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A complex homographic best approximation problem.
Application to Optimized Robin-Schwarz algorithms, and
optimal control problems
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!Université Paris 13, LAGA, CNRS, UMR 7539, 93430, Villetaneuse, France

Abstract

Homographic complex best approximation has emerged in the last years, as an essential tool
for the design of new, performant domain decomposition Robin-Schwarz algorithms. We present
and analyse a fully complex problem, introducing a new alternation property. We give operational
formulas for the solution, and apply them to a control problem.

MSC: 30E10; 41A10; 41A50; 65K10; 49M27; 65N55; 90C47
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1 Introduction

Optimized Schwarz algorithms are recent tools for domain decomposition in view of parallelization.
They use more efficient and flexible transmission conditions than the classical Schwarz algorithm,
which needs overlapping subdomains, and uses Dirichlet transmission only. In the third paper of his
seminal series, see [33], P.L. Lions opened the door to the use of new transmission conditions without
overlap: At each step, we solve the same equation in each subdomain “passing from each subdomain
to the others a conver combination of Neumann and Dirichlet data”: in particular this yields a Robin
(or Fourier) type boundary condition on each interface.  B. Després in his thesis used radiation
transmission conditions [2] on the interface for Helmholtz equation [11]. T. Hagstrém and collabo-
rators presented in [23] the first numerical experiments with “optimal” transmission conditions: For
rectangular domains and separable linear operators, optimal choices of the boundary conditions can be
made. F. Nataf and cooauthors gave an extended analysis of the optimal transmission conditions, see
[37]. Since then optimized transmission conditions have been designed, starting in C. Japhet’s thesis,
see [29, 13]. The principle at the root of optimized Robin-Schwarz methods is to find the coeflicients
in the Robin transmission conditions which optimize the convergence factor of the algorithm. This
is achieved in the most simple case of two half-spaces or rectangular subdomains by using a Fourier
transform or Fourier series in the direction of the interface. The convergence factor can then be
calculated in closed form, as a function of the parameter ¢ in the Robin transmission condition, and
the frequency k. For the equation —Awu + nu = 0, with n € C\ R_, define the function

on(0,k) = %e—w“ . with w(k) = k2 + 1. (1.1)

L > 0is the width of the overlap, K is a closed interval [kmin, kmaz] of R with kmax € R when L > 0.
The determination of the best parameter ¢ is a min max problem: to find (¢7,47) such that

87, = sup 6. (£1, k) = inf sup ér(¢, k). (1.2)
keK teC keK

Problem (1.2) must be seen as a best approximation problem by polynomials of degree 0.
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We now give some historical background on complex best approximation, in the space P, (C) of
complex polynomials of degree smaller than n, starting with the linear problem

inf supC(P2),  ((P2) = |f(2) — P(2)]. (1.3)
PeP,(C) zeK

For a continuous function f, this problem has a unique solution, see for instance the book by

Meinardus [36]. The alternation theorem, due to Chebyshev (necessary condition) and De la Val-

lée Poussin (sufficient condition) in the real case, is probably due to Tonelli [44] and extended by
Rivlin and Shapiro [38], see [43]. For any P € P,(C), let E be the set of points z € K such that

£ (2) = P(2)| = |If = Pllzex)-

Theorem (Rivlin-Shapiro [38]). A polynomial P is a polynomial of linear best approrimation for

f € C(K) if and only if there are v points z1,--- ,2» € E (alternation points ) and r numbers
Py ypr >0 (r < 2n+ 3 in the complex case and r < n+ 2 in the real case) for which
ij (ZJ))LZ5 (Zj):()v Z:17 ,7L+1, (14)

where the ¢; are a basis of the space P (C).In the real case, there are exzactly n+2 alternation points.

The best approximation problem (1.1,1.2) is nonlinear, with a weight which depends on the func-
tion itself. This paper contains four important results, which are generalizations of the linear results
above to the homographic weighted complex problem, for n = 0. In particular we present a new

alternation property 1.B, which is the appropriate generalization of the linear alternation property
1.4.

1.A Well-posedness and equioscillation.

For any L > 0 and kmax € R, or for L = 0 and any kmax € R, there is a unique (67, 47,) solution
of (1.2).

Furthermore there are at least two equioscillation points for £7: k1 and k2 distinct in K such
that

07 = 6L, k1) = 6L (L1, k2). (1.5)
1.B Alternation.

Let ¢ € C such that there are two alternating points k; in K, that is
Sr.(0, k1) = 61(0, ko) = supyec Sr(0, k),
I € RY, Vi)l k2) +pViese,) (k1) =0

Then ¢ = 0%

1.C Operational formulas: non-overlapping case.
Define wmin = w(kmin) and wmax = W(kmax), Omin = Arg wmin and Omax = Argwmax, where w is
defined in (1.1),.
Assume that L = 0 and knax € R.

1. If Opin < or 1f < BOmin < and kmax is sufficiently large, then

4 )
ga _ wmmwij’ \/ Wmax — 4/Wmin (16)
VWmax 1 v/Wmin
2. If Oumin > § and kmax is sufficiently large, then

2 Imn i X
S Wmax €6, Oon ~1—
\/g a 0

\/6\/§ Imn )

0y ~
km ax

1.D Operational formulas: overlapping case.
Suppose kmax = +00. Then for L > 0 sufficiently small, the optimal parameter ¢7, ., and the
corresponding convergence factor 67, ., admit the following asymptotic expansions:



1. If Omin

IN
w|y

I

* |(")min‘2 emin % iemir‘ *
ZL,OON( 57~ CO8 2) €2, 0L ~1—2¢/2LRel} . (1.8)

2. If Omin > %,

1
ER
O oo~ (I;“—L") ¢'%, 67 o~1-2,/2LRel; . (1.9)

If kmax € R is sufficiently large, the formulas are still valid.

The weighted homographic best approzimation problem was introduced in [7] concerning the advection-

diffusion equation. That case is symmetric, therefore the best coefficient is real. The problem in
consideration here is fully complex, and new results are given, in the case n = 0. Well-posedness is
proved without any constrains on the overlap L. A new necessary and sufficient condition is given
based on alternation of the derivative in ¢, see property 1.B above.

Many papers have adressed the question of optimized Schwarz, the first one probably concerns
the real case (n € Ry) for n = 0 (Robin) and n = 1 (Ventcel) in [15] . One can cite also the
Helmholtz equation in [14], [25] for the Schrédinger equation. For more complicated problems, such
as steady advection-diffusion with discontinuous coefficients [16], Helmholtz equation with two-sided
Robin conditions [21], asymptotically best coefficients with respect to the maximum frequency in the
discretized problem were computed by a heuristic equioscillation principle. Drastic improvements
using this strategy have been validated by computations, even for non constant coefficients, more
general decomposition in subdomains, nonlinear problems, applying the best coefficient locally see
[6, 24, 9]. They have been used successfully in connection with asynchronous algorithms [34].

The need for a new fully complex analysis appears in various settings, ranging from physics to
numerics. The d’Alembert equation is a model for the displacement of vibrating membranes or the
components of the electric field in the Maxwell equations. The computation of harmonic solutions with
frequency « leads to the Helmholtz equations, that is n = ,%; In the frame of Ohm’s law in a electric

circuit, the electric field is proportional to the current density, thus leading to Au + (’Z—j +iko)u =0,
where o is the conductivity.

A small imaginary part is also often used to actually compute the solution of the Helmholtz equation,
similar to the limit absorption principle.

A purely imaginary coefficient n = 7 appears when solving optimal control problems, in the astute

formulation introduced by J.D. Benamou in [3], see Section 4.

The analysis deals with complex coefficients n € C\ R_. In Section 2 we introduce the alternate
Robin-Schwarz algorithm for two half-pipes, and the minmax problem. Then we prove the property
1.A together with a strict local minimum property, dealing separately with the non-overlapping and
overlapping cases. Results for the first case are included in previous results in [7, 6], while in the
second case we obtain a new result for any size of the overlap parameter L by reducing the minmax
problem to a compact set.

The goal of Section 3 is to provide a characterization of the best parameter in 1.C and 1.D using
the equioscillation property, and introducing an alternation theory. We first prove the new sufficient
condition for strict optimum in the alternation property 1.B. Then we provide separately in the cases
L > 0 and L = 0 the algorithm for defining the value £ which makes the convergence factor alternate
twice. Then we provide exact or asymptotic values.

In Section 4, we concentrate on the application to optimal control. We give details on the methods
by Benamou and Després for domain decomposition, see [3, 5], and provide numerical evidence of the
capability of the method.

In Section 5, we describe the problems to which our analysis should extend.

A short preliminary account of this analysis has been given in [10]. For a study of the elliptic
control problem see [45].



2 Definition and well-posedness for the best approxima-
tion problem

2.1 Definition of the alternate Schwarz algorithm

Consider the Helmholtz equation with complex coefficient n € C \ R_ in the domain Q ¢ R+
Dirichlet boundary conditions are imposed on the boundary 0€:
—Aw+nw=gin Q, w =0 on 99, n=oa+2iu o€ Rand pu>0. (2.1)

The domain €2 is split into two subdomains, with or without overlap, and the alternate Robin-Schwarz
algorithm introduced by P.L. Lions in [33] works as follows. An initial guess wJ is given in Q2. The
algorithm computes alternatively in the subdomains €2;:

—Aw? +nwt =g in 1, wi =0 on 921 N O, o
Ony W + Lw] = Onywi ™t + Lwi ™ on Ty = 901 N Qa,
(2.2)
—Awy +nwy =g in Qz, wy =0 on 9N N,
Ony W5 + bW = Oppwi + fw? on 'y = 002 N Q.

The vector n; denotes the outward unit normal vector to I'; and y; is the normal derivative on
I';. £ is a complex parameter which will be searched so as to optimize the convergence factor of the
algorithm. The original Schwarz algorithm in [41], that is usually called classical, exchanges Dirichlet
data on the interfaces as

wl=witonTy, wy=w]onTDs. (2.3)

1

The parallel algorithms are similar, updating wy with wi'™" on the interface, see [33].

2.2 The series expansion and the convergence factor

Here Q =R x D, D = []]ai, b;[, the subdomains are Q; = (—oo, L) x D and Q3 = (0,+00) X D; the
interfaces are I'y = {L} x D, I's = {0} x D.

Theorem 2.1. If £ belongs to the quarter of plane Q@ = {z € C, Argz €]0, 5[}, then for j = 1,2 the
problem defining w7 is well-posed in H' () and the Robin-Schwarz algorithm is convergent.

