR,p, using a Bernoulli channel model.

scale (left side) is expressed in number of packets and is used
for the average matrix size. The second y-axis scale (right
side) is expressed in time units and is used for the average
decoding delay and average recurrence time (recall that a time
unit corresponds to the delay between the transmission of two
consecutive packets).

The first observation is that the three curves increase with
the PLR. This is easily explained by the fact that when
the error probability is small compared toR, then decoding
happens quickly, and vice-versa. This is also in line with
a previous result showing that he average recurrence time
is equal to1/(R − p) and thus, is infinite whenR = p.
The second observation is that the average decoding delay
curve gets higher than the recurrence time curve. This can
be explained by the fact that the decoding delay is related to
packet while the recurrence time is related to decoding. In the
case of a large “recurrence walk”, a large number of packets
have a large decoding delay, and thus this walk has a larger
influence on the average decoding time than on the average
recurrence time.

Bad Channel

State

Good Channel

State

1− p2

p1

1
−
p
1

p
2

Fig. 6. The first-order two-state Markov chain representing the Gilbert-Elliott
channel model

2) Case of a Gilbert Elliot channel: impact of the average
loss burst size:We now consider the impact of loss bursts on
Tetrys performance, using the well-known first-order, Gilbert-
Elliott channel model (Fig. 6). With this model, which consid-
ers two input probabilities,p1 andp2, it is well known that the
mean PLR is equal top = p1/(1 + p1 − p2) and the average
loss burst size to1/(1− p2). Thus:p2 = 1 + p1 − p1/p.

Fig. 7 shows the Tetrys performance, using the same metrics
as before, as a function of the average loss burst size, when
R = 0.25. During the tests,p1 andp2 vary in such a way that
the mean PLR is kept constant, equals to0.2.

Compared to Fig. 5, the curve representing the average loss
burst size (equal to1/(1− p2)) is added. We can observe that

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 1.5 2 2.5 3 3.5 4 4.5 5
 0

 50

 100

 150

 200

 250

m
at

rix
 s

iz
e

in
 #

 o
f p

ac
ke

ts

tim
e

mean burst size

mean decoding time (right y−axis)
matrix size (left y−axis)

recurrence time (right y−axis)

Fig. 7. Average matrix size, decoding delay and recurrence time as a function
of the average loss burst size, using a GE channel model.

a small value ofp1 implies a large value ofp2 and thus a
large mean burst size. On the opposite, whenp1 = p2, the
Markov channel becomes a Bernoulli channel of parameterp1
and thus, the mean burst size reaches its minimum.

The main information of the Fig. 7 is that the burst losses
have a negative impact on Tetrys performance. We can observe
that whenp1 varies from0.1 to 0.2, the burst size varies from
2.5 to 1.25. In this range, the matrix size, mean decoding time
and recurrence time are also divided by 2.

Even this rate of 2 is very specific to this simple example,
more generally, we can observe that the only consequence of
bursts is the increase of the decoding delay, recurrence time
and of the matrix size at the decoder side. Indeed, the property
to decode all packets ifR > p remains true.

Note that in the case of channels with variable parameters
(with a fixed PLR), Tetrys adapts automatically to the variable
conditions without any external intervention.

H. Experimental analysis of the impact of the finite field size

Section II says that decoding is not necessarily possible as
soon as the number of received repair packets is equal to the
number of lost source packet. This is explained by the fact that
the corresponding matrix can be singular (i.e. non invertible).
In this case, the receiver must wait additional repair packets,
which increases both the decoding delay and the matrix size.
In this section we analyze the impacts of the finite field size
(over which the coefficients used to build the repair packets
are randomly chosen) on these performance metrics.

More precisely we carried out experiments where the finite
field size varies from2 to 28, with PLR = 0.15 andR = 25,
with either a Bernoulli or Gilbert Elliott channel. The results
are plotted in Fig. 8.

The main result is that the two smallest finite fields (F2 and
F22) lead to poor performances in terms of decoding delay and
matrix size to invert. Even if the binary field (F2) is attractive
because all operations are implemented with extremely fast
XORs operations, this field must be avoided in our case. The
best compromise seems to be the fieldF23 which obtains
excellent decoding performance while supporting very fast
operations. The decoding performance differences between
F23 and larger finite fields are relatively negligible for both
channels. This observation remains true for other loss patterns.

