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Abstract: In a context of intense environmental pressure where the construction sector has the greatest
impact on several indicators, the reuse of load-bearing elements is the most promising by avoiding
the production of waste, preserving natural resources and reducing greenhouse gas emissions by
decreasing embodied energy. This study proposes a methodology based on a chain of tools to enable
structural engineers to anticipate future reuse. This methodology describes the design of reversible
assemblies, the addition of complementary information in the building information modeling (BIM),
reinforced traceability, and the development of a material bank. At the same time, controlling the
environmental impacts of reuse is planned by carrying out a life cycle assessment (LCA) at all stages
of the project. Two scenarios for reuse design are applied with the toolchain proposed. A. “design
from a stock” scenario, which leads to 100% of elements being reused, using only elements from stock.
B. “design with a stock” scenario, which seeks to integrate as many reused elements available in the
stock as possible. The case study of a high-rise building deconstructed to rebuild a medium-rise
building demonstrated that the developed toolchain allowed the inclusion of all reuse elements in a
new structural calculation model.

Keywords: reuse of materials; life cycle assessment (LCA); building circular economy; building
information modeling (BIM); design for reuse; sustainable construction; embodied energy; greenhouse
gas emissions

1. Introduction

The environmental findings require rethinking our construction methods to fight against the
depletion of natural resources and greenhouse gases (GHGs) emissions that conduct to climate change.
The Intergovernmental Panel on Climate Change (IPCC) reminds us that we face significant risks with
global warming of 1.5 ◦C and more [1], which seems to be looming if growth keeps its current pace.
In this context, the building sector is a major contributor to three environmental hazards: resource
depletion, energy consumption and waste generation [2–5]. The building sector is the main emitting
sector able to improve the global environmental impacts significantly, according to the United Nations
Environment Program (UNEP SBCI) [6].

The Organization for Economic Co-operation and Development (OECD) report [7] shows that
construction materials dominate total materials use in 2011 and 2060, and their use will be at the least
twice higher between 2011 and 2060. It depletes two-fifths of global raw stone, gravel and sand and
one-fourth of virgin wood [8]. Therefore, the construction sector is the most consumer of materials and
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the largest exploiters of natural resources [8], accounting for between 40% of the total raw materials
consumption [9] and 50% [10].

This growing development has repercussions on the emission of GHGs, among other indicators.
In France, the construction and building industry is the leading emitter of GHGs [11], i.e., 33% of total
GHGs. Several studies confirm this number worldwide [6,12,13]. Kumar Dixit et al. [8] define the
embodied energy (EE) and embodied carbon (EC). EE during the construction phase is the amount of
energy used for the extraction of raw materials, the production and transport of building components
as well as the building construction and end-of-life (EOL). Moreover, EC refers to the associated GHG
emissions [3]; the operating energy during the operation phase as energy consumption and associated
operational carbon emissions during the use phase of buildings (heating, cooling, etc.). The average
value of EE is 50% of the total primary energy demand [14]. The share of operational energy seems to
decrease recently (even disappearing in passive or zero energy buildings) with technical progress and,
therefore, the share of EE increases [15].

Another impact of the construction sector is due to waste generation [5,16]. Most of the literature
focuses on waste management, which shows a great interest in reducing the construction and
demolition waste (CDW) generated by the construction sector as it represents around 40% of the waste
produced [17]. Cai et al. [18] and Lismont et al. [19] explained that in Europe, about 25–30% of the
waste result from the building sector amounting to 870 million tons annually and Brütting et al. [3]
estimated this share at more than a third of the waste. Meanwhile, we face stricter disposal and landfill
regulations, and fewer landfills are available [20]. According to the Environmental Protection Agency
(EPA), currently, only 40% of CDW materials are recycled, reused or recovered by energy facilities,
while the remaining 60% are sent to CDW landfills [21]. Thus, building structures generate a large
amount of CDW [2]. Besides, in a post-disaster context (earthquakes and other natural disasters, war)
the implementation of a reuse process not only makes it possible to limit the generation of waste but
also to respond to a health and human emergency [22,23].

Furthermore, load-bearing systems have a major impact among building components because
of their material and energy-intensive manufacturing process [3]. Load-bearing systems represent
the most substantial part of EE [24,25], with 39% according to Marzouk et al. [26], and 50% and
above of the total building embodied impact also called embodied carbon for Kaethner et al. [27]
and Veselka et al. [28]. As such, foundations and structural elements are mainly part of the building
to improve in order to decrease the EC [25,26]. Thus, among the various stakeholders, structural
engineers have a decisive role in the environmental impact of buildings [26,29] and must master life
cycle assessment (LCA) to reduce this impact judiciously.