Proof. The proof of well-posedness for 7 € iR can be found in [5] for instance, and extends without
difficulty here. The convergence result sits in the same series of papers by Benamou and Despres
in the non-overlapping case (with several subdomains). In the overlapping case there is no proof
available for a general partition into subdomains, the half-pipe case is treated below, using Fourier
series in the transverse variable y

d
X . Tq;
u= Y a(z,q) [[sink;(y; —a;), x; = bij
j=1

. 7a.'
qezd J J

Remark 2.1. The study extends to Neumann boundary conditions with cosine series.

The errors after n iterations e} = w} — w, follow the same algorithm with vanishing righthand
side. The coefficients denoted by &7 (z,q), satisfy the equation

~(&7)aa + (I8l* +m)ej = 0.

Since the erros are in H'(£;), their Fourier coefficients cannot be exponentially increasing in z,
therefore

wT  an

et (x,q) = a1 (@) e””, &3 (x,q) = az(@)e™ ", w=/|xl?+n. (2.4)

For Im z > 0, 1/ is the usual principal branch of the square root of z, and since Im 7 # 0, the complex
square root w is perfectly defined in Q.
By the interface conditions, the coefficients a} (q) satisfy the recursion relation (using On; = 0.

and Op, = —03)

w L —w L

(w+0at(@e’" = (~w+Oaz " (@) e ", (w+0az(q) = (—w+Lai(q).

att = L_ge_L‘)L 2aT~L: L_ée_“’L 2nal
7 w2 J w4 7"

Therefore for n > 1,



Define k = ||k||, w(k) and 6. (¢, k) from (1.1,1.2). Then for j = 1,2, for n > 1,
€5 (z, @) = (6u(L, k)™ |¢j(z,q)]-

For w and ¢ in Q, Rew/l > 0. The complex identity

|Zl+22|2— |21 —22\2 =4Rez1z2 (2.5)

implies that
Ve Q, Vk e Ry,VL >0, 0r(¢,k) < 1. (2.6)
Then the convergence follows from Lebesgue’s and Parseval’s theorems. O

2.3 Notations

In computations, the frequency interval K = [kmin, kmax] depends on the geometry of the domain
and the size of the discretization. In each direction y;, let Ay, denote the length of the mesh. Then

bj—a

(Qj)min =1and (Qj)mam = ijj . Then

| 1 / 1
Kmin =7 Zm, k‘max:W ZTZ/?

In the analysis, we will also consider the case where kmax = +00, which is relevant in the overlapping
case only.

Notation 1. We will adopt a geometric point of view. When & runs through K, w(k) runs through a
branch curve I which relates wmin = wW(kmin) t0 Wmax = w(kmax), see figure 2.1. T is a branch of the
hyperbola zy = p included in the cone &/ defined by

emin = Arg(wmin) 6]07 g[7 omax = Arg(wmax) < emirn

2.7)
o ={2€C, Arg2 € [fmax, Omin]} -

The focal axis of the hyperbola is {§ = 7} (black dashed on Figure 2.1). A point on I' is w = = + iy,
its argument is 6, with tan = £ = £;. The Robin parameter is £ = £, + i/, its argument is ¢, and

T=tan¢ = ﬁ—“’
Cx

Winin

Imw

7/ Wmaz

/ H/mu

Y
v

A Rew

Figure 2.1: Definition of I' = {w(k), k € K}.

Since the segment K and the curve I' are in bijection, we shall use indifferently the notation
0r(4, k) for k € K or 61, (¢,w) for w € I" when no confusion can be feared, as for instance

hp(€) =supdr(f,w), d7 =inf supdr(f,w) = z}lequ: hr(£). (2.8)

wer LeCwel
Following [7], it is also useful to introduce the sets

z—1
z+1

C(5) = {z €c,

‘:5} and D(5) = {zec,

z—1
Z+1‘<6}, (2.9)
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Figure 2.2: Definition of D(¢) in blue grey.
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since, for any w and /,
bo(lyw)<d <— f € D(9). (2.10)

The open disk of center zo and radius r is denoted by B(zo,r), the closed disk is B(zo,7) and
the circle is C(zo,r). If § = 1, the set C(d) is the imaginary line and the set D(d) is the half plane
Iy = {z € C,Re(z) > 0}. If § # 1, the set C(9) is the circle of center zs = % and of radius
rs = %. If 0 < 6 < 1, D(J) is the interior of C(§) (namely the disk of radius rs; and center zs),
whereas for 6 > 1 it is the exterior of this disk. In the latter case, zs + rs < 0 , which implies that
the set D(d) contains I1;.

We first show that the minimum is to be searched in & only. Throughout this paper, we will
need the function

hr(€) = sup o (¢, k). (2.11)
keK
Theorem 2.2.
VL >0, &7 = inf supdr(4,w). (2.12)
ledd wel

Furthermore the minimum is reached in the interior o of &. For kmax € R, §g < 1, and for
kmax c R, 52 S eimei".

Proof. A little computation gives the useful formula: for any w € C, for any (¢1,¢2) € C such that
‘£1| = |éz|7 gl # —Ww, and €2 7é —Ww,

A(lwl® + 16]%) \~LRew
or (4 S R EL N e A by — ¢ . 2.1
r(f1,w) L(l2,w) 101 + w2tz + w|? Re((£2 1) w)e (2.13)
Furthermore, formula (2.6) can be rewritten as

w—14

The first step is to show that the infimum in £ can be reduced to Q. For any £ € Q, and any w € I,
1. For ¢; = £ (symmetry with respect to the real axis),
01 —4=—-2iIml¢, Re((l1 —0)w)=-2ImlImw <O0.
2. For /5 = —{ (symmetry with respect to the imaginary axis),
ly — €= —2Rel, Re((fs —¢)@)=—2Rel Rew < 0.
3. For ¢35 = —{ (symmetry with respect to the origin),

ls —0=—20, Re((ls — £)@) = —2Re(l@) < 0.




Apply now (2.13) successively to (¢,¢1), (¢,¢2) and (¢, ¢3) to obtain that,
Vee Q, Vwel,or(l,w) < or(lj,w), j=1,2,3.
Taking the supremum on I' gives
for j =1,2,3,Y e, hr(¥) <hr(¥), ho(f)<hr(¥;)if T is compact.

Since the symmetries are involutive, this implies that for any £ ¢ Q, there exists a £ in Q obtained

by one of the reflexions above, such that hr(¢) > hr(¢), proving that

Reduce now the minimisation domain to «/. For any ¢ = |£|ei¢’ € Q\ & with ¢ > Omin, let
' = [¢|e"’min . Then, for any w = |w|e’® € T, since the cosine function is decreasing on [0, %],

Re(f — €)@ = |€||w|(cos(¢ — 0) — cos(fmin — 0)) < 0,

which implies by (2.13) that 6. (¢',w) < 6. (¢,w), and therefore hr(¢') < hi(€).

A similar computation holds for ¢ < Omax (in the case where Omax > 0), and the previous steps
all together prove (2.12).

Furthermore, let ¢ € o7 with ¢ = Omin — €. It is easy to see that for any w € T,

Re(f — |£]e™m)& ~ |0]|wl|e sin(Omin — 6) > 0,

and therefore the minimum of Ay is reached in the interior of /. Now use (2.14). If knax € Ry,
I' is compact, the upperbound ho(€) of w + do(£,w) over I is smaller than 1, and therefore J; =
inf ho(€) < 1. In the overlapping case L > 0, if kmax € R4, for £ € o7, since I' is included in <7,

6r(l,w) = do(L,w)e PR sup 6 (€, w) < e FRe“min gqup 5y (£, w) < e & Re@min
wer wel

and therefore 6} = inf hz (£) < e~ L Rewmin, 0

2.4 The non-overlapping case L =0

Theorem 2.3. Suppose kmax < +00 and L = 0. Then there erists a unique £y € o such that

86 = sup do (€5, w) < 1. (2.15)

wer
Moreover there erists at least two points wi and w5 on T' such that
86 = 6o (€5, wi) = do(£y, wr). (2.16)
Remark 2.2. If kmax = +00, the upperbound over K in (1.2) is 1 for any £. Therefore the convergence
factor is 1, and the optimization problem makes sense only if kmax < 400.

Proof. Existence, equioscillation property, and uniqueness are contained in general results in P,
in [7]. €5 € o by theorem 2.2, . O

Theorem 2.4. Assume that kmax < 400 and L = 0. Then the function ho in 2.11 is continuous,
and any strict local minimum for ho is the global minimum.

The function hg is continuous since I' is a compact set in C. The remainder of the statement is
verbatim in [7, Theorem 2.7].

2.5 The Overlapping case L # 0

Previous best approximation results in P,, were only proved for small overlap L. Here we present in
the case n = 0 the first proof of a general result valid for any size of the overlap, and for unbounded
intervals K.



Theorem 2.5. For any L > 0, for kmax € R,

JA > 0,B > 0 such that 67 = inf sup 61 (f,w). (2.17)
tesd  yer
<A |w|<B

The function hr in (2.11) is continuous, and there exists a unique {7, € o such that

07 =supdr({r,w). (2.18)

wer
Furthermore there exists at least two distinct points wi and w3 on T such that
(52 =5L([£,OJI) Z(SL(ZZ,WS). (2.19)

Proof. Existence. By Theorem 2.2, the infimum has to be found in 7, and for ¢ € o7, for any w € T,
So(f,w) < 1 and 6z (f,w) < e"LRe“min < 1. We now reduce the min-max problem on unbounded sets
to a min-max problem on compact sets. It will be done in two steps:

1. We will show that the sup in (1.2) is reached on a compact set uniformly in £. More precisely,
there exists a compact set ' C I' such that, V£ € &/, sup,,cp 0(¢,w) = sup,,cp (¢, w).

2. Supposing now I' bounded, we will reduce the minimization of hz to a compact subset of .«7.

1. Fix £ € &/. Since w > 6. (¢, w) is smaller than 1 and tends to zero as w tends to infinity on T,
the function has a maximum on I" reached for @(¢) . Then

hi(€) = 61.(0,@(0)) = 8o (L, (L)) e Ree®), (2.20)
If £ # wimin, write that hr(€) > 05 (£, Wmin):
180 (€, @(€)) e RO > [50(£, wmin )| e~ T min,
Rewrite the previous inequality as

L(Re®(£)—Re wmin) < |60(€7 LD(£))|
¢ = 180 (€, wmin) |

and take the logarithm,
L(Rew(?) — Rewmin) < In |8 (¢, &(£))] — In |60 (£, Wmin)|-
Since |0o(€,&(£))| < 1, we deduce that
L(Re®(¢) — Rewmin) < —In |00 (¢, wmin)|-

Furthermore since @({) € [Wmin, Wmax|, Re @ (£) is larger than Re wmin, see Figure 2.1. These two
observations lead to the key inequality

Rewmin < Rew(f) < Rewmin + = In

1 Z + Wmin
z ‘7 (2.21)

{— Wmin '
If ¢ becomes large, the term on the far right is small, and for instance

£ 4+ Wmin

< LRewmin.
l— Wmin

Jro >0, e, €] >rg = ln’

Using the right inequality in (2.21), choosing 71 = max(ro, |wmin|), this proves that
I >0, Ve, [{| >r1 = Rew(l) < Ci=2Rewnin-

@ is a continuous function of ¢, it is bounded over the compact set o7 N {|¢| < ri}.

