N

HAL

open science

When should I use network emulation?

Emmanuel Lochin, Tanguy Pérennou, Laurent Dairaine

» To cite this version:

Emmanuel Lochin, Tanguy Pérennou, Laurent Dairaine.
tion?. Annals of Telecommunications - annales des télécommunications, 2012, 67 (5-6), pp.247-255.

10.1007/s12243-011-0268-5 . hal-02554837

HAL Id: hal-02554837
https://hal.science/hal-02554837
Submitted on 26 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

When should I use network emula-

https://hal.science/hal-02554837
https://hal.archives-ouvertes.fr

OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 4903

To link to this article; DOI:10.1007/s12243-011-0268-5
URL: http://dx.doi.org/10.1007/s12243-011-0268-5

To cite this version: Lochin, Emmanuel and Pérennou, Tanguy and
Dairaine, Laurent When should I use network emulation? (2012) Annals of
Telecommunications, vol. 67 (5-6). pp. 247-255. ISSN 0003-4347

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1007/s12243-011-0268-5
mailto:staff-oatao@inp-toulouse.fr

When Should I Use Network Emulation?

Emmanuel Lochin!? . Tanguy

Pérennou'? . Laurent Dairaine?

Abstract The design and development of a complex system requires an ade-
quate methodology and efficient instrumental support in order to early detect
and correct anomalies in the functional and non-functional properties of the
tested protocols. Among the various tools used to provide experimental sup-
port for such developments, network emulation relies on real-time production
of impairments on real traffic according to a communication model, either
realistically or not.

This paper aims at simply presenting to newcomers in network emulation
(students, engineers, ...) basic principles and practices illustrated with a few
commonly used tools. The motivation behind is to fill a gap in terms of intro-
ductory and pragmatic papers in this domain.

The study particularly considers centralized approaches, allowing cheap
and easy implementation in the context of research labs or industrial develop-
ments. In addition, an architectural model for emulation systems is proposed,
defining three complementary levels, namely hardware, impairment and model
levels. With the help of this architectural framework, various existing tools are
situated and described. Various approaches for modeling the emulation actions
are studied, such as impairment-based scenarios and virtual architectures, real-
time discrete simulation and trace-based systems. Those modeling approaches
are described and compared in terms of services and we study their ability to
respond to various designer needs to assess when emulation is needed.

Keywords Experimentation, Emulation, Protocol, Internet

1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France
E-mail: firstname.lastname@isae.fr

1,2

2 Emmanuel Lochin®< et al.

1 Introduction

Designing and developing communication protocols and real-time systems is
a complex process where various actors participate in different phases, hav-
ing only a partial vision of the whole system. The experiment phase, which
eventually provides a global vision, is a mandatory step in research and de-
velopment process of distributed applications and communication protocols.
In this context, three classical ways to achieve experimentation are commonly
used: simulation, live testing and more recently emulation.

Simulation, particularly event-driven simulation, is a classical way to achieve
economical and fast protocol experimentation. It relies on an ad-hoc model to
work with and it uses a logical event-driven technique to run the experiment.
The use of modeling techniques simplifies the studied problem, by concen-
trating on the most critical issues. Indeed, network simulators are essential to
provide a proof of concept prior to protocol development. Nevertheless, those
tools (based on a virtual clock) cannot replace practical protocol evaluation
that quantifies implementations’ overhead during real-time operation. Even-
tually, to realize a real-time evaluation, only two solutions are left: live testing
and network emulation. For instance, network simulation has been used to
design the TFRC protocol internal mechanisms [24] (the TCP-Friendly Rate
Control protocol is a rate-based congestion control mechanism for unicast flows
operating in a best-effort Internet environment); then, a user-level prototype
has been realized [37] to quantify the processing overhead related to the in-
herent implementation. Throughout the remainder of this paper, we use the
TFRC case as a running example to help the understanding of certain concepts
presented.

In live testing, evaluations are driven with real implementations. The fun-
damental way to do the experiment is by using real technology for the underly-
ing networking environment. This real environment can be the target network
or an ad-hoc testbed involving real equipments. Nevertheless, this approach
is considered to be very expensive and inflexible to evaluate all aspects of the
protocol being tested.