Reuse in construction can potentially target around three billion tons of raw materials worldwide,
representing significant economic interests, around 40–50% of the total flow of the world’s economy [18].
The reuse of load-bearing components over several building life cycles [30] is a promising avenue for
meeting the environmental challenges facing the construction sector [31]. Most of the designs including
reuse of load-bearing components of structures, come from design for deconstruct (DfD) [18,32],
which is a circular economy strategy [32]. DfD helps to promote reuse by allowing the dismantling
of components [18], including GHG reduction, energy and raw materials saving, natural resources
preservation, waste reduction, job creation [4,18].

Thanks to all avoided impact [30] it induces, reuse has the potential to significantly reduce the
impact of construction, by reducing GHG emissions, considerably limiting the depletion of resources
and avoiding the production of waste. As such, reuse constitutes the most promising avenue [5] and
allows several life cycles of structural elements that offer an under-explored opportunity to reduce the
environmental footprint of the building sector [2].

Several policies, therefore, encourage the establishment of a circular economy. Thus, in Europe,
several action plans have been issued and are underway, such as closing the loop—An EU action
plan for the circular economy in 2015 or the European Green Deal in December 2019. In France, the
Environment Code defines reuse as “any operation whereby substances, materials, or products that are
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not waste are reused for the same purpose for which they were designed.” With a view to this, in April
2018, the French government also drew up its roadmap for developing a 100% circular economy (CE)
seeking to ”turn existing buildings into a bank of future construction materials”. In this perspective,
the development of tools resulting from the building information modeling (BIM) process can make it
possible to set up material banks but also the traceability necessary to access the characteristics for a
new use [22].

Despite the climate emergency, the enormous potential of reuse to reduce the impact of construction,
and the political incentives, this process is underdeveloped. Notably, at the level of construction in
Europe, the reuse of load-bearing elements is not only the most promising but also the most feared
because it involves many risks in terms of responsibilities for the designers and builders. So, this
research aims to propose a complete methodology to maximize reuse in construction and guarantee
safety. The method declined in this paper through the definition of a BIM-related bank of materials
feeding LCA can anticipate the reuse of currently designed buildings. Anticipating reuse in today’s
new buildings can allow maximum reuse at the EOL. Our study applies to high-rise buildings (HRB),
to build up a substantial stock. The cost/benefit analysis also provides support for a large number of
elements constituting the stock to be able to set up a reuse strategy.

In the following part, we will review the literature on these three main topics Reuse, BIM and
LCA. Then, this study will propose a method summarized in Figure 1 and based on:

1. the concept design for reuse (DfReu) applied to high-rise buildings (HRB),
2. traceability requirements for long-term reuse
3. a BIM framework adapted to the reuse of load-bearing elements and their LCA
4. the setting up of a materials bank

An application will then test the method and its toolchain with a case study based on HRB. Finally,
we will discuss this proof of concept applying the proposed suite of tools.
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Figure 1. Research methodology.

2. Literature Review

Research on the reuse of load-bearing elements from demolished buildings remains relatively
limited; the reuse of concrete elements is even less known [18]. It is all the more true for research
regarding anticipated reuse in new structures. Nevertheless, several areas of research have focused on
concepts that we need to master to tackle the anticipation of the reuse of structural elements. First of
all, we need to clearly define the key concepts and analyze the progress of research in these areas:

• design for reuse (DfReu) (not enough discussed in the literature) to distinguish from design for
deconstruction DfD (already present in several articles)

• the question of DfReu’s assessment by the LCA
• the potential of the BIM process for reuse
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• BIM and LCA integration
• the materials bank mainly supplied by the BIM models
• traceability to capitalize with the materials bank

2.1. New Design Approach Including Reuse, by Design for Reuse (DfReu)

Design for deconstruct (DfD) is an existing concept [32] mentioned in the introduction. However,
DfD is based on deconstruction and reduction of the waste but does not sufficiently integrate the
anticipation of reuse. The two concepts design for reuse (DfReu) and design for deconstruction (DfD)
are quite distinct. DfReu is specific to design for reuse (not recycling). Whereas DfD is more global to
facilitate deconstruction but maybe for simple separation for recycling or energy recovery and not
necessarily for reuse. However, DfReu includes facilities for anticipating deconstruction. Therefore,
the DfReu concept is privileged for the follow up of our study.