10

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8
 0

 50

 100

 150

 200

 250

 300

m
at

rix
 s

iz
e

in
 #

 o
f p

ac
ke

ts

tim
e

log2(finite field size)

matrix size (left y−axis)
mean decoding time (right y−axis)

recurrence time (right y−axis)

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 2 3 4 5 6 7 8
 0

 50

 100

 150

 200

 250

 300

 350

m
at

rix
 s

iz
e

in
 #

 o
f p

ac
ke

ts

tim
e

log2(finite field size)

matrix size (left y−axis)
mean decoding time (right y−axis)

recurrence time (right y−axis)

Fig. 8. Impact of the finite field size on the average matrix size, decoding
delay and recurrence time, using a Bernoulli channel (top) or Gilbert Elliott
channel (bottom). PLR=0.2, average loss burst size of 3 (GE channel case),
and R=0.25.

We therefore suggest to always useF23 . Additionally [20]
explains that a multiplication in the fieldF2m (in our case
m = 3) can be implemented on average withm/2 XOR
operations per data unit (in our case3/2) which can be a
useful way of mitigating the processing load of operations
overF28 .

IV. ON THE ROBUSTNESS OFTETRYS VERSUSFEC BLOCK

CODES IN DYNAMIC ENVIRONMENTS

This section compares Tetrys with another usual loss re-
covery scheme, namely FEC block codes, focusing on the de-
coding delay metric, a key performance metric with real-time
multimedia applications. In particular, this section emphasizes
the simplicity of Tetrys configuration (controlled by a single
parameter) and the stability of the performance achieved as
the network conditions change.

A. Comparison with FEC block codes

FEC block codes for the erasure channel are a usual way of
mitigating packet losses. For instance the IETF FECFRAME
working group3 aims at defining a generic framework between
the RTP and UDP protocols to plug various FEC block codes
in a very flexible way, to protect one or several application
flows, separately or together. The FEC Framework architecture
being defined [21] is similar to the robust streaming solution
that can be found for instance in the 3GPP MBMS or DVB IP
Datacasting services [22]. Rather than focusing on a particular

3See http://www.ietf.org/dyn/wg/charter/fecframe-charter.html

FEC block scheme (e.g. the Raptor codes used in the 3GPP or
DVB streaming services [22] or one of the codes considered
in [23]), we consider an MDS FEC code, i.e. a code optimal in
terms of correction capabilities. Note that, even if Raptor codes
are often used in streaming services, their rateless feature
is totally useless in these environments ([21] (Section 8.1)
forbids the code rate to be lower than0.5). Similarly the
large block feature of Raptor codes is totally useless in these
environments, because of the application real time constraints.

In the remaining of this paper, the term "FEC scheme"
will refer to the streaming solution, compliant with the FEC
Framework architecture, using an MDS FEC block code. The
exact nature of the code is irrelevant, we just know that
practical codes will not perform better than the one we are
considering in our tests.

This FEC scheme works as follows. Source packets are
sent as soon as the application makes them available. Then,
after the transmission of thek source packets,n − k FEC
repair packets are sent (instantaneously). Since we want to
compare Tetrys with the best FEC scheme, we assume that
the link bandwidth is sufficiently important to absorb the burst
resulting from the introduction of thesen− k repair packets.

This approach faces two main limits: First of all, because
of its per-block approach, the recovery of lost packets is only
possible at the end, when at leastk packets have been received
for this block. This of course introduces a delay that depends
on the chosenk parameter: the larger thek value, the better in
terms of erasure recovery, but the higher the decoding delay,
and the real-time feature of the application anyway incurs an
upper limit to k. On the opposite Tetrys repair packets are
uniformly spread among source packets. Therefore lost packets
may be recovered without waiting for the end of a fixed length
block and without any dependence on the RTT.

Additionally, in real conditions, the PLR is not constant over
the time and two key parameters of the FEC scheme, namely
the block size (k) and the code rate (k/n), should be adapted
appropriately. Unfortunately, this adaptation requires feedback
information which is, by definition, constrained by the RTT.
Thus, the information is always returned at least one RTT later
and might not reflect the current network state. As a result, the
FEC parameters effectively used by the FEC scheme are not
necessarily optimal. On the opposite, Tetrys is controlled by
a single parameter and we will show in the following section
that it is highly tolerant to varying network conditions.