Emulation is considered to be at the cross-road between simulation and
live testing. This approach consists in executing and measuring real protocols
and application implementations over a certain network where part of the
communication architecture is simulated in real-time. The aim of emulation is
to allow a distributed software to run either in realistic conditions (e.g. over a
satellite network) or specific conditions (e.g. when specific packets are dropped
such as SYN packets in the TCP case).

This paper introduces an overview of existing network emulation approaches.
We particularly focus on the study of centralized approaches, allowing simple
implementation in the context of research labs or industrial development cen-
ters. In addition, we propose a general architectural model that allows various
emulation approaches to be presented and situated in the model. These emula-
tion approaches include mainly impairment scenarios and virtual architectures.

When Should I Use Network Emulation? 3

Furthermore, a comparison of these approaches and a set of criteria considered
as requirements for emulation systems will be proposed.

This paper is organized as follows: section 2 situates emulation among var-
ious experimentation approaches. Section 3 presents main emulation require-
ments. Additionally, section 4 discusses network emulation architecture based
on three complementary levels. The outline of main emulation approaches, as
well as their positions in the architectural model proposed will be discussed in
section 5. Finally, some concluding remarks are given in section 7.

2 Network Experimentation
Approaches

Before diving in the world of emulation, we first present the common experi-
mental approaches used in research labs and industrial development.

2.1 Simulation

As discussed above, simulation is a very effective and efficient way to experi-
ment with protocols. Network simulation typically utilizes ad-hoc model and
logical event-driven techniques. Classical tools such as ns-2 [10] or OPNET
[14] provides a core simulation engine, as well as a large set of protocol mod-
els. These simulation tools allow experiments to be done without high costs
involvement. The modeling techniques used in the simulators allow the stud-
ied problems to be simplified by concentrating on the most important issues.
Furthermore, simulation tools do not operate in real-time. Therefore, depend-
ing on the model complexity, it is possible to either simulate a logical hour in
few real-time milliseconds or a logical second in several real-time days. This
characteristic reflects both the benefit and weakness of simulation tools. Due
to this attribute, it is unfeasible for simulation tools to implement systems in-
volving man-in-the-loop. Most simulation tools do not allow to test real-time
implementations but only models (even the most innovative and sophisticated
one).

2.2 Simulation shortcomings

As already emphasized in the introduction, network simulators are essential to
provide a proof of concept prior to protocol development but cannot replace
practical protocol evaluation. To pursue with the TFRC example previously
introduced in Section 1, the concept of the rate-based equation has been val-
idated within ns-2 simulator while the feasibility of the implementation has
been evaluated through real-time experiments. Even though the core algorithm
developed within ns-2 in C++4 has been reused inside the kernel implementa-
tion, most of the data structure, message exchange and protocol framework
had to be written from scratch. This additional code has to be evaluated too.

1,2

4 Emmanuel Lochin®< et al.

Furthermore, it is important to ensure that the services and performances
offered by the simulation model are consistent with the real experimental im-
plementation of the protocol.

2.3 Live experimentation

Another conventional method to test and debug distributed software during
the implementation stage is to use real hardware and/or software components.
The software can be tested either on a real target network or on an ad-hoc
testbed using real equipment. However, this approach is particularly expensive
in the context of wide area networks, especially when using specific technology
such as satellite network. The cost inefficiency of this method does not involve
only the technology cost but also the distributed man-in-the-loop manipula-
tions and synchronization required. Moreover, it is sometimes impossible to
use this approach simply because the new technology support is not yet val-
idated or available, e.g. when developing an application over a new satellite
transmission technology that is not yet operating. This method also suffers
from the inherent discrepancies between a particular test network and the
much broader range of network imperfections that will be encountered by the
software users.

Using real technology on target operational network has been widely de-
ployed. An example of this scheme is well illustrated by PlanetLab [32]. Plan-
etLab is a distributed platform that alleviates experiments management, of-
fering a way to use a very large set of hosts over the Internet. However, the
purpose of PlanetLab is to use Internet as a testbed and not to control the
network experimentation conditions. As a result, PlanetLab does not target
reproducibility and is thus more efficiently used for metrology experiments.