Several difficulties have already been identified with reuse [18,33], such as a lack of guidelines,
the need of certifying reclaimed components, safety guarantees (especially with structural elements),
correct rejoints, improved DfD method for reuse aspects, financial incentives such as increasing landfill
costs. Our study aims to increase these guidelines for designers and builders significantly.

As mentioned in the introduction, the load-bearing elements have the most significant
environmental impact and demand a special effort to reuse them. However, one of the challenges of
load-bearing elements reuse is allowing a large number of spatial possibilities. This means that with a
minimum of different elements it is necessary to be able to respond and adapt to a maximum number of
floor plans, spans, loads, support layouts, connection types, according to Fivet [31] and Bertin et al. [33].
We must implement a new paradigm since the conventional structural design process is reversed [2]
and the reused elements could impose spans. The availability of the stocked elements with their own
mechanical and geometrical properties will determine the future design to adapt. Brütting et al. [4]
worked on a given stock optimization by presenting optimization techniques to design truss structures
with the most given reused component. The reuse of old load-bearing systems remains complex [18].
Thus, the anticipation of reuse in current projects and future projects, as proposed in our study, is
essential and allows an optimal recovery rate.

As a consequence, reuse requires additional actions such as assessing residual performance,
evaluating the possibility of reassembly [33], but technical solutions exist such as remediation, repair,
reinforcement with fiber reinforced polymer (FRP) confinement and redesign of connection [18]. In
some cases, the torsor of forces will change on the reuse elements compared to its previous function,
which necessitates that new properties be known for the recalculation [5]. To this purpose, steel
and timber linear elements (bars, beams, cables) are more suitable, as they often include reversible
connections [2,3]. Our research shows how to reduce these additional actions with proper traceability.
Besides, the LCA must make it possible to assess the impact of reuse. Hence, we review the limitations
of current LCA practices in the following section.

2.2. LCA, ISO Standards and Limits

ISO14040 [34] defines LCA as “a technique for assessing the environmental aspects and potential
impacts associated with a product, by compiling an inventory of relevant inputs and outputs of a
product system, evaluating the potential environmental impacts and interpreting the results of the
inventory analysis and impact assessment phases” [15,35]. Likewise, ISO 14044 [36] describes the
way to interpret the LCA results [25]. Though the reuse of materials seems most promising, ahead of
recycling, to reduce the environmental impact of construction, we must take care to accurately assess
the impact of construction and deconstruction processes through LCA.

Many limitations in LCA achieved through case studies are listed in the review paper [37], such
as ignored transportation and construction impacts, manual Export and Import, assumed industry
average for all the impacts. Hoxha et al. [6] discussed on how to address data uncertainties through
contribution and sensitivity analysis and draws attention to the implications for LCA. At the same
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time, Najjar et al. [38] highlighted several gaps, such as incomplete databases or insufficient data at the
early design phases that reduce the potential for LCA applications. Most studies present simplified
hypotheses due to lack of incoming data, especially for EOL scenarios in which ”only demolition and
disposal to landfill sites will be considered” [39].

Although most of the papers have focused on LCA methodology, some provide results allowing
to give impact results, especially outside the most widespread climate change. Thus, according to
Marzouk et al. [26] study, “manufacturing and transportation off-site phase represents the highest
weight of ozone-depleting particles with 92.83% while deconstruction and demolition phase’s largest
contribution is in eutrophication particles”.

Some difficulties in evaluating reuse impact with LCA are due to several uncertainties such
as full use of lifespan, the number of use cycles, reconditioning operations, resulting in a lack of
data [40]. We must develop other tools in parallel with LCA to assess the impact of reuse such as the
introduction of new measures as reuse potential indicators [5] based not only on direct impact during
manufacturing, construction or deconstruction but also on traceability identification, demountable
ability, adaptability to several new use abilities. Reuse remains a complicated issue since LCA needs to
develop a methodology for taking into account the different cycles of use for the same product. This
is notably due to the different possible scenarios for the cycles of this product, inevitably leading to
uncertainties. Also, the inclusion of these scenarios is very time-consuming. Our study seeks to make
a more effective environmental impact assessment possible, particularly with the integration of LCA
into BIM, as discussed later.