3Cy >0, Ve e ZN{|¢| <r}, Rew(l) < Co.
Therefore Re &(¢) is bounded over &/ by B = max(C1, C?), and defining I = I' N {|jw| < B},

Ve e o/, supdr(f,w)=supdr({,w),

wer wel’

which implies

inf supdr(f,w) = inf supdr(f,w).
teof wel tesf wel



2. We now show that the minimization in £ can be reduced to a bounded set. As stated in Theorem

2.2, an upper bound for dr,(¢,w) is e~ = Re“min_ Choose ¢; € 7, and &(¢1) as in (2.20). There
exists e such that do(¢1,0(¢1)) < 1 — ¢, and hence

6001, 0(0)) < (1 —e)e BRe®) (1 — ) FRewmin, (2.22)

Besides, as £ tends to infinity, do(¢,0(¢)) tends to 1, which implies that

3C > 0, |Z| >C = (1 _ 8/2)67LReJJ(l) < 514(&&)([)) < e*LRe&)(Z)'
Using (2.21) as in the first part, we obtain

30" >0 e o, 1| >C' — Rewmm < Red(l) < Rewmin—l—%%

Plug it in the previous inequality to get
[0 > A =max(C,C") = (1 —¢/2)e /e LRewmin < 5, (4, &(0)) < e LRewmin

which implies

‘€| 214 — (1_E)e—LRewmin S 5L(€,(:J(£)) < e—LRewmin

Then, plugging the estimate (2.22) on ¢1, we obtain
Veed, l| > A = do(l1,0(l1)) =ho(l) <L, 0(0)) = hr(£).
Therefore the infimum of hy over & is the infimum over the compact set &7 N {|¢| < A}.

The key compactness result (2.17) is proved. Since I = {w € I, |w| < B} is compact, the function
hr is continuous, therefore reaches its minimum over the compact set & N {|¢| < A}. This gives
existence. By compactness again, there exists w] such that

or =0 (L, wi).
Equioscillation. The proof is rather long but is verbatim the proof in [7, Theorem 2.11].

Uniqueness. The proof relies on convexity as in the Chebyshev theory: we first show that the set
of best approximations is convex, and then prove the uniqueness by contradiction. It is an extension
of the proof of Theorem 8 in [6].

Since I' C &7, 7 is an optimal solution if and only if

{; € o/ and sup (60(@2,&))67LR€W) =07,
wer
in other words ”
0; € o and Yw € T, — € D(e"R°“6}).
w
Furthermore it has already been noticed that for any w € T, Re £1.0 > 0.

Vw e T, define p(w) := "« s} .

*

1
(* optimal solution = Vw €T, — ¢ Df =14 N D(p(w)). (2.23)

For any w, DJ is convex, as can be seen in Figure 2.2: If p(w) < 1, D(p(w)) C IL;, hence
D} = D(p(w)) is convex. If p(w) > 1, D(p(w)) D M, hence D} = I, is convex.

The set of best approximations is convex. Let ¢* and 7* be two optimal parameters, let us

show that any ¢ in the segment [6*,[7*] is optimal as well. By property (2.23), for all w € T, % and

%* both belong to D which is convex. Therefore £ is in D, and satisfies

hr(¢) =supdr(f,w) < d7.
wel

Since 67 is the minimum of Ay, this implies equality, and ¢ is an optimal parameter.



Uniqueness of the best parameter. Assume again that £* and 7* are two optimal parameters
and, for any 6 €]0,1], define €9 = 0¢* + (1 — 0)¢* which is also a best parameter. Applying the
equioscillation property to ¢y, there exist w1 and w2 in I' such that

w; — Lo .
= p(ws), i=1,2.
‘M+% plws). i
Therefore for i =1, 2,
A A Ly
= e D(pw) NI, T € Dpw) N1y -2 € Clp(wi)) N1y (2.24)

Iffor i =1 or i =2, p(ws) > 1, then C(p(w;)) C II—, therefore C(p(w;)) NII; = 0, which is impossible.
Then for i = 1,2, p(w;) < 1, and therefore D(p(w;)) NI+ = D(p(wi))-
If p(w;) = 1, then D(p(w;)) NI+ =111 and C(p(w;)) NII4 = iR. Then (2.24) implies that and Z
are also in ¢R. This again is impossible since their real parts are posmve
If p(w;) < 1fori=1,2, i—‘i is on the circle C(p(w;)) C I14, while £ and are in the disc. Therefore
they coincide _

E_L_ b iy

(0973 (0973 ws
which proves that ¢* = ¢*. O
Theorem 2.6. Any strict local minimum of hr, in < is the unique global minimum of hy,.

Proof. The same technique as in the previous theorem shows that for positive § < 1, the set Ds =
{€ € o/, hp(f) <&} is convex. Suppose now that (6,6 = hi,()) is a strict local minimum of hr, but
not the global minimum, that is 07 < 5. Then £7 and { are both in D;, therefore the segment [ZL,Z]
is in D;: for all @ € [0,1], £g = £+ 0(¢; — ) € A, and hy(fy) < 4.

But since £ is a strict local minimum, for sufficiently small 0, hr(fg) > 5, and a contradiction is
reached. O

3 Characterization of the optimal parameter

In order to compute the optimal parameters, we need to identify the equioscillation points, which are
amongst the local extrema of §, in the k—variable. For this part of the analysis, it is more convenient
to use the convergence factor

Rr(l,w) =06r(¢, w)2. (3.1)

From w = x + iy on the curve I', z is a strictly increasing function of k, and zy = pu. Then we can
rewrite Zr, as a function of the increasing variable x only,

?(x = Le)? + (n — aly)? 2w
22(z +£2)% + (1 + wly)? ’

R (l, ) = 0=10, +il,. (3.2)

As for 61, we will write according to the circumstances Zr (¢, z) or Zr(¢,w).

3.1 Variation of #; with respect to x and ¢

The derivative of #Z, with respect to z is given by:

0 4QL(€ SUQ) —2Lx

—ZL(l,x) = : .

e R R T

The numerator gy, is a polynomial of degree 4, for L > 0, of degree 3 for L = 0. Its roots defines the
local extrema of z — Zr (¢, ). It is given by

Notation 2.

w=z+iyel, t=2> 0=arguw, tan@:%.
a(6t) = qo(l,t) + Lq(L,t),
0

qo (4.t
G0, t) = — 1t 4 (22 — EZ)tS 2(2u — 8pulzty +(£2 +€2) W — P — )t — Lt

10



The second order Taylor-Young expansion of Zr, in ¢ will be useful in the analysis. It is obtained
most easily by expanding directly Zr (¢, w), as

R (€ + €€,
%ﬁi)w =14 4eRe(V (4, w)) + 4> Ro (L, w, €) + O (%)€3.
ith
N d 2 V(L w)
V(tw) = g——j, Relbw,§ = V(LW - Re ="

The formula for Ry can be simplified into a quadratic form in £V (4, w):

gﬁ—w

Ra(t,.6) = 6V ()~ e ((€1(6)* =2 ) = Qe 6V(00).

Using the canonical isomorphism between R? and C, the derivative in R? with respect to (£s,4y)
called D¢Z1.(¢,w) can also be identified from the expansion, and all this is summarized below:

V(w) = g Der(tw) = 4% (L,w)V (6 w),

Q(ny"-)?Z) = |Z‘2 - Re(éiTw Z2)7

Rl + e w)

Tl - 14+ 4eRe(EV (L, w)) + 42 Q (4, w, EV (£, w)) + O (e°)&%.

3.2 Alternation: a sufficient condition for optimum

Theorem and Definition 3.1. For any L > 0, let 0 € o such that there are two alternation
points wj on I', that is such that the two properties below are fulfilled,

50 (0, w1) = 6 (0,wa) = sup Zr (¢, w), (3.5)
wel’
Ip e RY, V(L ws)+ pV(f,w) = 0. (3.6)

Then € is a local strict minimum point for the function hr defined in (2.11).

Proof. Using the function Zr,, { is a local strict minimum point for Ay, if there exists £ > 0 such that,
for any £ € C with |£] <1, £ #0,

sup Z1 (0 + €,w) > sup Zp(l,w) = Br(l,w1) = Zr(l,w2).

wel wer

By continuity, it is sufficient to prove that
max (Zr, (0 + €€, w1), B (L + e€,w2)) > RBr(byw1) = R ({,ws). (3.7)
To achieve this result, write the Taylor expansion in (3.4) at points w;:

L) 4 geRe(eV () +4°QUL s, V(L) + O ()E. (38)
‘@L(&w]')
— 1 .
The line D =V ({,w1) = {¢ Re(§V(¢,w1)) =0} splits the complex plane in two closed half-spaces,
see Figure 3.1, . .
Dy ={¢, Re(§V(,w1)) >0}, D2 ={, Re(§V({,w2)) > 0}.

For ¢ € D, by the assumption in (3.6), the first order term vanishes in (3.8) for j = 1,2. Therefore
in order to control %1 (£ + e, w;) over the full disk || < 1, we need to control the second order term
as well. Rewrite the quadratic form Q(¢,w,-) defined in (3.4) as

for Z=X+1iY, QU,w,Z)=(2—Re f))ﬁ + 2(Im f)XY + (Re f)y?

On the axis D, Z = +£V (4, w;) € iR, and Q(f,w;, Z) = (Re £)Y? > 0 since both ¢ and w are in
/. Therefore in each half-plane, the quadratic form is either positive definite (best case), or positive
indefinite, vanishing on a line strictly included in the half-plane, or it is hyperbolic, it changes sign
on two lines strictly included in the half-plane; this is the worst case, depicted in Figure 3.1. In any

11



Im¢ D

/1 Re¢

Figure 3.1: Definition of the domains in the proof of strict local minimum

case, there is a closed angular domain D} C Doj such that the quadratic form is definite positive in
D; \ Dj.
Consider first £ € C(0,1), i.e. |{| = 1. Then

Ja; > 0, V¢ € D}, Re(€V(£,w;)) > aj,
34; >0, V€ € D}, Q(4w;, V(4 w))) > —A;,

3B; >0, Y6 € D;\ D}, Q(C, w3, €V (bwy)) > B

which leads to the evaluation for £ € D; N C(0,1),

2 : *
ca; —eA; in Dj

eRe(€V(l,w)) +*Q(,wj, €V (4, wy)) = {B 2 in D, \ D*

Choose now & < min; min(% 5%, 1) to obtain that there exists C; > 0 such that for £ € D; N C(0,1),
J

eRe(EV (4, wy)) +QU, wj, £V (4, wj)) > Cje” for j =1,2.