2.4 Network Emulation

Since several years, progresses in high speed processing and networking have
allowed the rapid development of network emulators, such as Dummynet [34],
NIST Net [16]. Network Emulation is a weighted combination of real technol-
ogy and simulation. It is used to achieve experiments using both real protocol
implementations and network models. Basically, this allows the creation of a
controlled communication environment. This communication environment can
produce specific target behaviors in terms of quality of service. The objective
of emulation tools is to reproduce a real underlying network behavior, such as
configurable wired [39] or wireless [41], [17] topologies. Additionally, emulation
aims at providing “artificial impairments” on the network to test particulari-
ties of the experimented protocol. These impairments include loosing specific
packets, reducing the network bandwidth with a specific timing or introducing
delay over the network. Emulation is particularly useful in the debugging and
testing phase of a system.

When Should I Use Network Emulation? 5

3 When do I need emulation?

You need emulation to assess the performance of an end-to-end system. Al-
though you can use emulation at any layer of the OSI model, in the present
paper, we focus on network emulation which is a combination of real technol-
ogy (application and communication stack above link-level) and simulation of
the behavior of the link and physical levels.

Let’s assume you want to assess the performance of the TFRC transport
protocol. You might be interested in validating the use of your implementa-
tion over several types of terminal (e.g. mobile phone, PDA, laptop, server,
etc.) and compare whether the impact of TFRC internal algorithms behave
similarly in various network conditions. In order to drive this test, you must
evaluate as a non-exhaustive list: the memory footprint, CPU usage and packet
processing overhead to identify potential limits and propose implementation
and algorithmic improvements. These metrics are not available in a simula-
tion context. Testing TFRC with various bandwidth size in a real setup would
involve the use of several different network setups (i.e. several testbeds with
different cards on different hosts) while emulation provides an easy way to
set the bandwidth of a link. Anyway, network emulation is the most practical
scheme to obtain trustable metrics since you change only one parameter of
your experimental setup.

In order to assess Quality of Service (QoS), the overall performances ob-
tained from an end-to-end protocol are mainly dependent on external factors
such as underlying technologies (e.g. RSVP establishment path, Service Level
Agreement with a DiffServ network, etc.), interconnection topologies, current
network traffic and so on. Different types of QoS can also be offered by the
underlying network. For example, IP network service could offer a communi-
cation channel ranging from perfect (minimum delay, high bandwidth and no
packet loss, as in a gigabit LAN) to unsatisfactory (high delay, low bandwidth
and high packet loss rate (PLR), as in a noisy satellite network), depending
on the underlying protocols and many other external factors. This leads to
a large set of possibilities in the protocol experiments that can be created.
The different types of end-to-end QoS that can be produced by the underlying
experiment framework can focus on:

— Artificial QoS the experiment framework provides a way to evaluate the
protocol over specific QoS conditions, not imperatively related to any tech-
nology or realistic conditions. Artificial QoS allows the user to test and
focus on its experimental protocol in target QoS conditions. This can be
considered as a form of unit testing. Furthermore, the aim of this method is
to point out errors or bugs that are difficult to observe in a non-controlled
environment where they rarely happen. This can be used, for instance, at
the transport level to study the impact of various packet drops in a TCP
connection (e.g. SYN/ACK packets [22], etc.).

— Realistic QoS the experiment framework provides a way to reproduce the
behavior of some specific network architecture as accurately as possible.

1,2

6 Emmanuel Lochin®< et al.

This type of experiment allows the user to evaluate the protocol over an
existing network or inter-network without using a real testbed and all re-
lated technologies (e.g. a wireless network, a satellite network, an Ethernet
gigabit network, or any interconnection of such technologies).

Generally the following set of impairments are commonly at least supported
by almost all emulators systems: round trip time delay, jitter, packet loss rate
and bandwidth size.

Today, there are several emulation platforms freely available on the In-
ternet, either remotely accessible (e.g. EmuLab [36], Orbit [33], [29]) or for
download and local installation (e.g. Imunes [40], Netem [25], Dummynet [34],
KauNet [23]). We strongly believe it would be not appropriate to simply list
and detail all these proposals. Instead, we propose in the following Section an
architectural model where essential features are highlighted.