2.3. Use of Building Information Modeling (BIM) for Reuse

As previously noted, compatibility with BIM tools is expected to develop the concept of design for
reuse (DfReu). Sustainable topics in BIM practice have considerably multiplied lately [10]. Thus, there
is still a lack of designer help with BIM tools mostly focused on visualization and estimation prediction.
Current BIM-aided construction waste minimization framework aims to reduce CDW generation
by a decision-making framework [41–43], but future works, such as our study, need to link BIM to
construction waste, also during the design phase. Two major studies dedicated to deconstruction
could be adapted to the specific objective of reuse and will be taken into account in our study. Thus,
Akinade et al. [44] developed a BIM-based deconstructability Assessment Score (BIM-DAS) to help
determine the possibility of deconstructing a building. This score emphasizes criteria to facilitate
deconstruction ability but does not guide designers with methodology. The residual performances of
building elements are still insufficiently assessed and Akanbi et al. [45] provide additional elements
with a BIM-based whole-life performance estimator (BWPE), which takes into account the aging criteria
of the materials to allow their reuse.

A study addressed the design for deconstruction (DfD) design criteria [46] based on professionals’
feedbacks and the need to implement Industry Foundation Classes (IFC) models with DfD-BIM
software data. The IFC interchange format for the BIM model is approached by several studies [47,48]
to integrate data relating to sustainable development but experiences difficulties due to generated file
errors during export and import [49]. In this regard, several papers showed the weak interoperability,
the lack of industry standards holistically covering the various application areas of BIM for sustainable
buildings, the lack of methods and low accuracy of BIM-based prediction models [50]. The methodology
proposed in our study will propose an extension of the BIM standards.

The level of detail or level of development (LOD) is a current standard describing the level
of accuracy of BIM modeling developed by the BIMFORUM [51]. LOD are broken down into five
categories: 100 for low information content and 500 for high information content. The establishment
of property criteria for reuse has more to do with the LOI, Level of Information of the BIM model.
Forth et al. [49] recommend creating an accurate material nomenclature with affixes to help ensure
correct allocation of material specifications to components, containing e.g., the minimum compressive
strength class for concrete, species of wood or type of reconstituted material for wood, or type
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of metal fabrication. Promoting BIM through LOD requires a better understanding of how reuse
potential values should be accounted for regarding components such as manufacturing data, mixtures,
material grade, material strength, properties, etc., as well as the construction techniques used and the
way components are connected with other components [5]. For this purpose, the recent European
Union (EU) funded project, BAMB, highlights the concept of building passports, by describing the
material composition data of buildings in the form of material passports [52]. Reuse must also be
able to rely on BIM to improve the definition of the remaining service life of reused components and
understanding of the reuse of structural elements such as their residual capacity. [18]. Our methodology
provides a nomenclature compatible with the BIM process and specified explicitly for the reuse of
structural elements.

2.4. BIM and LCA Integration

Several papers develop the relation between BIM, LODs and LCA [53,54] and ditto for 6D BIM
(covering environmental data relating to sustainable development) [52] with repercussions on the way
to structure Life Cycle Inventory (LCI) and to use LCA datasets. By understanding the limitations
of these BIM data streams to perform an LCA, we can divide current practices into two main parts.
On the one hand, there is geometrical related information extracted from the model (bill of quantities,
type of material) which induces a specialized LCA software secondly, and on the other hand, specific
LCA data contained directly in the model with a direct LCA plugin in a BIM software [37]. Workflows
enabling BIM to export input data for LCA software are linking BIM and LCA. It is recognized that
the BIM-LCA connection is not yet optimal [55]. The literature highlights the complexity to manage
between precise data requirements and simplified estimations needed in early stages [9,25,56]. Some
studies try to address these issues providing methods as a first approach to obtain LCA results with
few data [25].

Scarce papers have worked to link 6D BIM and LCA and to refine the environmental data attached
to BIM objects to facilitate the extraction of data feeding the LCA software [55]. 6D BIM can help
establish the framework to guide the practitioner to fill in correctly the digital model and to save
time when performing the LCA. However, most BIM-based LCA methods papers do not precise the
LOD for the LCA [25,56]. To achieve reuse, we should provide and integrate necessary BIM-attached
information to simulate the assembly and disassembly process, such as a deconstruction plan [57],
material properties enabling LCA performing [38]. Indeed, LCA requires rigor and comprehensive
data obtained at an advanced stage of the project, whereas engineers need a simplified LCA in the early
stages when we can still change the design choices influencing the environmental impact with a low
LOD in the BIM model. This difference of accuracy may affect the results obtained with often higher
quantities overestimated in early stages (low LOD 200) and a general reduction of impacts obtained
with refined quantities in the advanced phase of the project (higher LOD 350 and above), [14,56]. It is
preferable to carry out comparative LCA for a given LOD and phase, as the final result is questionable.
Three main strategies have been developed in the literature: perform an LCA from a dedicated software
(enter data), from a BIM software (integrated LCA plugin, automatic data extraction), from an external
facilitator as a web platform (automatic extraction of BIM data and automatic import of LCA data) [58].