B. Decoding delay performance evaluation

We carried out several tests to compare Tetrys to various
FEC scheme configurations, i.e. differentk andn values, in
a Bernoulli channel. Considering many FEC scheme configu-
rations is important since we do not have any reliable way to
identify a priori the best FEC scheme configuration in a given
channel. The results are depicted in Fig. 9. The redundancy
ratio is set either toR = 0.2 (i.e. code rate=0.8) (upper row) or
R = 0.5 (i.e. code rate=0.5) (lower row). Then, in each figure,
there are as many FEC scheme curves as there are possiblek
values, while keeping the targetR (which definesn). The PLR
is then progressively increased to approach theR parameter.

11

0.95

1

0.2 0.4

P
(X

 <
 x

)

delay (s)

(a) PLR=6% and R=0.2

0.95

1

0.2 0.4

P
(X

 <
 x

)

delay (s)

(b) PLR=9% and R=0.2

0.9

0.95

1

0.2 0.4

P
(X

 <
 x

)

delay (s)

(c) PLR=12% and R=0.2

0.85

0.9

0.95

1

0.2 0.4

P
(X

 <
 x

)

delay (s)

(d) PLR=15% and R=0.2

0.85

0.9

0.95

1

0.2 0.4

P
(X

 <
 x

)

delay (s)

(e) PLR=15% and R=0.5

0.85

0.9

0.95

1

0.2 0.4

P
(X

 <
 x

)

delay (s)

(f) PLR=20% and R=0.5

0.85

0.9

0.95

1

0.2 0.4

P
(X

 <
 x

)

delay (s)

(g) PLR=25% and R=0.5

0.85

0.9

0.95

1

0.2 0.4

P
(X

 <
 x

)

delay (s)

(h) PLR=30% and R=0.5

Fig. 9. Cumulative Distribution Functions (CDF) of packets delivery delay for Tetrys (bold curve) and FEC (multiple staircase-like curves, corresponding
to various block size configurations), for different packet loss rates and differentR values (0.2 (upper row) vs.0.5 (lower row)). The RTT is set to200ms

and the FEC scheme block size is set to k={4; 8; 12; 16; 20; 24; 28; 32} for the upper row (resp. k={2; 4; 6; 8; 10; 12; 14; 16; 18; 20} for the lower row).

For a given code rate we see that in all the studied cases,
Tetrys provides full reliability as the CDF tends to one (but this
is not the main goal). This is not the case for the different FEC
schemes, essentially with short-dimension FEC codes. More
importantly, the probability for Tetrys to decode below a given
delay is higher than most FEC scheme configurations (i.e. the
Tetrys curve is higher). When this is not the case, the FEC
scheme features a lower correction capability (i.e. the curve
stops earlier and never reaches 1, as in Fig. 9(d)). However, as
the PLR approachesR (e.g. in Fig. 9(d)), the Tetrys recovery
delay increases and the FEC schemes then overtake Tetrys.

In summary, Tetrys exhibits the same delay and resilience
efficiency for most PLR, while being significantly more ef-
ficient than the best FEC scheme. The Tetrys redundancy
ratio, R, only needs to be dynamically adapted when the
PLR increases and be kept sufficiently high compared to the
observed PLR. Since there is a single parameter, this one-
dimensional problem is easily addressed. However we must
point out that the main objective in this context is to reduce the
recovery delay and not necessarily to optimize the bandwidth
occupancy. An algorithm allowing both a dynamic adaptation
of R and the minimization of the bandwidth occupancy will
be introduced in Section VI.

V. BENEFITS OFTETRYS WITH VIDEO-CONFERENCING

APPLICATIONS

A. Specificities of these applications and consequences

Video-conferencing applications have three main character-
istics. First of all, the end-to-end delay must not exceed 100 ms
(see [24] [25]) in order to preserve interactivity. They are also
characterized by their Variable instantaneous Bit Rate (VBR).
Indeed, Intracoded frames (I-frame), because they are coded
from scratch, generate more data than predicted coded frames
(P-frames), and even more than bipredicted frames (B-frames).
Finally, losing an I-frame has, in general, a worse impact on
the experienced video quality than losing a P or B-frame.

This has several impacts. First of all, FEC schemes are
limited by their block size which must neither be too large
(since it would impact the end-to-end decoding delay) nor too
small (since it would reduce the robustness in front of loss
bursts). Using both the optimal block size and redundancy ratio
requires an intricate adaptation mechanism. On the opposite,
Tetrys offers, as seen in Section IV, a better compromise
between the decoding delay and the resilience than the best
FEC scheme.