4 Network Emulation
Architectural Model

Network emulation systems are based on various conceptual levels as illus-
trated in Figure 1. In this figure, we split an emulation system into three
complementary levels, denoted Model Level, Impairment Level and Hardware
Level. Each of these levels will be discussed in more details. Note that the User
System is not considered to be a part of the emulation system. It includes the
System Under Test, for instance a protocol or a distributed application to be
evaluated or demonstrated as well as traffic sources and sinks.

4.1 Hardware level

The lowest layer of the proposed architecture, namely hardware layer, rep-
resents the physical devices really used by the emulation system. These de-
vices comprise the real end-systems, the real network links that interconnect
them and possibly, network components such as switches or routers. The vir-
tual resources of the rest of the Emulation System and the User System are
mapped on those real resources, e.g. several virtual end-systems can reside on
a single real computer. It is crucial to understand that hardware level is not
necessarily composed by the technologies associated to the emulated network
conditions. For instance, emulating a satellite link to evaluate the performance
of the TFRC protocol can be roughly done over a few desktop stations inter-
connected with ethernet links by setting appropriate PLR and delay on the
resulting emulated link (see Section 5.1.1).

The emulation system itself can be based on either a centralized system or
a distributed system. In a centralized emulation system, we only use one com-
puter to host the sender(s), the receiver(s), the intermediate node(s) and to
manage all the impairments which define the experiment; while a distributed

When Should I Use Network Emulation? 7

System under Test
User System Demo

Evaluation

Impairments
scenario

Virtualization

|9POIN IOMIBN

@
8
=
>
S
=]
S
2
5]
S

m
<
@
El

T
g
B
@
3
>

=]

=]
S
o
5]
5

yoeoiddy paseg-aoei|

Emulation System

3

=

Kernel User g2
g3

Level Level o]
@

T

" -]
Centralized Distributed g g
System System 5
@

Fig. 1 Architectural model for emulation systems.

emulation system uses several computers to realize the same task. As an ex-
ample, the Imunes [40] system falls in the first category while Dummynet [34]
or EmuLab [36] belong to the second one.

The main advantage of using distributed rather than centralized emulation
system is the computation efficiency. However, this can be also considered as
a disadvantage as it requires more physical resources and then, is much more
complex to manage and administrate. For example, an EmulLab-like testbed
requires at least five computers: a sender, a receiver, a core emulator and two
computers used to emulate both links in order to drive an experiment. This
raises the problem of time synchronization of all machines that can be solved
by using the NTP protocol [30]. Despite the use of NTP and in the context of
delay estimations, computers can experience clock drift that might compromise
the measurements. Although a distributed emulation system is greedy in terms
of resources, it remains more appropriate to estimate overall resource usage
consumed by the protocol itself as it isolates the protocol under test from the
emulation system. The advantage of a centralized emulation system is that it
shares the same clock for all its components and is inherently synchronized.

4.2 Impairment Level

The impairment level provides a mean to introduce impairments over the ex-
changed packet flows. The impairment system is a center piece of the whole

1,2

8 Emmanuel Lochin®< et al.

emulation because the real target network conditions are driven by the im-
pairment system. The accuracy of the emulation is deeply associated to the
capacity of impairment systems to process the packets in time and without
introducing any other impairment than those specified in the upper level. For
instance, the impairment processing overhead might bias the packets process-
ing time estimation.

An impairment can be introduced at either the kernel level or the user
level. An example of emulator that introduces impairment at the kernel level
is Dummynet [34]. Dummynet intercepts packets at the IP forwarding level
by implementing a queue (named pipe by Dummynet API) able to introduce
impairments on the enqueued packets. Dummynet is configured through the
FreeBSD firewall API where each pipe is set up as a simple forwarding rule.
Another similar tool implemented inside the GNU/Linux kernel is NIST-Net
[16]. While Dummynet employs sophisticated queuing models for bandwidth
modeling, NIST-Net includes delay models of much statistical sophistication.
Indeed, NIST-Net is able to implement a varying delay scenario according to
a given distribution while Dummynet uses a static delay because of the use of
a queue. Both emulators cover complementary needs.