Numerous tools and frameworks to improve the BIM-LCA workflow and interoperability have
been developed to enable faster and better assessment as [49,59–61] but are limited to data exchange
and do not take into account the capacity of the designer to change the design and offer no design option
to reduce the environmental impact. However, Wastiels, L. [58] takes also into account BIM-LCA to
give real-time feedback on design decisions. Automate the integration of BIM data into LCA software
and facilitate BIM objects’ attributes extraction makes it easier to update data when the project design
changes by avoiding two update operations (BIM software then LCA software) to keep a single update
(BIM software) [58] until feature real-time update. The guidelines accompanying the nomenclature we
propose will improve BIM-LCA workflows.
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2.5. Material Bank, from the Project Database to the Big Data

Once the BIM model has been correctly established and filled in, we must capitalize data it
contains on a database. This database makes it possible to build a vast catalog of elements constituting
a building that could be made available for future reuse. Mainly unique recent research explored the
establishment of a material bank [18] to stock material properties; several papers present the interest of
such a development [48] to achieve reuse. In an existing old structure context, a material or component
bank could manage more effectively their direct reuse [18]. Brütting et al. [4] also claimed that in the
future, effective collaboration between element stocks, databases, and a market for reused elements
would facilitate the reuse process. Cai et al. [18] recommends that the bank could help to store and to
sell materials and components in a factory or center shop of the bank, and certification of materials
and components. Urban mining and building stock can feed a generalized database with the help of
drones, photogrammetry, laser scanning and greatly facilitate designers’ access to a wide choice of
reusable materials. We propose in this paper a framework for building up this material bank for the
reuse of load-bearing elements.

Concurrently, the problem of the impact of the massive datasets produced via these material
banks and during the service-life appears. More and more complex BIM models will require higher
information storage capacity as we generate huge amounts of data, especially as the monitoring of
components is set up [30]. Accordingly, the literature construction sector generates massive data, mainly
through BIM models [30], until they require 50 GB in size. As the number of data are continuously
increasing, primarily because of the use of sensors and persist beyond the EOL, this phenomenon is
expected to worsen, leading to more abundant sources of “BigBIMData” [43]. The use of cloud-based
BIM technology also needed, according to KwokWai Wong et al. [30], will contribute to ‘big data’.
Santos et al. [10] also approached the intellectual property, which condemns the lack of standards
that cover intellectual property rights of data shared throughout a BIM-based project. This also has
repercussions in terms of responsibilities, such as regarding insurance, as we will see later.

A material bank could lead to assess numerous simulated data sets, statistical relationships
between stocks of components and available (re-)arrangements to fix new design principles for ensured
reusability [31]. The material bank can also constitute an opportunity to establish the certification of
materials and components providing an insurance or guarantee for critical properties of the reused
materials and components, such as residual load-bearing capacity assembly ability and potential
degradation ratio under certain environmental use conditions. Regarding Cai et al. [18], it is the most
crucial process that could be supported by Government politics by certificating material bank workers
and classifying the qualification of the bank. It may provide quality to ensure business exchanges.

Considering these data problems, we endeavor to propose a nomenclature containing the proper
measurement of data required for the reuse of load-bearing elements in this study.

2.6. Traceability, Monitoring and Predictive Approach

One of the shortcomings noticed to facilitate reuse is the need for reliable traceability. The BIM
model can inform and store information. Furthermore, the digital model is not sufficient to ensure the
sustainability and integrity of the data and must be coupled with physical traceability devices. One of
them is the Radio Frequency Identification (RFID), allowing tracking and archiving the properties of
structural construction components [62]. RFID chips can be incorporated inside the components or
attached to them [18]. Quick originality codes or bar codes pasted on the surface of the elements [18]
are also traceability solutions. Thus, RFID-BIM technology and potential application is still a niche [62].
Yet, incorporating sensors’ data into the BIM model should contribute to this innovative field [10,28],
as it could feature GPS and localization ability [62].

Monitoring has been used mainly for the operation and energy consumption of buildings, but
there is also an interest in monitoring and preserving the materials used. KwokWai Wong et al. [30] also
incite to generate a ‘one-stop-shop’ BIM for environmental sustainability monitoring and management
over a building’s full life cycle. Current predictive approaches are already in place for predictive
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analytics and waste estimation [43]. KwokWai Wong et al. [30] also promote the development of
predicting, managing, and monitoring the environmental impacts of project construction thanks to
BIM. Monitoring is also promising about following and assessing all changes during the construction
phase and their environmental impact, as far as taken into account LCA update [28]. The guidelines
proposed in our work link the relevant traceability systems to reuse load-bearing elements.