In the presence of VBR sources as video, this behavior
is furthermore confirmed as FEC schemes lack adaptability
compared to Tetrys. Indeed, recovering from a given number
of losses means waiting for the reception of (at least) the same
number of repair packets. With Tetrys, since two consecutive
repair packets are spaced withk source packets, when the
instantaneous packet rate increases during the transmission, the
time needed to receive additional repair packets is reduced, and
the probability to recover losses before the deadline increases.
With video coded data, I-frames are the ones that will benefit
the most from the adaptability of Tetrys. Although it could be
considered only as a side effect of the Tetrys mechanism, this
particularity has a major impact on the end user quality as the
I-frames have the biggest weight in the video quality measure.

In this sense, Tetrys acts as an Unequal Erasure Protection
(UEP) scheme such as DAUEP [26] or PET [27].

More generally, nothing would prevent the use of UEP
schemes embedded in Tetrys just by allocating lower code
rates to the set of important data or by nesting sources subsets.
Hence, in this work we do not consider any of the FEC UEP
schemes nor the Tetrys UEP schemes and let these aspects for
a future work.

B. Experimental Setup

The goal of the tests is to compare Tetrys to various FEC
schemes, using either a Bernoulli or GE channel model, during
a video transmission. Various FEC schemes are used, of

12

parameters(k, n) = (3, 4), (6, 8), (9, 12), (12, 16), all of them
having the same code rate. We use the latest ITU-T’s video
codec recommendation, H.264, and the JM 15.1 H.264/AVC
software [28]. We consider the Foreman sequence, in CIF size,
with a frame skip of one picture, resulting in a frame rate of 15
fps. One I-frame is inserted every 14 P-frames and B-frames
are not used at all because of the extra delay B-frames would
generate. The average bitrate is about 384 kbps at the output
of the video coder and the coded stream is packed into 500
bytes long packets. The maximum decoding tolerable delay
is set to 100 ms, all the packets received after this due time
being dropped. A total of 150 coded frames, corresponding to
10 seconds of video, is used. In order to obtain representative
results, each sequence is repeated 20 times, leading to the
transmission of a sequence composed of 3000 frames and
200 seconds long. This setup is derived from the common
testing conditions mentioned in [24]. For evaluating the video
we use the Evalvid framework described in [29], where the
video quality is measured with the Peak Signal to Noise Ratio
(PSNR) metric.

C. Video transmission performance evaluation

Let us consider the case of a Bernoulli channel first.
Fig. 10(a) shows that Tetrys achieves an average PSNR gain
of 7.19 dB over the best FEC scheme, namely FEC(6, 8) at
a PLR of 15%. The average PSNR drop for Tetrys does not
exceed 4 dB when the PLR increases from 5% up to 16%,
hence ensuring that the average PSNR still remains above 30
dB. When full reliability is impossible because of high time-
constraints, Tetrys allows a graceful degradation of the video
quality. If we consider instantaneous (rather than average)
PSNR performances, a representative 10 second trace being
shown in Fig. 11(bottom), Tetrys still outperforms FEC(6, 8),
the best FEC scheme for this scenario. Tetrys exhibits a
significantly higher instantaneous PSNR, except between time
2.5 and 2.8, where the FEC scheme behaves momentarily
better. By looking more carefully at the traces over this 10
seconds snapshot (not shown in the figure), we can see that
Tetrys retrieved 9 I-frames out of 10, whereas FEC scheme
retrieved only 5 I-frames. This behavior confirms what we said
in Section V-A, namely that I-frames automatically benefit
from a better protection compared to P frames with Tetrys.
The reason is that Tetrys allows the use of more redundancy
packets in the decoding process before the 100 ms than FEC
which is constrained by its block size. As a matter of fact, if the
FEC parameters were adapted with an oracle (instantaneoulsy
and automatically), we should obtain similar performance
than Tetrys (See Section IV for further details.). This UEP-
like behavior is achieved transparently by Tetrys, without
requiring any extra information exchange (data types, sizes,
or importance) from the source coding application, whereas
most of the existing UEP schemes do.

Let us now consider the case of the GE channel. The average
PSNR performances, plotted in Fig. 10(b) and 10(c), show the
same tendency even if the gains are less important: Tetrys still
offers a 3.78 dB gain for burst length of 2 and 2.72 dB gain
for burst length of 3 over the best FEC scheme.