Finally, an example of user level impairment is ONE [11]. ONE provides
similar capabilities as Dummynet at the user level. However, the clock timer
resolution is a function of the kernel configuration and in general it ranges
from 1ms to 10ms. Indeed, several system scheduler runs at a default 100H z,
meaning times based on normal system calls cannot be more precise than 10
milliseconds. As a result, a user level emulation cannot be as accurate as a
kernel level one which gets a granularity close to the nanosecond. However,
this approach is simple to install and adapted for many simple educational
purposes.

4.3 Network Model Level

The model level defines two ways to control the emulation behavior. A user
impairment scenario consists of an explicit list of impairment events while a
virtual network architecture generates implicit impairment events based on the
virtual topology, equipments, link characteristics, communication and routing
protocols. Both models will be discussed in more details in the next section.

5 Emulation Approaches
5.1 Impairment scenario models

There are various types of scenarios. They can be classified as impairment
scenario models as described throughout the rest of this section.

When Should I Use Network Emulation? 9

5.1.1 Static Approach

In a static approach every parameter remains constant throughout the exper-
iment. Therefore, the static settings need to be configured before the experi-
ment is conducted. It does not describe the real network very accurately since
the behavior of real network changes all over time. However, it is sufficient to
reproduce pragmatic cases of artificial quality of service (e.g. bounded delay
which characterizes specific network such as satellite link). The parameters
that can be defined statically include delay, packet loss rate, bit error rate
(BER), packet reordering, etc. This emulation model is usually useful to test
all the possibilities of a product or to compare it to other already existing prod-
ucts. This is the basic behaviour of emulator such as Dummynet [34] which is
mostly used in this way.

5.1.2 Fvent Driven Approach

The key idea in event-driven [19] approaches is to apply impairements accord-
ing to events. The most commonly used events are clock ticks (time-driven
approach), but other events can be used, such as packet numbers, specific
conditions observed on the traffic or purely random occurences. The event-
driven approach is very useful to schematically represent a general behavior.
The tester will be able to validate the product under several conditions and to
compare it to other solutions. This approach has been used in various emula-
tion tools. For example, Net Shaper [26] uses time oriented emulation. In Net
Shaper, a daemon is executed and that daemon would wait for the new model
to be applied to the emulation processor. The daemon is able to successfully
receive and process up to 1000 messages per second.

In the case of clock tick events, all impairements are triggered at user-
defined times. Such approaches may be enforced by scripts which list all time
events and associated actions. Time-driven models allow user to define the
network and to make it evolve with time. As an example of such emulators
we can notice IREEL [18] and WNINE [17]. Both emulators use an XML
script containing update messages for a Dummynet static emulator used as an
impairement engine. As an example, the emulated network can be designed to
behave differently during the day and during the night.

Packet numbers in a flow can also be used as events, as in the KauNet
network emulator [23]. In that case, the ipfw tool of FreeBSD is used to select a
flow, and data-driven patterns are used to define how the impairments change
with packet numbers. For instance, a packet-loss pattern will use zeros for
packet drops and ones for packet deliveries. KauNet also supports bit-error
patterns, bandwidth change patterns, delay patterns and reordering patterns.
Such patterns can also be used in a time-driven way, thus offering a more
classical time-driven approach.

Other types of events have been proposed. Randomly generated events can
be used to emulate random node failures. With an emulator able to read packet
contents, a specific content (I image) or header value (DCCP handshake) can

10 Emmanuel Lochin!'2 et al.

be detected and used as a triggering event. More generally, the metrology of
the traffic can be used to detect specific conditions, such as the amount of
flow reaching some level, to trigger specific impairments such as halving the
bandwidth on the link.

Note that the most natural way to use the event-driven approach is the
use of scripts associating impairment parameters with events, either explicitly
like XML scripts IREEL or WNINE, or implicitely like patterns and scenarios
in KaulNet.

5.1.8 Trace-based Approach

This approach [31] is more realistic because the behavior of the network is
obtained and will be reproduced exactly in the same way.

First, a collection phase is usually done by using probes. These probes are
used to record the dates of packets arriving or leaving a host. The results are
transmitted to a controller that evaluate the delay and the mean loss rate to
give the basic network model. This allows the user to get dynamic network
profile. The limitation of the trace-based approach is that it cannot reproduce
all conditions a network would experience. A single trace can only capture
a snapshot of the varying performance along a particular path. Furthermore,
the traces cannot fully reproduce the network behavior because it is non de-
terministic. The same situation in another time could have produced different
parameters.