Finally, the literature addresses the construction sector impacts with a desire to reduce the CDW
in current demolitions, but only a few studies explore anticipating reuse in buildings designed today.
Several design methodologies for reuse are based on principles of easy disassembly, but there are
still difficulties in characterizing residual performance, responsibilities and insurance, phasing of
deconstruction and structural reassembly. The article we presented helps to overcome these difficulties
and provides useful guidelines for practitioners. The BIM is particularly enthusiastic support for
compiling and sustaining the expected data for reuse and is a pillar of the methodology we propose. All
of this data must then be usable for performing an LCA. Current LCA methods do not take into account
all the benefits of reuse (such as the multiplication of use cycles) and need to be improved to scientifically
assess the different impacts, benefits or disadvantages, of the reuse process on the environment.

3. A method for the Creation and Capitalization of Data

Under this part, we will develop a database integration framework linked to the BIM model and
the structural calculation software, necessary for the reuse of load-bearing elements. This framework
includes a proposal to define new LOI in the BIM process. An application to a high-rise building (HRB)
will mobilize the defined toolchain.

3.1. The Predisposition of High-Rise Buildings (HRB) for Reuse

Reuse calls for maximizing the number of similar, simplified and easily disassembled components.
To this end, HRB is particularly suitable for reuse since they have many identical elements and often
have the same type of span for the same program. Horizontal load-bearing elements are most of the
time the same for the entire building, and vertical load-bearing elements such as columns are often the
same within the same HRB block. Among the load-bearing systems, the best performing is the outrigger
and diagrid structures [24]. However, this leads to the development of dismountable connections
compatible with great heights and to anticipate the deconstruction process [24]. It is preferable to
use dry mechanical connections. The concrete elements constituting the core and foundations are
particular to a given plot and very rarely reusable. Therefore, it is necessary to minimize the levels in
the basement.

The digital mock-up offers a 3D view and the ability to attach information to BIM objects as well as
generate technical documents, such as construction drawings and deconstruction plan. Currently, the
structural properties are not well detailed. We propose to increase the LOD/LOI in this article. Besides,
traceability systems are to be provided, such as barcoding/labeling of materials, RFID tags, sensors, as
additional support of the data, and in connection with the digital mock-up. These technologies will be
the relay of the digital mock-up in particular for the stages of disassembly, transportation and storage.

3.2. The Need for Data Traceability and Engineer Responsibility

The many current rehabilitation projects require recognition of the existing structure. This current
method of recognition can be integrated into the method to anticipate reuse in 30, 50, or more years.
Thus, the data of the load-bearing elements must be tracked during the design phase. For the reuse of
load-bearing components, the physical and mechanical properties of the materials must be known at
least. These data to be collected must be specified according to the type of material: concrete, steel,
timber, and according to the structural function: column, beam, load-bearing wall, transverse wall,
slab. In some cases, the complexity of the structure to be dismantled or the future class of use of the
load-bearing elements requires additional studies by structural engineers.
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At the same time, we must take into account that the model is used and completed by different
stakeholders of the chain according to their needs. At the end of the process, some data are then
definitively lost. Therefore, we should pay particular attention to finding digital building models and
as-built documents in case of reuse. To avoid data deletion and to ensure a level of confidentiality,
partial access to data according to the actors, must be provided via a system of filters.

The structural engineer who decides to reuse a load-bearing element must ensure that he has the
characteristics of this element for essential reasons of responsibility. It is also crucial to check the living
and operating conditions of the entire building from which the element comes. We can classify the
data of the load-bearing elements of an HRB into four categories:

• the static properties: composition, geometry, relevant standard, etc.;
• mechanical properties (work behavior): position, type of loads, connection conditions, strength

class, applied stress, creep, aging characteristics, etc.;
• mechanical properties for the overall behavior of the building structure: exposure class, differential

shortening, soil compaction, differential displacements between floors, top displacement, top
acceleration, scaling criteria, the service life of the structure, etc.;

• information relating to the reuse process: deconstruction phasing, resource diagnosis, residual
performance tests, etc.