If now & € D; N B(0,1), define ¢ = and write

£
1€l
4e Re(EV (0, w;)) + 4*Q(L, w;, €V (£, w;))
= 4] (||€H e(CV(é,wj))+€2Q(é,wj,CV(f,wj)))
> 4C;E° €)%,
Insert into (3.8) to get for & € D; N B(0, 1),

R (L +A5§,w]-) > 144C;2[¢]2 + O()E.
%L(Z,Wj)

By compactness, for ¢ sufficiently small, for all for £ € D; N B(0,1), |O(e*)£3| < 2C;¢2|1€|2, and

‘%L(é—’— €£,Wj)

_ >1+2C;%€))° > 1.
e o) e [I€l

Any ¢ € B(0,1) belongs to either set D; N B(0,1), and therefore either one of the two lower bounds
above is true. Since Zr (¢, w1) = Zr(£,w2), (3.7) is proved. O
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3.3 The non-overlapping case L =0

By Theorem 2.3, the minmax problem has a unique solution £, the aim of this section is to provide
a characterization and an operational formula for this parameter. The local extrema are given by
the roots of the third order polynomial ¢ — go(¢,¢) defined in (3.3), which has one or three roots.
Therefore © — Zo({,x) has at most one local maximum over (0,+oc0). Proposition 3.2 analyses
precisely the roots of go, depending on the position of ¢ in Q.

Then based on the equioscillation property in Theorem 2.3, Theorem 3.3 defines a specific equioscil-

lation value £ of the parameter. For 6 < T lis given by an explicit formula. For 6 > %, 7 is shown
to be solution of a nonlinear equation, and is given asymptotically for large kmax. The last step is to
use the characterization in Theorem 3.1 to prove that { is indeed a strict minimum. This is done by
a generalized convexity analysis in C.
Notation 3. In the vicinity of 0, we will use for convenience the Landau notation f = O(g) for
comparison: there exists a positive constant C such that for small h, |f(h)| < C|g(h)|. We will say
that f and g are of same order, and write f < g if there exist two positive constants C; and C2 such
that for small h, C1f(h) < g(h) < Ca2f(h). For positive functions, this is equivalent to f = O(g) and
g = O(h). We will say that f is much smaller than g and write with the Landau notation f = o(g)
or with the Hardy notation f < g if f(h)/g(h) tends to zero as h tends to 0. We will say that f and
g are equivalent and write f ~ g if f(h)/g(h) tends to 1 as h tends to 0.

Proposition 3.2.

1. Forany l € Q, if £y, <l (1 <1), then
(a) if £, < l., the polynomial t — qo(£,t) has ezactly one root in |u,+oo[. Therefore x >
Ho(L, ) has exactly one local extremum in |\/fi, +00|, and this extremum is a minimum.
(b) If If ¢, = £, < \/3u, the polynomial t — qo(£,t) has ezactly one root in [0, +oc[, which
is equal to p. Therefore x +— Zo(L,x) has eractly one local extremum in /i, and this
extremum is a minimum. If £y = £, = \/3p, it is a triple point.
(¢c) If If £y, = L, > \/3p, the polynomial t — qo(£,t) has three distincts roots in [0,4o00],
t1(f) < t2(f) = p < tz(€). Therefore x — Zo(L,x) has exactly three local extrema in
[0, 4+00[, and the only mazimum point is x2(f) = \/t2(L).
2. There exists Ao > 0 such that for any £ € Q with |£|2 > Ao , the polynomial t — qo(¢,t) has
three positive well-separated roots,

2
t1(0) ~ "g? L ta(l) ~ pr < ts(0) ~ [0 — dpr. (3.9)
x2(€) = \/t2(£) is the only mazimum point of x — %o({,x). Defining w2(f) as the point on T’
with abscissa x2(€), 02(€) its argument, the precise following asymptotics hold

(12 —1) 1

2 T 1
t2(f) = /L7'Jr4'u B + O(w), 02 = 5 o+ O(—

T (3.10)

Furthermore the t; are continuous functions of €.

Remark 3.1. Since £j € @/, case 2 can happen only if Omin > .

Proof. 1. If ¢, < {,. Compute
qo(ls 1) = p*(2u+ [€1*) (L) — £2) < 0.

(a) If £, < Lo, qo(£, ) < 0, and since t — go(¢,t) tends to +oo as t tends to 400, it has one
or three roots in Ju, +oo[. Since the product of the roots is u3% < u®, there can not be
three roots greater than p. Consequently go(¢,-) has only one root ts (¢) greater than p,
and z3(€) = /t3(¢) is a minimum point of %o (¢, ).

(b) If £, = £, which can happen only if fmin = 7 since £ € 7, then tmin = p is a root of
go(¢, ). The other roots are the roots of the second degree polynomial

P(t) = t* +2(2u — £2)t + p>.
The reduced discriminant of P is A = (€2 — p)(¢2 — 3u). Therefore
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o If \ /it < £y < +/3p, the only root of qo(¢,-) is tmin = p, hence Tmin = 1/ is the only
extremum point and it is a minimum point.

e If ¢, < /i, P has two negative roots. Since P(0) = p* > 0, Zmin = (/& is the only
local extremum point on [0, +o00], and it is a minimum point.

o If £, = \/3u, pu is a triple root of go. Again Tmin = /¢ is the only extremum point and
it is a minimum point.

e If £, > /3u, P has two distinct positive roots. Since P(u) = 2u(3p—£2) < 0, tmin = p
is between these two roots, which are therefore minimum points, while ., is the only
local maximum point.

2. If ¢, > {,, we need a perturbation analysis of the roots. Replacing ¢, by 74, in go, rewrite qo as

qo(£,t) = Lo (2 + Bur — |0 + (€]’ — 3u)t — Ti°),

and use a small parameter € = # to define

1
qo(l,t) = ezw\%o(w,t, ), Gole,t,7) = —t* 4 prt + e(t® 4 3urt® — 3p’t — 7). (3.11)

For any 7 € (1,+00), do(e, -, 7) is a perturbation of Py(t) = —t? + urt, which has two simple
roots t1 = 0 and ¢2 = p7. By the implicit function theorem, there is (g9 > 0,71, 7> > 0) and two
continuous functions g; :] — €0, €0[X [fmin, Omax] —]t; — T}, t; + T[] such that for any e < &, for
any t €]t; — T, t; + Tj[, Go(e,t,7) =0 <= t = g;(e, 7). The functions g; are C* as functions
of tin ] —eo,e0[. Then Ao = 1/4/20 is appropriate and t;(¢) = gj(ﬁ, 7). A short computation
gives the first terms in the Taylor expansion:

t1(0) = pPe + O(E%), t2(f) = pr + 4p>(7° — Ve + O(£?).

Then there is a third real root, which can be obtained using the product of the roots equal to
3
T :

3
() = ot = L1+ 06)).

z1(£) = y/t1(£) and z3(¢) = /t3(f) are minimum points for %y (¢, ), while z2(£) = /t2(£) is
the only maximum point. A short computation gives the next term in the expansion of t2(¥).
To prove the asymptotics on 62, just notice that by notation 2,

1
tan 02 ~ — = cotan ¢,
T
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which implies that 62 ~ 7 — ¢.

Theorem 3.3. Assume that L = 0.
1. If Omin < %, for any kmax < 400, the solution (£5,65) to (2.15) is given by
vV Wmax — vV Wmin
05 = /WminWmax, 0 = |———————|. 3.12
o @ Wma 0 vV Wmax + vV Wmin ( )
2. If & < Omin < %, there exists A > 0, for any wmax with |wmax| > A, (£5,05) is given by (3.12).
In these two cases, wmin and wmax are the alternation points.

8. If Omin > %, there exists A > 0, for any wmax with |wmax| > A, €5 is the unique solution of the

equatior:

{= \V W2 (Z)wma)u (313)
where x2(£) = \/t2(¢) is defined in Proposition 3.2, and w2(£) is the point on T' with real part
x2(£). Then wa(£y) and wmax are the alternation points.

Furthermore asymptotically we have

* M iz * -3
G~ 42y~ = wmax €75, 65 ~1—1/21/3V3p kmi
0 \/g 0 1%

Proof. From notation 2, we find that
™ 2

Ommin = 7 & tmin = Tiin = f,  Bmin < % = tmin = Tonin > - (3.14)

Case 1 If Onin < 7, define ! = \/ommwmax. Then Arg@ = %(Gmin ~+ Omax ), therefore i € o and by
Proposition 3.2.1.a,

sup Zo (0, w) = %o (£, wmin) = Zo (0, Wmax)- (3.15)
wel
Furthermore,
R 1 .
4 min) — - - e, max ), 1
V (€, wmin) - V (€, Wmax) (3.16)

which proves that wmin and wmax are alternation points, and Theorem 3.1 applies.
Case 2 If Z < Omin < 3, define again { = \/OminwWmax. Since (3.16) is still holding, we are going to
prove (3.15) for |wmax| large.
Note first that when kmax tends to infinity, kmax and |wmax| are equivalent, and Omax tends to
7ero .
By definition of ? we have
1

N A1 1 .
M|2 = |wmin||wmax| ~ |wmax|7 Argé = 5(01111111 + Gmax) ~ iemim 7 = tan E(Gnlin + Hmax).

There exists B > 0 such that for |wmax] > B, [{|> > Ao defined in Lemma 3.2, and by
Proposition 3.2.2, qo(f, -) has three distinct roots, among them onlt tg(f) is a maximum point.
From the asymptotics in (3.9), for all € > 0, there exists C' > B such that for |wmax| > C,
102 > Ao and t2(f) €lut — e, ut + €.

We need now to compare t,,i, and to (@) Start with the comparison of ¢,,;, and p7:

emin em X
AT _ tan Gmin tan Frmin ¥ Omax
tmin 2
Since Omin < 3, this quantity is strictly smaller than 1 for fyax = 0. Therefore for any ', there
exists A > C' such that for |wWmax| > A, tan Omin tan % < 1—¢', or equivalently

/J/?A— < tmin — €/tmin-

Collecting these informations, for any € and €', there exists A > 0 such that for |wmax| > A4,

t2(0) < puf + € < tmin — €'tmin + €.