The advantages of the trace-based approach is to use existing traces rep-
resenting complex mobility movement to evaluate a prototype [35], [1].

5.2 Virtualization

Network and system virtualization allow to easily manage multiple networks
and systems, each of them customized to a specific purpose at the same time
over the same shared infrastructure [38]. Nowadays, virtualization is perceived
as the best candidate to support multiple router software candidate releases
simultaneously as a long-run testing method before real deployment in the
Internet (see for instance [28]). However, in this paper we are more interested
in the second role of virtualization which is to run simultaneously multiple
experiments in a shared experimental facility.

The virtual architecture models are higher level models allowing the rep-
resentation of a target network that is going to be emulated. It consists of
two different aspects namely System Emulation and Real-time Discrete event
simulation. This allows the design of an emulation model according to a real
network topology where the experimented flow crosses a set of real or virtual
nodes. Another way to achieve this is to use the Real-time Discrete Event Sim-
ulation through the establishment of a bridge between real packets and simu-
lated event-driven environments as in the ns-2 emulation extension NSE [21].

When Should I Use Network Emulation? 11

The global network behavior is produced by virtually reproducing the net-
work topology and components. Two directions are taken depending on the
way this virtualization is achieved. In the virtual systems, all nodes constitut-
ing the target network to be emulated are implemented either onto a single
centralized system (several virtual nodes co-exist into the centralized system)
or distributed onto various distinct systems (e.g. a computing grid) usually
connected together by high speed networks. Virtual links are used to connect
these nodes together according to the topology of the targeted network. Real
protocols such as IP or routing ones can also be implemented into the virtual
node system. Of course, in this type of architecture, the classical strategy to
produce realistic behavior is to introduce real traffic into the emulated network
to produce congestion, delays, losses, etc.

Imunes [39] is an example of centralized virtual node approach. It proposes
a methodology for emulating computer networks by using a general purpose OS
kernel partitioned into multiple lightweight virtual nodes. The virtual nodes
can be connected via kernel level links to arbitrarily form complex network
topologies. Furthermore, Imunes allows to emulate fully functional IP routers
over each emulated virtual nodes. Imunes provides each virtual node with an
independent network stack, thus enabling highly realistic and detailed emula-
tion of network routers. It also enables user-level applications to run within
the virtual nodes. At user level, Imunes proposes a very convenient interface
allowing to easily define the emulated network, namely the virtual nodes, the
software, the links and the impairment parameters.

The Entrapid protocol development environment [27] introduced a model
of multiple virtualized networking kernels, which presents several variants of
the standard BSD network stack in multiple instances, running as threads in
specialized user process. Other approaches that following this approach is the
Alpine emulator [20] project; GNS3/dynamips [4] and Virtual Routers [15].

The virtual architectural approach is often considered as the only mean
to achieve realistic emulation of complex network topology. As previously in-
troduced, PlanetLab proposes to directly use the Internet links to obtain real
measures (for metrology purpose) conjointly with an emulation system allow-
ing to map several end-hosts on a single computer in order to drive several
and different experiments in parallel. Nevertheless, the major problem of this
approach may be the scalability issue. Issues such as how to implement one
or several core network routers in a single machine and how to manage the
number of flows in a centralized manner remain problematic. These questions
are difficult to answer, not only in the context of total centralization but also
in the context of distributed systems such as grids.

6 Summary

We propose in this section a summary of the main characteristics of the emula-
tors cited in this paper (following our classification model presented in Figure
1). Note that the trace-based approach is a functionnality that is already in-

1,2

12 Emmanuel Lochin®< et al.

cluded inside some emulators (Orbit, W-NINE, KauNet, ...) and can be added
as a preprocessing tool to any event-driven emulator. However, we do not list
this capability when it corresponds to an option and is not used as default
network model.