 15

 20

 25

 30

 35

 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 P
S

N
R

 (
dB

)

Packet Loss Rate

Tetrys
FEC 3 4
FEC 6 8

FEC 9 12
FEC 12 16

(a) Average PSNR with a Bernoulli channel

 15

 20

 25

 30

 35

 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 P
S

N
R

 (
dB

)
Packet Loss Rate

Tetrys
FEC 3 4
FEC 6 8

FEC 9 12
FEC 12 16

(b) Average PSNR with a GE channel, burst size=2

 15

 20

 25

 30

 35

 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 P
S

N
R

 (
dB

)

Packet Loss Rate

Tetrys
FEC 3 4
FEC 6 8

FEC 9 12
FEC 12 16

(c) Average PSNR with a GE channel, burst size=3

Fig. 10. Average PSNR performance of Tetrys versus various FEC schemes
during a video sequence transmission, for various channel types.

Therefore, the results achieved are unequivocal: Tetrys
clearly outperforms all the tested FEC schemes in all the
scenarios, in particular because of its transparent UEP-like
behavior with video flows.

VI. REDUNDANCY ALLOCATION IN TETRYS UNDER

RELIABILITY AND LATENCY CONSTRAINTS

As for the video conference example, rather than full
reliability, some multimedia applications require that a given
proportionPktmin of packets arrive within a tolerable delay
Dmax (e.g. VoIP applications). After this delay, packets are
considered as lost by the application although they might be
delayed in the network and arrive later.

In order to verify whether the request given by an appli-
cation defined by(Pktmin, Dmax) is feasible, we choose to

13

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800
Packet rate averaged over 0.100 s

pa
ck

et
 r

at
e

(p
k/

s)

time (s)

0 1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

35

40

45
Average PSNR (dB): Tetrys= 34.03 FEC= 24.19

P
S

N
R

 (
dB

)

time (s)

I packets
P packets

Tetrys
FEC k=6 n=8

Fig. 11. Packet rate (top) and instantaneous PSNR of Tetrys versus
FEC(6,8) (bottom) during a 10 second snapshot, with a Bernoulli channel
and PLR=15%.

infer a Tetrys heuristic modelθ following several experiments.
We define this model as follows:

θ(t)(d,p,b,T,R) (23)

This model gives the cumulative distribution function of the
lost packets recovery delay whereR is the redundancy ratio
for an application that produces a packet everyT seconds4

according to the network characteristics (i.e. a delayd, a PLR
p and a burstiness of lossesb).

We then test the capability of Tetrys to satisfy the request
(Dmax, Pktmin), given R, with a boolean function denoted
Ψθ(t)(Dmax, Pktmin). Ψ returns TRUE if the probability
that a packet arrives beforeDmax is higher thanPktmin

and FALSE otherwise. As a result, by iteratingR (starting
from R = p), we find the set of solutions that satisfies
the application requirements. Finally, among these possible
solutions, the Tetrys sending application solves Equation (24)
to find the smallest redundancy ratio needed denotedRmin:

Rmin = min(R|Ψθ(t)(Dmax, Pktmin)) (24)

The following sections detail the method used to build this
model.

A. Model of the delay distribution

The behaviour of the Tetrys mechanism can be modeled
by a Markov chain process with a random walk driven by
the losses of source packets and the reception of redundancy
packets. As in Section III-B, we could compute the recurrence
and hitting times of the Markov chain and obtain an analytical
model of θ. Unfortunately, the computational complexity of
this model requires substantive computation time and prevents
any implementation inside a real protocol. This motivates the
use of our heuristic modelθ previously introduced.

4We assume a Constant Bit Rate (CBR) where all the packets have the
same size.

1) Experimental setup:We have performed several exper-
iments with a redundancy ratioR ranging from0.1 to 0.5,
a PLR p ranging from1% to 50% which follows either a
Bernoulli model or a GE model with an average burst size
of 2 or 3. For each experiment,105 source data packets are
generated.

2) Distributions fitting: We seek to estimate the delay
in number of packets sent (and supposed to be received)
between a lost packet and the redundancy packet that rebuild it.
Following the distribution of packets recovery delay obtained
by the experiments, we find out that the Weibull law fits our
distribution5.