Choosing &'tmin = 2¢ yields ta(f) < tmin — & < tmin. Therefore on the interval [Zumin, Zmax),

the maximum points of Z(¢,-) are Tmin and Tmax. At these points there is equioscillation and
(3.15) is proved.
Then Theorem 3.1 applies and proves the result.
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Case 3 If Opin > g, the proof has several steps.

Step 1 For a given kmin, show that ¢5 tends to infinity as kmax tends to infinity:
VA >0, 3B > 0, Ykmax > B, [65]° > A. (3.17)

Step 2 For large kmax, show that equation (3.13) has a solution ¢. More precisely by Proposi-
tion 3.2,2 introduce the function

EQ
() = , 3.18
=0 (3.18)
and show by perturbation and homotopy arguments that the equation
U(f) = Wmax (3.19)

has a solution.
Step 3 Show that ws (E:) and wmax are alternation points for ¢, see Definition 3.1. Conclude by
Theorem 3.1 that ¢ = /5.

Step 4 Perform the asymptotics on (3.18).

Step 1 To emphasize the dependance of £f in kmax, define the continous function £5(kmax).
Suppose by contradiction that

3C > 0,¥B > 0,3 kmax > B, [€5(kmax)| < C.

For any £, since  +— qo(¢, z?) tends to infinity at infinity, there exists D(£) such that go (£, z?) is
positive in [D(£), +00]. By compactness, there exists X such that for any ¢ in the ball of radius
C, qo(¢, z?) is positive in [X, 4+o00].

By continuity and compactness, SUpc o o< ze o, x] Z (6 T) = D < 1. Since its derivative is
positive, the function x — Z(¢5(kmax), ) is strictly increasing in (X, +00). For £ and w in <7,
the argument of ¢/w is between 0 and 7 /2, therefore its real part is positive. Compute then

£ ¢
@l =1———% >1-4Re—>1-4

Ko(l,w) = —
0( ) 1+; |1+£|2_ w =

1— 2 4Re L ’e’

Apply this lower bound t0 wmax and £5(kmax) to obtain

ﬂo(gg(kmax)vwmax) > 1 - C

~ VIB*+a|

Choose now B such that 1 — > D. Then Z(£5(kmax), ) is bounded by D on [Zmin, X],

c
VB2 +al
increasing on [X, Zmax], and Z(£5(kmax); Tmax) > D. Thereforewmax is a strict maximum point.
This is in contradiction with Theorem 2.3, which asserts that w — %o (€5 (kmax ), w) equioscillates
in at least two points, concluding the proof of Step 1.

Step 2 Choose as A the A from Proposition 3.2. By Step 1, choose B from A, then for any
Emax > B, £y € B(A), where B(A) = {£ € &, |{|* > A}. Furthermore, for any £ in %(A), there
is one and only one local maximum point wz(¢) on I', with abscissa z2(¢) = 1/t2(£). Since the
real part of £ is positive, (3.13) is equivalent to solving (3.18,3.19). z» is a continuous function
of £ in (A). By the implicit functions theorem used recursively, it is a C*° function in %(A),
and so are w2 and ¥. From (3.9, 3.10), we find an asymptotic for the point w2 (¢) on I'; uniform
in 7 in a compact interval: there exists C' > 0 such that for any ¢ in Z(A),

211,
wg(é)—'\/u%e ¢

Write £ = €,+/1 + 72¢'®, with 7 = tan ¢,

c
< (3.20)

2 5 N
Therefore Y —il? Me‘w’,
w2 (£) m
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and we can easily estimate the remainder with C' = % Define

Z(¢,03) =V(b), 2(¢) = —i\/Wewv (3.21)

|Z(g,02) — £22(9)| < C".

AS)
(
Il
=Nk}

-05 L L L L I I

Figure 3.2: The curve G of Variations of z(¢) for p =1

The variations of z in ¢ are plotted in Figure 3.2. All properties described in the graph can be
obtained by the analytical study in parametric form in ¢. The maximum of Re z is obtained at
point z(¢ar) ( square magenta in Figure 3.2), with § < ¢n < F.

For £ € B(A), ¢ — Z(¢, L) follows a C* curve, contained in the tube 7 (£;) of width C’ centered
on £2G.

Let wmax in the strict exterior right of 7(A), and A’ > A, such that wmax is the strict exterior
left of T(A’) (see Figure 3.3). This is obtained when

ARez(pnr) + C' < Rewmax < A’ Rez(¢par) — €', Imwmax < Im A’ z(¢ar).

From wmax = /& + kZiax + 2ip, we obtain that Rewmax = O(kmax) and Imwmax = O(k;;x),
which shows that the previous inequalities define a range for kmax, and then a range for A’
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Figure 3.3: Az together with the tube containing Z(-,/A) for A and A’

The arguments below use complex analysis, see [39]. Define the contour v.(4, A’) as follows:

run A’G from 0 to 5, then the imaginary axis backward until it meets AG, then run back to

the origin along AG. Similarly define vz(A, A’) by running Z(¢,vA’) from 0 to 3, then the
imaginary axis backward until it meets Z(¢, v/A), then run back to the origin along Z(¢, v A).
This contour can be defined by continuity when A = A": vz(A’, A’) is the contour obtained
by taking the limit as A tends to A’ of vz(A, A’), and is just running forth and back along
Z(p,VA).

The index of a contour v about wmax is denoted Ind(7y, wmax), it gives the number of times v
curve passes (counterclockwise) around a point. By hypothesis, Ind(vy.(A, A’), wmax) = 1. By
homotopy in the tubes, Ind(yz (A, A), Wmax) = 1 as well.

Consider now the function £2 — vz (A,¢2) for ¢2 € (A, A’). It is a continuous function, and
therefore must preserve the index as long as the contour does not meet wmax. But since
Ind(vz (A, A’),wmax) = 1 while Ind(yz(A’, A'),wmax) = 0, there is a value of ¢, for which
Wmax € Z(¢, L), that is a value of £ = £,(1 + itan ¢) for which wmax = Z(¢,£). Then define ¢
to be this value, that is

é = w2 (é)wmax- (322)
Step 3 By Proposition 3.2, we know that
sup 8o (¢, w) = max(8o (£, wa(f)), 8o (£, wmax))-

wel
3 0)) = j — | Vw2~ Vomax
Moreover we deduce from (3.22) that do(¢,w2(£)) = d0(¢, wmax) = ’m+ e Therefore
the equioscillation property is fulfilled:
sup 60(0,w) = 80 (0, wa(f)) = 60 (4, wmax)- (3.23)
wel
Now since 1
V( wmax) = ———— = —V({,wa({)),

w2 (Z) — Wmax

Wmax and ws (é) are alternation points and Theorem 3.1 applies, to see that 0 is a strict local
minimum, therefore coincides with £;.

Step 4 Note the principal approximations: 0 for Z, qAbo for the argument of é, To = tan ngSO, 0y the
argument of wy(f). Consider the arguments in (3.22). By Proposition 3.2, since argwmax ~ 0,
we obtain

o =

3

— o) = <Z30:%7 o= %, 7o =

o — .

(

N | —
N —
]

-
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Now from the approximation of Re ws (é) in the proposition, we find

. 1 .
w2 (o) = p(fo + ;O) = 4.

-

Therefore wQ(éo) = V4putoe's, and

20 =\/ VA4uToWmax € %

Furthermore,

do (Z Wmax) ~ 1 —2Re

~1—=+/ 4urokmdx

max

O

Remark 3.2. In other contexts (real elliptic equations, advection-diffusion equations), where the
optimal parameter is real for symmetry reasons, alternation suffices to define the parameter, and
from this equation deduce the value of the parameter as solution of an algebraic equation. Because
of the complex coefficients, the situation here is very different, even though the final formula is the
same as in the elliptic case. Equioscillation at endpoints defines a bounded closed curve C in /. The
optimal parameter is the point of C which realizes the least value of the convergence factor at the
endpoints of the interval.

3.4 The overlapping case

By Theorems 2.5 and 2.2, the best solution £7 exists and is unique, and belongs to <.

In order to characterize this solution, we first need to identify the extremal points of % (¢,-).
They are either endpoints of the interval, or local extremum points. The local extremum points are
the roots of the real fourth order polynomial qr, which are functions of ¢ and L. Proposition 3.4
analyses ¢y, and gives asymptotics of the roots. These asymptotic results involve two scales, £; % and
L{,, and therefore it is convenient to introduce the family of sets

B(A,y)={(,L) € AXR, A<{2and Ll, < ~}. (3.24)

Then in Proposition 3.5, the points where a local maximum of %y, (¢, -) is reached are identified.

By Theorem 2.5 Zr({1,-) equioscillates in at least two distinct points, therefore we first define a set
of parameters ¢ for which % (¢,-) equioscillates at the points identified in Proposition 3.5. This set
is called Cr. Then / is defined as a minimum point of 1 (L,-) along Cr,, using a Lagrange multiplier,
and asymptotic expansions for ¢ and max, ZL (f x) are provided.

The last step relies on the alternation theorem 3.1, proving that 7 is indeed a strict minimum point
for hr,.

Proposition 3.4. There ezxists (Ao,v0) with Ao > 3u and 0 < v < W such that for
any (¢, L) € B(Ao, ), the polynomial qr,(¢,t) defined in (3.3) has ezactly 4 distincts positive roots
t;(L,£). These roots are continuous functions of L and ¢, and they behave asymptotically as follows:
w 20,
t1(L,0) ~ W & to(L b)) ~ pr < t3(L,0) ~ [0 < ta(L, £)~T, (3.25)
where T = ﬁ—i, ~ means O(L{y) + O( 2) Define z;(L,0) = \/t;(L,¢). Then z1(L,£) and xz3(L,?)
are local minimum points, while x2(L E) and x4(L,0) are local mazimum points for the function
x— Zr(l, ). More precisely,
1. If ¢, < L, the polynomial qr. has ezactly two roots t3(¢, L) and t4(¢, L) in Ju, +oo[. Therefore
the only local mazimum point of x — Zr(¢,x) in ]\/i, +oo[ is xa({, L) = \/ta(¢, L).
2. If Ly > {;, the function x — %1, (L, ) has three local extrema in |\/it, +oo[. z2(¢,L) = \/ta(¢,L)
and z4(€, L) = \/ta({, L) are the mazimum points.
Furthermore for any € > 0, there exists (Ao,v0) such that for any (¢,L) € B(Ao,v0) with by < Lz,
—e <ta(L,f) —pr <0 .
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Proof. We will write the polynomial gz, in (3.3) with two small parameters ¢ = l% and v = L.
T = % is fixed. Start with

qL (Ev t) = qo (‘ga t) + Lijo(‘gv t)
The properties of go have been set in Proposition 3.2. The case 1b in Proposition 3.2 is excluded by

choosing Ao > 3u. In the other cases, the roots are well-separated, and (3.9) holds for some Ay and
02 > Ao. Rewrite ¢r. by hightlighting the parameters € and ~:

.1

qL(th) = éxWQqL([Q»L&ut’ T):
N . % .
QL(E,’Y,t,T):q()( 21t77—)+ 7 2q1(87t77)

1+71 147 3.96
Gole, t,7) = —t% 4+ prt + e(t3 4+ 3prt? — 3t — 71®) (326)

1

Gile, t,7) = —5(1 + 728 + 261 — ) + dprt — P (1 — 7))

+54(—%t4 TRt %M4)

1

The analysis of the roots of qr thus appears as a perturbation problem in two parameters, ¢ = 3

and v = L¥,.