All of these measures can contribute to better understanding the life of a structure, thanks also to
monitoring to anticipate aging, marking and geolocation of elements, recording of deformation alerts
in real-time, historical meteorological, or environmental conditions. These data are already collected as
part of structural health monitoring (SHM) and are adaptable for reuse. The SHM allows the updating
of information on the aging of elements. The SHM can be directly coupled to the initial calculation
model to update the consequences of events experienced by the structure. Finally, active traceability is,
therefore, better suited to data collection to monitor the overall behavior of the (mechanical) structure.

To assess the risk of reusing a structural element and extending its useful life for a “new life”,
another level of response can be provided via the principle of predictive analysis. The statistical
processing of numerical data recorded during the first life must allow reusing a structural element with
an understanding of its behavior far superior to that provided by traditional analysis processes. In the
case of an existing structure, a predictive analysis, based on the evaluation and statistical processing
of data measured in situ, makes it possible to establish correlations between the data, for example
between observed displacements and applied actions and makes it possible to predict the structure’s
subsequent behavior. We can base the future behavior on knowledge of the actual behavior and
the increasingly fine-tuning of the predictive model according to the data measured in response to
climatic or other events. The data recorded by the sensors will be analyzed and interpreted to provide
a real-time dashboard of the building’s mechanical behavior.

A precise orchestration allows to:

• Store this data according to predefined data architecture and in a secure storage area,
• Define the correlations sought between the data collected and build the processes to establish

these correlations (data science),
• Implement a “Machine Learning” type process to learn and control the behavior of the work

overtime in an increasingly fine-tuned manner,
• Reach a statistical predictive model capable of predicting the future behavior of the structure in

the face of future external stresses.

The predictive model is based on observation and measurements of actual behavior and, therefore,
directly integrates uncertain elements into physical-mathematical modeling (aging law and material
damping rate, modeling of applied actions, etc.). As such, it will provide more precise information
on the future behavior of the structure (with optimized safety coefficients covering the uncertainties)
and will also provide a more precise understanding of its useful life. However, not all the information



Sustainability 2020, 12, 3147 10 of 24

required for the structural analysis is easily measurable, for example, internal stresses and stress rates
of material, which we can find in the physical model. Therefore, one method would be to couple the
two approaches.

We must adjust this principle to isolated elements of the structure (a column, a beam) to know the
local stresses and deformations and to make the elements available for reuse.

3.3. A New Proposal of LOD and LOI Definition within 6D BIM

Tools are being developed to optimize deconstruction and EOL but not for design for reuse (DfReu)
practices. The described methodology herein aims to design structural elements by increasing the 6D
BIM and LCA-related parameters. The commonly recognized reference document by practitioners is
the definition of LOD by BIM Forum [51]. According to this reference, the various LODs from 100 to 400
specify the expected geometric representations, for example, for Precast Structural Column (Concrete)
at LOD 400 “Element modeling to include: all reinforcement including post-tension elements detailed
and modeled, finishes”. At LOD 500, all references consider an “as-built structural model” as confirmed
by CIC Building Information Modeling Standards in Hong Kong. The five common phases used in
this study are Project Planning/ conceptualization (PP), Project/preliminary design (P), Building Permit
Application/development (BPA), Tendering/ detailed design (T), Construction (C) as described by [25].
This article describes the accuracy of a LOD 600 concerning the working life phase, and a LOD 700
concerning deconstruction/reuse phase, for the load-bearing elements in Figure 2. The complete table
of detailed structural properties (corresponding LOI) can be found in Table A1.
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We propose two new definitions of LOD herein to specify the details that the model must include
for long-term reuse. In parallel, LOI (the level of information) points out the attributes expected. We
can consider that the LOD/LOI 600 corresponds to the information added during the service, and we
will not develop this point in this paper, except to anticipate reuse. A LOD/LOI 700 could consist of the
data expected to reuse at the EOL and must, therefore, be anticipated from the design phases, then be
checked during execution and then be resumed at the EOL, while having the trace of events occurring
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during maintenance. To this end, we implement the four categories of information described above,
integrating previous research into the literature [5,17].

For the time being, the 6D BIM information is not complete in the proper description of the LODs,
LOI. Therefore, this article identifies the need to specify new LOI 600 and 700. Today, the development
of expectations in terms of the information contained in the BIM model is such that we talk about LOX
as there can be so many levels of detail [64]. The LOIN (Level of Information Need) groups together
the information needs, where the expectations regarding the reuse process can be specified according
to ISO 29481-1 [65] and ISO 19650 [66].