Hardware Impairments Network Year Web
Name Model Model Model
— comments
centralized kernel static 1997 2]
Dummynet [34] — FreeBSD, IP-level emulation
KauNet [22] centralized kernel event-driven 2006 (7]
— based on dummynet
IREEL [18] distributed kernel event-driven 2006 6]
— based on dummynet
centralized kernel static 2005 8]
Netem [25] — GNU/Linux, IP-level emulation
centralized kernel static 2003 9]
NISTnet [16] — sophisticated statistical distributions
centralized user static 2001 [11]
ONE [11] — the first network emulator
PlanetLab [32] distributed . k.ernel .Vlrtuahzatlon 2003 [13]
— based on Linux virtual machines
distributed kernel virtualization =~ 2001 (3]
EmuLab [36] — based on dummynet links
Tmunes [40] centralized kernel virtualization 2003 (5]
unes — based on FreeBSD virtual machines
Alpine [20] centralized kernel virtualization 2001 No
Entrapid [27] centralized kernel virtualization 1999 No
Virtual routers [15] centralized kernel virtualization 2003 No
GNS3 [4] centralized . kernel. virtualization =~ 2008 4]
— based on Cisco router images
NETShaper [26] dlétrlbuted }(ernel event-driven 2002 No
— link-level emulation
Orbit [33] distributed kernel event-driven 2005 [12]
— two-tier laboratory emulator/field trial network testbed
W-NINE [17] dlst.rlbuted kernel event-driven 2008 No
— wireless emulator
CMU [31] centrflihzed user trace-based 1997 No
— seminal paper on trace-based approach

Table 1 Summary of the emulators cited in this paper.

7 Conclusion

This paper attempts to provide highlights concerning network emulation which
is considered to be in the middle between simulation and live-testing schemes.

When Should I Use Network Emulation? 13

We saw that network emulation combines the advantages offered by simu-
lation and live-testing at the same time while allowing different evaluation
metrics (i.e. processing overhead, memory footprint). Another important find-
ing is that we can easily set up complex measurements testbed by combining
both virtualization and network emulation tools. However network emulation
is definitely not the unique answer and must be carefully weighted as a func-
tion of the performances an experimenter seeks to evaluate. Thus, to obtain a
clear view, we develop an architectural model which illustrates and classifies
all types of emulation tools. We hope both model and arguments presented
would help the reader to better weight emulation in an evaluation process and
choose the right scheme to assess the performances targeted.

References

CRAWDAD: Community Resource for Archiving Wireless Data At Dartmouth.

Dummynet. http://info.iet.unipi.it/ luigi/dummynet/.

Emulab. http://www.emulab.net/.

GNS3: graphical network simulator. http://www.gns3.net.

Imunes. http://imunes.tel.fer.hr /imunes/.

Ireel. http://ireel.npc.nicta.com.au/.

Kaunet. http://www.kau.se/en/kaunet.

Netem. http://www.linuxfoundation.org/collaborate/workgroups/networking /netem”.

Nistnet. http://snad.ncsl.nist.gov/nistnet/.

10. ns-2 user manual. http://www.isi.edu/nsnam/ns/.

11. One user manual. http://irg.cs.ohiou.edu/one/manual. html.

12. Orbit. http://www.orbit-lab.org/.

13. Planetlab. http://www.planet-lab.org/.

14. Opnet technologies, 2001. http://www.opnet.com.

15. Florian Baumgartner, Torsten Braun, Eveline Kurt, and Attila Weyland. Virtual
routers: a tool for networking research and education. ACM SIGCOMM Comput. Com-
mun. Rev., 33(3):127-135, 2003.

16. M. Carson and D. Santay. NIST Net: A Linux-Based Network Emulation Tool. ACM
Computer Communication Review, 2003.

17. Emmanuel Conchon, Tanguy Pérennou, Johan Garcia, and Michel Diaz. W-NINE: a
two-stage emulation platform for mobile and wireless systems. FEURASIP Journal on
Wireless Communications and Networking, 2010.

18. Laurent Dairaine, Guillaume Jourjon, Emmanuel Lochin, and Sebastien Ardon. Ireel:
remote experimentation with real protocols and applications over an emulated network.
ACM SIGCSE Inroads Bull., 39(2), 2007.

19. S. Dawson and F. Jahanian. Probing and fault injection of distributed protocols imple-
mentations. In International Conference on Distributed Computer Systems, 1995.