By the implicit function theorem starting from go, there exists (Ao,~0) such that for any 7, for
(¢, L) € B(Ao,v0), t — 4r(¢,t) has three distinct positive roots, continuous in ¢ and L, t;(¢, L) such
that ¢;(¢,0) = t;(£). There is a fourth root, t4(¢, L), obtained by considering the sum of the roots of
¢r and taking the asymptotics. For large £, since t3(£, L) ~ |£|?,

4 3
S L) = %(1 + L= 1) > 02 ~ S (6 L) since L, < 1.

i=1 i=1

From this we conclude that t4(¢, L) ~ 2=, and all the roots are well-separated.
One extra term can be computed in the asymptotic behavior of ¢2(¢, L). It can be obtained from
t2(£) by Taylor expansion, given by t2(£) + C2(£, &)y + O(y?), with

1_,_17-2 41 (57 tz(é), T)

CQ(&E) = — = = .
%qo(mﬂh(@ﬂ-)

By continuity, C2(¢,¢) = C2(¢,0) + O(e), and we only need to compute the latter, that is

e (30407 11+ )6 (0)?
Ca(£,0) = =+ ur — 2t2(0) T2 pr—2(0)

Since t2(£) ~ p + 4% (7% — 1), we obtain

KT

ta(L, 0) ~ pr 4+ 4p* (7% — 1)e — 5

(1+72)y. (3.27)

Up to now, we have not used the fact that ¢ € o/. This property imposes that 7 € [0, tan Omin],
and we can obtain uniform bounds in 7 for the roots. Therefore for all € > 0, upon reducing o and
increasing Ao, we can have for any ¢ in B(vo, Ao), if by < €y, —e < t2(L, ) — ut < 0.

0, <t be=10,> /3 1<t <1,

- ! /1
N | —
|

Vi
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Proposition 3.5. Let (Ao, o) such that Proposition 3.4 holds.
L If Omin < 5§ (Tmin > /1), then for any (€, L) € B(Ao,v0),
sup '%L(ga {E) = max(%l/(& "Emin),%L(é, x4(L7£)))7

:EE[:I)min,+OO)
With Tmin = \/H if Ouin = <.
2. If Omin > § (Tmin < /1), then for any (¢, L) € #(Ao,v0),
o Ifly, <Ly, and x2(L, L) < Tmin, then
sup  Zr(,z) = max(Zr(l, Tmin), Zr (L, x4(L, £))). (3.28)

€ [Tmin,+00)
e In any other case, x2(L, ) > Tmin and

sup 1, (L, x) = max(Zr (L, x2(L,0)), Zr (L, x4 (L, 1))). (3.29)

€ [Tmin,+00)

Furthermore

Wmin w2
%L(Z,xmin)leﬁlRe 5 %L(é,l'Q(L,g))N174R67,
4 l (3.30)
%L(& $4(L7 f)) ~1- 4\/ QEIL.
Proof. by Proposition 3.4, there exists (Ao, 7o) such that for any (¢
mial qr,(¢,t) defined in (3.3) has exactly 4 distincts positive roots &;(
behavior. Note

(L0 = VD, u(l ) = s (L) = 5L, 0) + iy (L, )

since B(Ao,v0) C &, we have £, < £, or equivalently 7 < 1, and
.T1(L,€) < IQ(L,@) < \/ﬁ < Tmin K mg(L,() < $4(L,f).
Therefore the only local maximum point in [Zmin, +00) is z4(L, ) and (3.28) is proved.
2. If Omin > 7, then zmin < /gt and z2 ~ \/u7. Therefore
o If ¢, < {,, then 7 < 1, and
21(L,€) € Tmin ~ w2(L,0) < /it L x3(L,0) < xa(L,0).

— If 22(L,£) < Tmin, then the local maximum point for Z, (¢, z) on (Tmin, +00) is z4(L, £),
which proves (3.28).
— If 22(L,€) > Zmin, then the local maximum points for Zr(¢,z) on (Tmin,+00) are
z;(L,2) for j = 2,4 and (3.29) is proved.
o If ¢, = {,, then

7L) € %(AO:’YO) ) the p01yn0_
L,?) with a precise asymptotic

1. If Omin <

s
40

21(L,0) € Zmin < 22(L, €) = /1 < x3(L, £) < x4(L, £),

and (3.29) is proved.
e If ¢, > (., then

21(L,¢) € Zmin < /1t < 22(L,0) K< 23(L, ) < 24(L, 0).

The local maximum points for Zr(¢,z) on (0,400) are z;(L,¥) for j = 2,4 and (3.29) is
proved.
Compute now the asymptotics of the convergence factors. It is easy to see that wa(L,f) ~

x4(L, £) ~ w/% > 1. Since

then

L l Le,
T~ (1
on "z~ iy =

Ro(lyxa(L,0)) ~ 1 — 4% ~1—2V2LE,, e et 1 _22L0,,
4 )

which together gives
%L(E,LEAL(L,E)) ~1— 4@.
Compute now for z = O(1),

%L(ﬁ,x)wl—élReE, w=z+il.
L x

This applies t0 w = wmin and w = ws, proving (3.30). O
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3.4.1 Solution of the problem for 0,,i, < 5

Introduce the function

DL(0) = Zr(l, Tmin) — Zr (L, z4(L, 0)). (3.31)

3
Lemma 3.1. If Onin < 5, there exist (Ao,v0) and Lo = min(]‘L 4AQ,( )%,AO 4 L0) such that,

for any L < Lo, for any T € [0, tan Omin], there exists £ = £,(1 +1i7) € of with (¢, L) € (Ao, v0) and
®r(0) =0. The application

T+ Ly such that £ = 0,(1 + 1) with @1 (¢) =0,
is continuous from [0, tan Omin] into Ry, which defines a compact set
Cr={l=1;(1+41ir) € C, such that ®r(¢) = 0}. (3.32)

Furthermore, ¢ satisfies asymptotically

V20, L ~ Re “r;i“. (3.33)

Proof. Fix (Ao, o) from Proposition 3.5. Consider, for fixed 7, the function ¥, : £, — & (L, (1 +i7)).
It is a continuous differentiable function.

For (¢,L) € $(Ao,7), ¥- is strictly increasing. Compute by formulas (3.4) with V({,w) =
T

%%L(@,Tﬁx, oin) = Des (€o, 0o, win) - (1, 7) = 1 (€ 7o, @min) Re(V (£ wamin) (1 + i7))-

As for the extremal point z4(L,¢),

d

JQL(EI,T&;,wgl(.LQ Z)) = (D[%L(Zz,Tfr,mzl(L,[)) + %%L(EI,TEI,JA(L, Z))DNM(L,E)) . (1,7’).

Since x4 is a minimum point for Zr,, the second term vanishes, and therefore

%%L(&E,ng,lu([/ 0) = Rr,(ly, Tle,xa(L, £)) Re(V (¢, w) (1 +i1)).

Subtracting these two derivatives yields the derivative of W:

U (ly) = Rr(l, Tmin) Re((1 +47)V (€, wmin)) — Zr (€, za(L, £)) Re((1 + iT)V (L, wa(L, 0))),
= i (%1 (£, xmin) Re(CV (£, wmin)) — Zr (€, x4(L, £)) Re(V (£, ws(L, £)))),

To evaluate the sign of U’ (¢,), a short computation of £V (¢, w) is needed. Define z = f, and compute

_ z (22 -1) 2|z|2 -z (Rez)(|z|2 —-1)
RelV (4, w) = Re o =Re ERTE = Re ERsthy ERETEa

With the assumptions on Ao and 7o,

For w = Wmin, z = w'rﬁ‘ml H0=Omin) ¢ — fin €] — T,0[, then Rez > 0 and |2[> > Ay > 1, which
implies that Re £V (¢, wmin) > 0.
For w = w4(L,£), ¢ — arg(w) €]0, 5[, hence Rez >0 and [2]> ~ (14 7%)£L
which implies that Re £V (¢, w4 (L, 0)) <

Therefore for (¢,L) € %(Ao,70), for ﬁxed 7, U’ (¢y) > 0, and the function £, — ®r(¢(1 + i7)) is

strictly increasing.

2
< (1+tanby;,) % <1,

¥, vanishes at some point.

Yo Bl
Lo = ((z,L)egg(Ao,%) = éeﬂand\/Ao<€x<L>.

For any 7 € [0, tan Omin), £ = €z (1 +i7) € &7, and if VAo < €y < "’TO we obtain, using the asymptotics
n (3.30),

Wmin Zmin + TYmin
0 Tmin) ~ 1 — 4 ~1—4 , ¢, 24(L,0)) ~ 1 — 420, L,
B (£, i) Re 22 T Al (L 0)
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which gives an asymptotics for ¥, :

4 Tmin TYmin
~ /03T, — . J—
\I/‘r(ér) el ( 2£zL dmzn)7 dmzn 1 2 .

For ({ =0,(1+7),L) € B(Ao,70),

)%[ = d.(¢)>0.

=[S

1 — =
be e}gLﬁa?L*%[ = () <0, L elL7H
e Choose £, G]%L*%QL*%[,
Then by the assumptions on L in the theorem, ¢2 > Ay and Lf, < ~o, which shows that (L,¢) €

AB(Ao,Y0). Furthermore
V2L < \/16LT < 4(%)%,

4(%)% < Tmin = U, (L) < 0.

and

This is realized if yo < 2(Zmin )5,

e Choose £, G]Lfg, (%)%[

Again, by the assumptions on L in the theorem, ¢2 > A and Lf, < 7o, which shows that (L,) €
PB(Aog,70). Furthermore

V2L > V201 > \/E :
and

24T > 2 = U, () > 0.
This is realized if Ag > 2.