A Weibull distribution is defined by two parameters: the
scale and the shape. Such distribution captures both exponen-
tial distribution if the shape parameterκ is around1 and the
heavy tailed distribution ifκ < 1 and is defined as follows:

P [X < x] = 1− e−(x/λ)κ (25)

B. Estimating the distribution parameters

 1

 10

 100

 1000

 0.1

∆R

Scale

0.6

0.8

1

0.1 0.2 0.3

∆R

Shape

n=2
n=3
n=4
n=5
n=6
n=7
n=8

Fig. 12. Evolution of the scale (λ) and (κ) shape as a function of∆R

For a given loss distribution (e.g. Bernoulli or Gilbert-
Elliott) the delay distribution is impacted byn (n = k+1) and
p (as∆R = 1

n − p)). For each value of the block sizen and
each loss distribution the shape parameters evolves “linearly”
as a function of∆R as seen in Fig. 12. The linear function
coefficients obtained through a least square are stored in table
II.

In the same way, the scale parameter is only impacted by
n and the losses distribution. The scale can be approximated
by:

λ(∆R) =
ac,n

∆R
bc,n

with ac,n and bc,n the appropriate values in the table II
wherec is the channel (that takes the following values1, 2, 3
respectively for Bernoulli and Gibert-Elliott of burst size 2 or
3) andn the block size. It results thatθ can be approximated
by:

1− e−(x
λ(n,p,c)

)κ(n,p,c)

(26)

with:
• λ(n, p, c) =

ac,n

(1
n
−p)bc,n

,

• κ(n, p, c) = ac,n ∗ (1n − p) + bc,n.

5We usedR [30] statistical software environment

14

0

0.5

1

0 500 1000

P
[X

 <
 x

]

delay (ms)

(p=0.15; b=1)

(p=0.2; b=1)

(p=0.17; b=3)
Empirical

θ(t)(d,p,b,T,R)

Fig. 13. Comparison between the empirical distribution obtain by experi-
ments andθ(t)[d,p,b,T,R]; T = 10ms, n = 3.

Fig. 13 presents the good fitting obtained by the empirical
distribution of the delay obtained by experimentation and the
expected distribution obtained withθ. The results are shown
for a PLR of 15% and 20% withb = 1 (i.e. a Bernoulli erasure
channel) and a PLR withb = 3 (a Gilbert-Elliott losses with
an average burst size of 3).

C. Accuracy of the approach

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

95
th

 (
 d

el
ay

)

PLR (%)

Dmax=300ms

R=Rmin
R < Rmin

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

95
th

 (
 d

el
ay

)

PLR (%)

Dmax=300ms

R=Rmin
R < Rmin

Fig. 14. Comparison between the optimal (i.e.= Rmin) and suboptimal
(i.e. 6 Rmin) redundancy ratio for the Bernoulli (top) and GE with average
burst size 3 (bottom) models. The metric is the95th percentile of the delay.

This mechanism has been implemented and evaluated with
the ns-2 network simulator. Fig. 14 shows the results of the
accuracy ofRmin (see (24)) in a practical use case. The
application emits at100 pkt/s and requests a minimum of
(Pktmin, Dmax) = (0.95, 300ms) and the one-way delay is
fixed to 100ms.

The figure gives the95th percentile of the delay. Ac-
cording to the application requirements, it should remain
below300ms. Considering a Bernoulli erasure channel, using
Rmin = 1

n allows to keep the95th percentile of the delay
below Dmax thus satisfying the application requirements.

Shape parameterκ
n 2 3 4 5 6 7 8

a1,n 0.72 1.25 2.0 2.65 3.44 3.866 5.6
b1,n 0.473 0.51 0.512 0.525 0.53 0.55 0.46
a2,n 0.48 1.31 1.92 2.15 3.69 5.15 4
b2,n 0.57 0.6 0.61 0.62 0.56 0.48 0.67
a3,n 0.62 1.8 2.8 4 4.54 5.5 5.4
b3,n 0.65 0.61 0.57 0.53 0.6 0.62 0.72

Scale parameterλ
n 2 3 4 5 6 7 8

a1,n 0.83 0.35
b1,n 1.815 2
a2,n 4.2 7.15 9.9 10.48 5.6 2.7 6.3
b2,n 1.14 1.35 1.3 1.3 1.65 1.94 1.57
a3,n 11.8 11.4 18.2 9.3 7.1 19.1 36
b3,n 1.04 1.44 1.3 1.6 1.7 1.28 1.05

TABLE II
TABLE OF LINEAR FUNCTION COEFFICIENTS TO GENERATE THE SHAPE

AND SCALE PARAMETER.

When usingR = 1
n+1 , the 95th delay is higher thanDmax

and does not satify the application requirements. Considering
a Gilbert-Elliott (GE) erasure channel with average burst of3,
the comparison betweenRmin = 1

n andR = 1
n+1 remains the

same. However, we observe when the loss ratio is between 8%
and 12% that the95th percentile of the delay is slightly higher
thanDmax. The explanation comes from the moving average
method used to compute the packet loss rate that sometimes
under-estimate this value in the context of GE channel [31].
To conclude,Rmin is effectively the smallest redundancy ratio
compliant with the application requirements.