20. David Ely, Stefan Savage, and David Wetherall. Alpine: a user-level infrastructure for
network protocol development. In USITS’01: Proceedings of the 8rd conference on
USENIX Symposium on Internet Technologies and Systems, 2001.

21. Kevin Fall. Network Emulation in the VINT /NS Simulator. In IEEE Fourth Symposium
on Computers and Communications, 1999.

22. Johan Garcia, Stefan Alfredsson, and Anna Brunstrom. The impact of loss generation
on emulation-based protocol evaluation. In PDCN’06: Proceedings of the 24th IASTED
international conference on Parallel and distributed computing and networks, Anaheim,
CA, USA; 2006.

23. Johan Garcia, Emmanuel Conchon, Tanguy Pérennou, and Anna Brunstrom. Kaunet:

Improving reproducibility for wireless and mobile research. In MobiEval: System Evalu-

ation for Mobile Platforms, Workshop of Mobisys 2007, pages 21-26, San Juan, Puerto

Rico, June 2007.

© PN W

14

1,2

Emmanuel Lochin®< et al.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

M. Handley, S. Floyd, J. Pahdye, and J. Widmer. TCP-Friendly Rate Control (TFRC):
Protocol Specification. Request For Comments 3448, IETF, January 2003.

Stephen Hemminger. Network emulation with netem. In Australia’s national Linuz
conference (LCA), Canberra, Australia, 2005.

D. Herrscher and K.Rothermel. A Dynamic Network Scenario Emulation Tool. In 11th
International Conference on Computer Communications and Networks, 2002.

X. W. Huang, R. Sharma, and S. Keshav. The ENTRAPID Protocol Development
Environment. In IEEE Infocom, 1999.

Eric Keller, Minlan Yu, Matthew Caesar, and Jennifer Rexford. Virtually eliminating
router bugs. In ACM CoNext, December 2009.

R. Siracusa M. Ott, I. Seskar and M. Singh. Orbit testbed software architecture: Sup-
porting experiments as a service. In IEEE Tridentcom 2005, Trento, Italy, 2005.

D. Mills. Network time protocol (version 3) specification, implementation. Request For
Comments 1305, IETF, 1992.

Brian D. Noble, M . Satyanarayanan, Giao T. Nguyen, and Randy H. Katz. Trace-based
mobile network emulation. In ACM SIGCOMM, Cannes, France, 1997.

L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A blueprint for introducing dis-
ruptive technology into the internet. In Ist Workshop on Hot Topics in Networks
(HotNets-1), Princeton, New Jersey, USA, October 2002.

Kishore Ramachandran, Sanjit Kaul, Suhas Mathur, Marco Gruteser, and Ivan Seskar.
Towards large-scale mobile network emulation through spatial switching on a wireless
grid. In Workshop on Experimental Approaches to Wireless Network Design and Anal-
ysis, (E-Wind), ACM Sigcomm, 2005.

Luigi Rizzo. Dummynet: a simple approach to the evaluation of network protocols.
ACM Computer Communication Review, 27(1):31-41, 1997.

James Scott, Pan Hui, Jon Crowcroft, and Christophe Diot. Haggle: A networking
architecture designed around mobile users. In The Third Annual IFIP Conference
on Wireless On-demand Network Systems and Services (WONS 2006), Les Menuires,
France, January 2006.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac New-
bold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated Experimental
Environment for Distributed Systems and Networks. In Fifth Symposium on Operating
Systems Design and Implementation, pages 255270, December 2002.

Jorg Widmer. TFRC userspace prototype, 2000. http://aciri.org/tfrc/code/.

Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual net-
work embedding: Substrate support for path splitting and migration. ACM SIGCOMM
Computer Communications Review, April 2008.

M. Zec and M. Mikuc. Operating System Support for Integrated Network Emulation in
IMUNES. In First Workshop on Operating System and Architectural Support for the
on demand IT InfraStructure, Boston, USA, 2004.

M. Zec and M. Mikuc. Operating system support for integrated network emulation in
imunes. In 1st Workshop on Operating System and Architectural Support for the on
demand IT InfraStructure / ASPLOS-XI, Boston, USA, October 2004.

P. Zheng and L. M. Ni. EMPOWER: A Network Emulator for Wireline and Wireless
Networks. In IEEE Infocom, San Francisco, 2003.