Conclusion of the proof. For fixed 7, the application ¢, — @1 (¢-(1 4 i7)) is continuous and

strictly increasing on the compact set [v/Ao, 12]. By the result above, there is a unique £, such that
2

O (Lx(1+47)) =0, and it belongs to}%L‘i(%)ﬂ. O
It remains now to minimize %y, (¢, Tmin) on the set Cr:
_3 3
Lemma 3.2. There exist (Ao, 7o) and Lo = min(2=, 15, (2 %,A 1 20 such that, for any L <
VA 1420\ 2 0 72

Lo, there exists a minimum point 1 of Zr,(L, xmin) on the compact set Cr,:

Rr, (b, Tmin) = l}rgérLl Rr, (L, Tmin). (3.34)
(4, L) belongs to B(Lo,70), and
1
n |Wmin|2 emin 3 'L@
L ( 5~ ¢ ez . (3.35)

Furthermore, with the notations in (3.4),

Fp € R, V(6wmin) =pV(Lwa(l), p~—2. (3.36)

Proof. Since Zr({, Tumin) is continuous, it admits a minimum point ¢ on the compact set Cr. We
know by Theorem 2.2 that £ is in the interior of <7, therefore in the interior of Cr. Problem (3.34) is
a constrained minimization problem whose associated Lagrangian is given by

ZLU,)N) =R, Trmin) + ADL(0).

A necessary condition for a minimum at point 7 is the existence of A € R such that the Euler-Lagrange
equation D¢Zr (¢, Tmin) + ADe®r(¢) = 0, or equivalently

(14 N)DeZr (8, Tmin) — ADe(ZL (4, x4 (L, £))) (£ = £) = 0. (3.37)
¢

By definition of x4(L,), 0:%1 (L, xa(L, L)) = 0, therefore D¢(Z1(¢,x4(L,L))) = DeZr (¢, v4(L, L))
and (3.37) is equivalent to (1 + A)D¢Zr (¢, Tmin) — AD¢ %1 (£, x4(L,£)) = 0. Using the definition of V'
in (3.4) we find that

(
0

V{0, wmin) = ——~ V(£,wa(4, L)). (3.38)



Take the asymptotics in the formula for V,

> Wmin n N 1 L
V(¥ wnin) ~ ——, V({ws(L,l)) ~ ————— ~ — [ —. 3.39
( )~ (6, wa(L, £)) D) \ 22 (3.39)

By (3.38), since V (#,ws) is asymptotically real, V (¢, wmin) must be asymptotically real, which gives

R -1 1
¢:=Argl ~ 3 Arg wmin = §9min~

This proves that

which determines the principal part of { as a function of 4, only:

g ~ Z; i exgin )
min
COos =,

Insert into (3.33) to obtain the principal part of /,:

2
2/ 0mi 2/ 60mi 3
- i Wmin | COS™ (5 S Wmin | cOs™ (i
\/%szRewrsz‘ | 7 ( 2 ) = L N( | ( 2 )> .

Compute now
V(é, wmin) Wmin 22;& 2 |Wmin| COSQ Gm% 2 |wmiﬂ| COSQ %
i 7 ~ T N ~ T Gmin
V(€ wa(L, 1)) ey L /2L |wmin | cos?(=52)

V(l, wmin) ~ —2V (£, wa(L, 0)).

O
5+ Then there exists Lo > 0 such that, for all

L < Lo the optimal parameter £}, ., is equal to l. 01 o and the corresponding convergence factor
07, 0o admit the following asymptotic expansions:

+0(1), G0 =1-2\2LRef} _ +O(L3). (3.40)

A ~ 2Re (%
The alternation points are wmin and wa(f), with Rews(£) ~ \/ —F==.

Proof. By the results above, there exist (7o, Ag) and Lg such that for L < Lo, there exists { where a

minimum of # on Cr, occurs. Check the position of x2 (E) and zmin. Those are the abscissae of wa({)
and wmin, and by the asymptotic formulas above and in Proposition 3.4,

Theorem 3.6. Suppose kmax = +00 and Omin <

1
2 -
. 0. 3 min
g* 7 — ( | r;lml cos ném ) 61 2

T - T Omin 7T T

3l = B0~ -5 el

Therefore 02 () €]0min, %[, and since the points wmin and wa(£) belong to the hyperbola, t2(f) < tmin.
If Opnin = %, then tmin = u7, and we need more precision, given by asymptotic formula (3.27), which
shows that to < tmin.

Then by Proposition 3.5,

emin 6]07

hi,oo(l) = sup or(¢,z) = max(dr (¢, Tmin), 0z (¢, za(L, £))),

Z€[Tmin,+00)

It remains to show that £ is the minimum point for hr,. . Indeed by (3.38) , V(f, Wmin) =
—pV (€, wa(L,£)) with p real positive, and the alternation theorem 3.1 applies.

By the uniqueness theorem 2.6, we deduce that { is the unique solution £7 ., of Problem (1.2), which
terminates the proof of Theorem 3.6. The asymptotic formula for the convergence factor is now

obtained by using formulas (3.30).
O
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3.4.2 Solution of the problem for 6,;, > %
In this case, the local internal maximum points are 2 and z4. Introduce the function

DL(0) = RZr(l,x2(L,0)) — Zr (L, xa(L,1)). (3.41)

3

S 3
Lemma 3.3. If Onin > %, there exist (Ao,Y0) and Lo = mm(r 4i2 (B )%,AO 1799 such that,

2
for any L < Lo, for any T E [0, tan Omin], there exists £ = £, (1 +iT) € o with (¢,L) € B(Ao,v0) and
&1 () = 0. Furthermore £y is a continuous function of 7, and

dut
(14 72)2
Proof. The proof is identical to that of Lemma 3.1, replacing (wmin,w2(£)) by (w2(£),ws(£)). O

203 (3.42)

The application 7 +— £, such that £ = £,(1 + ¢7) with ®1(¢) = 0, is continuous from [0, tan Omix|
into Ry. The set Cr, of £ = £, (1 +i1) € C with &1 (¢) = 0 is compact.

_3 .3
Lemma 3.4. There exist (Ao,v0) and Lo = min( =, ﬁ, (770)%,140 4,20 such that, for any L <
Lo, there exists a minimum point { of %r,(£,z2(£)) on the compact set Cr,:

B4, x2(0)) = ZIIGI(IZIE (L, z2(L)).

us

It behaves asymptotically as £ ~ fe 6 , Furthermore, with the notations in (3.4),

IpeR_, V({w(l, L) =pV(lwa(f)), p~—2. (3.43)
Proof. The proof of Lemma 3.2 applies verbatim, until
IGpeR, V(w(l, L) =pV(l wil, L)). (3.44)
Take the principal parts, using that (¢, L) € Z(Ao, o), to obtain

oy w2 (b D) DN D R
V (0, ws(l, L)) I V (0, wa(L, 0)) G D o (3.45)

Since V (¢,wa(?, L)) is asymptotically real, V (¢, ws(¢, L)) must be asymptotically real as well, which
gives

This proves that

Compute now

This proves that

O

Theorem 3.7. Suppose kmax = +00 and Omin > % Then there exists Lo > 0 such that, for all

L < Lo the optimal parameter £}, ., is equal to 2. 0] o and the corresponding convergence factor
07 oo admit the following asymptotic expansions:

oo = YET +O(1), 6} =1-2,/2LRet; _+O(L3). (3.46)

The alternation points are the internal points wa (0], o) and wa({] ), with wa (4], o) ~ 24/ptan gel%

2Re (%
* L, oo
and Rews (] o) ~ \ —F==.
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Proof. From Lemma 3.2, there exist (Ao, 7o) such that, defining

(e L 004 =% 0
LO—mln(m74A%a(2)33A0 32)a
for any L < Lo, there exists  which minimizes
hLﬁo(E) = sup 6L(£a :I") = max((SL(g’ 1‘2(@))7 5L(£7 1:4(L7é)))7

€ [Tmin,+00)

on Cr,. Since V(é, Wmin) = fpV(éA, wa(L, 2)) with p real positive, Theorem 3.1 applies and shows that
the unique solution ¢; ., of Problem (1.2) is /, which terminates the proof of Theorem 3.6. The
formula for the convergence factor is now obtained by using the asymptotic formula 1 — 44/2¢, L.
To get the complementary terms O, define € = L%7 expand £ and s4 at next order

0= o0t 1 O(1), s4 = 2rpcos Ooc? + (’)(53)
and proceed. O

Theorem 3.8. There exists Lo > 0 and C > 0 such that, for all L < Lo and kmax > C’Lfg, the
optimal parameter {7, is equal to £}, .

Proof. Apply Theorem 3.7, and compare tmaz and t4(€7, o ):

Re/l7 o

~ 2073,
L

t4(07,00) ~ 2
where C’ depends only on g and wmin. Then if tyma. > t4(] o), the maximum of Z(¢] ., ,x) over
[acmin, xmax} is equal to the max over [mmim +00) and the previous analysis applies. Since

2 2 2
Tmax — Ymaz = kmax + @,

choosing k.. +a > C'L™3 ensures that tmas > t4((], o). This can be realized with kmax > CL‘%7

2
with C' > \/C" + aLd.

Remark 3.3. In computations, kmax is the highest frequency in the numerical solution. If the domain
is discretized with a mesh of size h in each direction, then kmax ~ 7, and the overlap is a few grid
points. Therefore the binding condition in the theorem is fulfilled.

O

™
h?

3.5 Quality of the asymptotics

We present in this section an example in dimension d = 2, with kymin = 7, kmax = 1007, which would
represent a domain decomposition case, with a length of 1 and 100 grid points in the y direction. For
L > 0, the operational value of the best parameter given in the introduction, properties 1.C and 1.D
is denoted by ¢7°. The operational convergence factor is defined accordingly.

The complex parameter n has a fixed imaginary part defined by u = 1, and the value of @« = Ren is
modified to cover the three ranges of values of 6.,in identified in the analysis, see property 1.C.

The numerical optimum ¢4 of the continuous function is evaluated by computing supy, 0. (¢, k) on
a very fine grid in k, for a range of ¢, varying Re/ and Im ¥ on a fine grid, and taking the minimum
value in the table. Then the functions k — 0. (¢, k) and k — d..(¢3", k) are plotted on the same
picture. In Figure 3.4, the overlap is zero, while in Figure 3.5 the overlap is one grid point, which

Ly

corresponds to L =
ma

In the last case, Omin € (3, 5), figure (d) zooms on the smallest frequencies to see the equioscillation
points better.
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Figure 3.4: Plots of k + do(¢, k) for £ = 37 and ¢ = ¢4

27



0.7 T

0.45 o
04 I 5L (EL ) )
y 0.6 th q
5L (ZL s )
0.35 |1
0.5 4
0.3 1
0.25 041 ]
=2 S
0.2 0.3 H il
0.15
0.2 |
0.1F
0.1+ |
0.05
0 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
k k
0.7 - 0.65
— 6L (KL ’ ) 06
0.6 th q or
1 oL (ZL ) )
0.55 -
0.5 B
051
0.4 1 oash
S
5
03} 1 o4r
0.35
02r 4
03F
0.1+ f
0.25
0 . . . . . . 0.2 . . . )
0 50 100 150 200 250 300 350 0 10 20 30 40 50
k k

Figure 3.5: Graph of k + 0, (¢, k) for £ = (}" and £ = (%"

These figures enhance the good behavior of the operational formulas for the best parameter, even
in the asymptotic cases.