VII. C ONCLUSION

In this paper we propose a novel reliability mechanism,
Tetrys, based on on-the-fly erasure coding techniques. We
demonstrate, through a detailed modeling of Tetrys perfor-
mance as well as real measurements, that Tetrys can achieve
a full reliability service even in case of an unreliable ac-
knowledgment path (thanks to the non sensitivity of Tetrys
to the loss of acknowledgments), or as the extreme case no
acknowledgment at all, while ensuring faster data delivery to
the application than pure FEC based techniques. In particular,
we demonstrate that Tetrys offers key benefits when used in
the context of video-conferencing (and more generally real-
time applications) over best effort networks. In this case, the
main challenge tackled by Tetrys is to combat loss and delay
in order to bring a substantial gain in terms of end user
perceived quality. We show that Tetrys allows a faster recovery
of missing information compared to block codes, and at the
same time avoids non-useful retransmitted packets. Although
the contributions of this paper deal with real-time data flows,
Tetrys can also be used with non real-time applications, or
at a different protocol layers. We expect to investigate these
considerations, as well as the interactions between Tetrys and
a congestion control mechanism, in a future work.

15

N 1 2 3 4 5 6 7
aber 0.72 1.25 2.0 2.65 3.44 3.866 5.6
bbe 0.473 0.51 0.512 0.525 0.53 0.55 0.46
ab2 0.48 1.31 1.92 2.15 3.69 5.15 4
bb2 0.57 0.6 0.61 0.62 0.56 0.48 0.67
ab3 0.62 1.8 2.8 4 4.54 5.5 5.4
bb3 0.65 0.61 0.57 0.53 0.6 0.62 0.72

TABLE III
TABLE OF LINEAR FUNCTION COEFFICIENTS TO GENERATE THE SHAPE

PARAMETERκ

N 1 2 3 4 5 6 7
aber 0.83 0.35
bber 1.815 2
ab2 4.2 7.15 9.9 10.48 5.6 2.7 6.3
bb2 1.14 1.35 1.3 1.3 1.65 1.94 1.57
ab3 11.8 11.4 18.2 9.3 7.1 19.1 36
bb3 1.04 1.44 1.3 1.6 1.7 1.28 1.05

TABLE IV
TABLE OF LINEAR FUNCTION COEFFICIENTS TO GENERATE THE SCALE

PARAMETERλ

ACKNOWLEDGEMENTS

This work was supported by the French ANR grants 2006
TCOM 019 (CAPRI-FEC project) and ANR-09-VERS-019-02
(ARSSO project).

REFERENCES

[1] B. Ganguly, V. Subramanian, S. Kalyanaraman, and K. Ramakrishnan,
“Performance of disruption-tolerant network mechanisms applied to
airborne networks,” inMilitary CommunicationsConference,2007.
MILCOM 2007. IEEE, Oct. 2007, pp. 1–7.

[2] J. Lacan, V. Roca, J. Peltotalo, and S. Peltotalo, “Reed-Solomon Forward
Error Correction (FEC) Schemes,” RFC 5510 (Proposed Standard), Apr.
2009.

[3] V. Roca, C. Neumann, and D. Furodet, “Low Density Parity Check
(LDPC) Staircase and Triangle Forward Error Correction (FEC)
Schemes,” RFC 5170 (Proposed Standard), June 2008.

[4] A. Shokrollahi, “Raptor codes,” IEEE/ACM Transactions on
Networking, vol. 14, no. SI, pp. 2551–2567, 2006.

[5] J. Korhonen and P. Frossard, “Flexible forward error correction codes
with application to partial media data recovery,”Signal Processing:
ImageCommunication, vol. 24, pp. 229–242, 2009.

[6] E. Martinian and C.-E. W. Sundberg, “Burst erasure correction codes
with low decoding delay,”IEEE Transactionson Information Theory,
Oct. 2004.

[7] A. Sahai, “Why do block length and delay behave differently if feedback
is present?”IEEE Transactionson Information Theory, vol. 54, no. 5,
pp. 1860–1886, May 2008.

[8] J. K. Sundararajan, D. Shah, and M. Médard, “ARQ for network coding,”
IEEE InternationalSymposiumon InformationTheory(ISIT), pp. 1651–
1655, July 2008.