4 Application to the optimal control problem

4.1 Description of the problem

Consider a conductive body occupying a domain © C R?. The temperature is fixed on the boundary,
heat sources are represented by a function f € L?(2), and a control may be provided in a part Q of
Q, defined by v € L?(Q). The state of the system is the temperatures field y, defined by the Poisson
equation
{—Ay =f4+v inQ, 1)
y=20 on 0N.

For a given v, the equation above has a unique solution in Hg (), that will be called y(v) to stress
the dependency in v. Let yq be a given temperature profile target, the optimal control problem is
defined as the minimization of the cost function

J() = 1 / (y(v) — ya)’dz + K/ vida. (4.2)
2 Jq 2 Jg

The first term measures the distance to the desired profile yq, and the second term the energy

consumption. The weight parameter v is defined by the user, corresponding to what effect is to be

privileged: a small coefficient ¥ means that the user wants to approach the desired state without

caring about the cost in energy, while large v means to reduce the cost in energy. The functional J

is strictly convex and classical optimisation results show that for any v > 0, there is a unique control

28



u. The optimal control v and the optimal state y can be computed by introducing the dual state
p € H§(Q), see [31]. In the simplest case of distributed control, that is Q = Q, with controls in
H}(Q), the optimal control u, the optimal state y and the adjoint state p are related by

(4.3)
—Ap =y —yd, plon =0, p=-vu.

{—Ay = f+u, yloa =0,
Domain decomposition algorithms for this problem have received much attention, see [8, 27, 1, 32, 30,
22, 40]. More particularly Benamou in [3] used the newly established non-overlapping domain decom-
position algorithm written by Després in [5] for the Helmholtz equation to design a new algorithm
for (4.3).

The particular case of distributed control allows for a clever trick, see [3]. Introducing the new
unknown w =y — ﬁp , Problem (4.3) is equivalent to the complex problem: find w € H(Q) such
that ) )

— Aw+ \%w =gin Q with g = f+ \%yd. (4.4)
This is a Helmholtz equation with a complex coefficient n = ﬁ € iR , to which the analysis above
applies. In [3], the author proves convergence of the non-overlapping algorithm, and shows that each
iterate corresponds to optimal control problems in the subdomains. About the way of choosing the
parameter ¢, cite [4]: The parameter B (here £) has a decisive influence on the speed of convergence.
We always chose it proportional to 1/h, where h is the size of the finite elements. In this case, the
discrete transmission conditions are adimensional. The theoretical anaysis in the previous sections
clarifies the choice of the optimal parameter, and its dependance in h, which is proportional to 1/\/E

4.2 Numerical study

We consider here the Helmholtz equation (4.4) in Q@ = (0,2) x (0,1), discretized with the usual
centered second order finite difference scheme. The domain decomposition scripts are adapted from
those described in [18]. In a first stage, we analyze the performance of the operational parameter
for the pure homogeneous Dirichlet problem, comparing the convergence with that obtained with
a numerical parameter computed by a Neldar-Mead simplex algorithm performed on the numerical
error. In a second stage, we compute the control of the heat in a room with the parallel algorithm.
The domain is split into three layers.

4.2.1 Optimality of the operational parameter

Here we solve the homogeneous equation, that is no internal source g nor boundary source, thus
computing the error. The mesh size is the same in the z and y direction, equal to h = 0.01. Two
subdomains of equal size are considered without overlap, or with an overlap of one gridpoint, that is
L=h.

A numerically best parameter 7™ is computed by a Nelder-Mead Simplex Method (Matlab
fminsearch) minimizing the solution after 20 iterations, with a uniformly random initial guess.

Then the domain decomposition algorithm is run with a uniformly random initial guess. Figure 4.1
displays in the semilog scale the L°° error on the interface of the first subdomain, as a function of the
iteration number n, comparing the convergence behavior over 20 iterations for the classical algorithm
and the Robin algorithm, with and without overlap, together with the theoretically expected behavior
in dash.
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Figure 4.1: Convergence history for Classical Schwarz and several variants of the optimized Robin algo-
rithm

As it is well-known in the domain decomposition community, the overlapping Robin-Schwarz
outperforms the non-overlapping Robin-Schwarz which outperforms the classical Schwarz.

Secondly, these plots show that the asymptotic regime for the computation of the coefficients is
attained quite rapidly. In the overlapping case for instance, with L = 0.01, the first term in the
asymptotics in L3 is sufficient to fit the theoretical convergence behavior.

4.3 Example of optimal control

We describe here a simple example: the control of the temperature in a square room. The room
has a fixed temperature on three walls, the western wall communicates with another heated room
through a door, and the eastern wall is insulated. This example of room has been presented before,
for instance in [18, 17]. The radiant floor heating is represented by a distributed control v and f = 0.
The temperature profile target is constant equal to yq = 1.

The discretizations of the solution y and the control u are represented on Figure 4.2 for values of
v in the range (1, 0.01, 0.001, 0.0001).
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As expected, when v decreases, the control u becomes more expansive, but the approximation
of the desired solution is better.

Furthermore, the control becomes more concentrated along the
Dirichlet walls. A computation on a more refined grid has been performed to validate the solution
for small values of v.

We display in Figures 4.3 (solution y) and 4.4 (control u), for v = 0.001, the iterates 1, 2, 5 and

10, for the classical Schwarz algorithm, the overlapping and non-overlapping Robin-Schwarz with the

operational parameters described in the analysis. The overlap is kept constant equal to 1 grid points.
There are three subdomains of equal size.
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Figure 4.4: Control u for classical Schwarz (top row), Overlapping Robin Schwarz (second row) , Non-
overlapping Robin Schwarz (third row) for v = 0.001.

In this example, the algorithms are run in parallel. As expected, the order of performances
described before is respected, the best performance is reached by overlapping optimized Robin, even
with 1 gridpoint in the overlap, the convergence is very fast.

Dirichlet-Neumann and Neumann-Neumann algorithms have been used in connection with optimal
control, see [8, 27, 26]. They both use a relaxation parameter. In [22], the authors analyze the
convergence factors of the Dirichlet-Neumann and Neumann-Neumann Algorithms in one dimension
of space. They find that with two subdomains, the Dirichlet-Neumann algorithm converges in two
iterations when the subdomains are of equal size and the relaxation parameter is equal to 1/2. It is
not the case for the Neumann-Neumann algorithm, for which different parameter must be used in the

subdomains. Figure 4.5 shows for ¥ = 0.001 the good properties of the Dirichlet-Neumann algorithm
for three subdomains of equal size.
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factors in the next section.

5.1 Continuous and discrete analysis, bounded domain

Suppose now the domain is bounded also in the z direction, that is 2 = (—c1,c2) X D. Then it is
easy to generalize formulas (2.4) to

ér = af sinh(w(z 4 ¢1)), é3 = a3 sinh(w(ca — x)).

For the classical Schwarz algorithm with Dirichlet transmission condition the convergence factor is
(p=067)

. sinhw(cz — L) sinhwey
PL,D =

’

sinhw(c1 + L) sinhwes

and for the Robin transmission conditions we obtain the convergence factor

c e ¢ —wcothw(ca — L) £ —wcothwer
PLR=PLD |7y wceothw(ecr + L) £+ wcothwes

Introduce now the classsical second order finite difference scheme , a mesh (he, hy), with M; points
in z in Qj, and p points in the overlap. Then the convergence factor can be computed using Fourier
series, we extend to the complex case the formulas in [19]. Define

. 9, kh

alk) = iz sin?(2), (k) = h3(a(k) + ) € C\R_, o

AK) =14 28 Ju(k) + 252 ¢ D0,1) \R—, v(k) := In A(k),
The discrete convergence factor for classical Schwarz is

a _ sinh((Mz — p)v) sinh(Myv) (5.2)
Pp.D = sinh((M; + p)v) sinh(Mav)’ '
and for optimized Schwarz, it takes the form
d . d z-,% tanh ¥ coth((Ma—p)v) z_,% tanh ¥ coth(Myv)
Pp,R = Pp,D 2—0—% tanh § coth((M1+p)v) Z+% tanh § coth(Mav)’ (53)

The analysis of the min-max problems related to these convergence factors needs extensions of our
strategy. When c2 = ¢1 — L, they will be rather straightforward. In the other cases, even for real
coefficient 7, there is no available results at the moment.

5.2 Extension to Ventcel transmission conditions

In the Ventcel transmission conditions, a higher order part is added in the Robin operator 9, + £
as 0y + £ — £A,. In Fourier variables, £ is replaced by £ + ¢k®. The min-max problem has now two
complex unknowns
7.2
inf sup bt k" = wik) +€k w(k) e L)
,f)ec? kek | L+ Lk 4+ w(k)
which is a homographic best approximation problem in P;(C). This problem has been analyzed in
a real frame, see [15], in the complex case with symmetry where the coeflicients are real in [7]. Its

resolution needs a new analysis, extending to polynomials of degree n our new alternation property
1.B.

5.3 Particular cases

In the previous analysis in Section 3, 7 is a constant complex number. But in several applications, n
is related to h, as described below:

Case 1 For propagation in a circuit with conductivity o, of harmonic waves with frequency x,

a = —k? < 0 and B = ok. In the discretization process, x and h are related by the rule from
Shannon’s sampling theorem, kh = %” where GG, the number of gridpoints by wavelength, is

between 6 and 10 for a good sampling; see [42, 35]. Finite element estimates for P; show that
the error is bounded by c(kh + k*h?), see [28], therefore x*h? must be small as well.
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Case 3 Again for wave propagation and y = 0, when using radiation transmission conditions as in

Després [11], that is with ¢ = ik, the convergence factor is equal to 1 for ¥ = k. A Robin-
Schwarz strategy has been developed, minimizing the convergence factor away from k., and
using GMRES algorithm to manage k., see [14]. The so-called shifted laplacian technique is
often used, with p < L, see [12].

The general analysis applies, but the asymptotic computation of the best parameters needs to be

revisited.
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