[9] J. Lacan and E. Lochin, “Rethinking reliability for long delay networks,”
in International Workshop on Satellite and Space Communications
(IWSSC’08), Toulouse, France, Oct. 2008.

[10] P.-U. Tournoux, A. Bouabdallah, J. Lacan, and E. Lochin, “On-the-fly
coding for real-time applications,” inACM Multimedia 2009 Systems
Track, Beijing, China, 2009.

[11] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,”ACM ComputerCommunicationReview, Apr. 1997.

[12] D. F. Carta, “Two fast implementations of the “minimal standard”
random number generator,”Communicationsof theACM, vol. 33, no. 1,
pp. 87–88, 1990.

[13] R. Hutchinson, R. Smarandache, and J. Trumpf, “On superregular matri-
ces and MDP convolutional codes,”LinearAlgebraandits Applications,
vol. 428, no. 11-12, pp. 2585 – 2596, 2008.

[14] J. Kahn and J. Komlós, “Singularity probabilities for random matrices
over finite fields,”Combinatorics,Probability and Computing, vol. 10,
pp. 137 – 157, Oct. 2001.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgment options,” IETF, Request For Comments 2018, Oct.
1996.

[16] S. Landström and L.-A. Larzon, “Reducing the TCP acknowledgment
frequency,” SIGCOMM Computer CommunicationReview, vol. 37,
no. 3, pp. 5–16, 2007.

[17] D. R. Cox and H. D. Miller, The Theory of StochasticProcesses.
London, UK: Chapman & Hall, 1965.

[18] D. J. Aldous and J. A. Fill, “Reversible Markov Chains
and Random Walks on Graphs,” book in preparation:
http://www.stat.berkeley.edu/~aldous/book.html.

[19] A. Soro and J. Lacan, “Fnt-based reed-solomon erasure codes,” in
ConsumerCommunicationsandNetworkingConference(CCNC),2010
7th IEEE, jan. 2010, pp. 1 –5.

[20] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zucker-
man, “An XOR-based erasure-resilient coding scheme,” 1995, technical
report TR-95-048, International Computer Science Institute, Berkeley,
California.

[21] M. Watson, Forward Error Correction (FEC) Framework, July 2010,
IETF FECFRAME Working Group, work in progress:<draft-ietf-
fecframe-framework-09>.

[22] M. Luby, T. Gasiba, T. Stockhammer, and M. Watson, “Reliable
multimedia download delivery in cellular broadcast networks,”IEEE
Transactionson Broadcasting, vol. 53, no. 1, Mar. 2007.

[23] K. Matsuzono, J. Detchart, M. Cunche, V. Roca, and H. Asaeda,
“Performance analysis of a high-performance real-time application with
several AL-FEC schemes,” in35thIEEEConferenceon Local Computer
Network (LCN’10), Oct. 2010.

[24] S. Wenger, “H.264/AVC over IP,”IEEE Transactionson Circuits and
Systemsfor Video Technology, vol. 13, no. 7, pp. 645–656, 2003.

[25] F. A. Tobagi and I. Dalgic, “Performance evaluation of 10base-T
and 100base-T ethernets carrying multimedia traffic,”IEEE Journalon
SelectedAreasin Communications, vol. 14, no. 7, pp. 1436–1454, 1996.

[26] A. Bouabdallah and J. Lacan, “Dependency-aware erasures protection
codes,” Journal of Zhejiang University (JZUS) - Science A, vol. 7
(Suppl. 1), pp. 27–33, 2006.

[27] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority
encoding transmission,”IEEE Transactionson Information Theory,
vol. 42, 1996.

[28] H.264/AVC JM Reference Software, http://iphome.hhi.de/suehring/tml/.
[29] J. Klaue, B. Rathke, and A. Wolisz, “Evalvid - A framework for video

transmission and quality evaluation,” in13th InternationalConference
of ComputerPerformanceEvaluations,Modelling TechniquesandTools,
vol. 2794, Urbana, IL, USA, Sept. 2003, pp. 255–272.

[30] R Development Core Team,R: A Languageand Environment for
StatisticalComputing, R Foundation for Statistical Computing, Vienna,
Austria, 2009.

[31] F. Agharebparast and V. Leung, “A new traffic rate estimation and
monitoring algorithm for the qos-enabled internet,” inIEEE Global
TelecommunicationsConference, vol. 7, Dec. 2003.