3.4. Bank of Available Materials and Just-In-Time Circular Flow

The case study described in this article sets up a materials bank in the form of a database of
reuse items. If we start feeding a brand new database from the buildings constructed today, the
process described in this article will not be operational for a long time, since these new buildings will
have to reach the end of their lives to generate a database with elements available for reuse. It is,
therefore, essential to feed this database with data from existing buildings, which means that massive
digitization would be necessary. It should be noted that entire cities are currently being digitized,
such as Singapore [67]. In the same way, we can, therefore, hope that the digitization of carrier
systems will be possible. A materials bank is essential to generalize reuse and ensure the availability
of elements ready for reuse. The materials bank concerns both existing buildings to deconstruct
and future buildings to build that may incorporate reusable materials. As defined in Figure 3, we
developed tools to enable the materials bank to be set up in the form of a database, while at the same
time facilitating the implementation of LCA.
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Figure 3. Toolchain used to implement the material bank, from BIM models, material platforms and
environmental data.

When the existing building, whose elements are in this database, is to be deconstructed, the
elements appear free for reuse in a new project. Structural engineers create a calculation model when
designing new projects. From this calculation model, engineers can then send queries to the database
to find a load-bearing element that could perform a new function once reused. This database system
will operate on a just-in-time basis to avoid storage problems, especially in areas of the territory where
the available space is limited, such as metropolises. New data is added each time a new building is
constructed and its elements modeled. However, as demonstrated in the literature, the environmental
impact of digital data is not negligible. Moreover, the more data a model contains, the less fluid it
will be when opening, managing, and modifying it. This is why the amount of data must be limited
to relevant data and optimized. This present article deals with the structural data necessary for the
structural engineer to engage his responsibility in case of reuse of the elements. Reducing the amount
of data will, among other things, make it possible to save both calculation and database search time, as
well as energy on the servers.
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For this research, we broke down the parameters produced in the BIM model by materials and
phase according to the different stages of the project. The information is related to the objects in the
BIM model. The approach involves exporting, at each end of the phase, these parameters on the
database. We developed a gateway between the BIM model and the database, and then the software
for calculating reused structures.

The database described in this article makes it possible to carry out the necessary structural
calculations, thanks to real-time queries. Depending on the stage of the project, queries are more or
less complex, according to the stress field applied to the considered element. For a column submitted
to compression, for example, the first issue may be to find a column in the database that enables to
bear the sufficient load. For a beam, the request becomes more complicated since, in addition to an
admissible load, it is necessary to be able to select an element according to the allowable deflection. In
that case, we must add supplementary information on the ultimate bending moment and sufficient
inertia. For this reason, the study presented focused on column dimensions and capacities but ruled
out the case of compound bending, which may give rise to future developments. Next, we must
thoroughly check the compatibility of the existing reinforcement drawing with the new use.

This database query process is iterative as a series of hypothetical uncertainties need to be
examined. If the modeling of the new structure requires the use of a 50 × 50 cm section beam and, in
the database, the beam best meeting the stresses of the model has a section of 60 × 60 cm, the structure’s
overall weight will be modified.

4. Application and Results

In this study, we discuss two scenarios of design for reuse design:

• a ”design from a stock” scenario, which leads to 100% of elements reused, using only elements
from stock.

• a “design with a stock” scenario, which seeks to integrate as many reused elements available in
the stock as possible.

We first designed a reusable building (building A in Figure 4) to feed a bank of materials for
future reuse. The typical building chosen (A) is a 41-story HRB in steel columns structure, which
dimensioning corresponds to a typical program encountered in current practice and attempting to
hinge as many elements as possible and evaluating its environmental impact. As seen above, the
choice of HRB was made for its predisposition for reemployment. The scenario “design from a stock”
made it possible to reconstitute various types, for example, A1, or A2 or A3 in Figure 4, of buildings
using the entire stock of elements.
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Therefore, we developed an application on a new building (building B in Figure 5) with the
scenario “design with stock” trying to incorporate reusable elements of the material bank. We
accompanied the process by the creation of BIM parameters necessary for the generation, traceability
and management of critical information for reuse. The second building (B) integrating reused steel
elements is a medium-high 18-story-high building, which may match with the new future French
standard [68] of a flexible building (both offices and residential between 28 m and 50 m).

This first approach made it possible to identify all the steps to ensure reuse and, in this sense,
allows a generalization. In this study, a BIM software and a database tool were chosen and used. The
methodology described applies to any other BIM software and other types of databases.
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Figure 5. Scenario “design with a stock” with reconstruction applied from an initial HRB towards a
new medium-high building, for which we developed the workflows using the toolchain.

4.1. Step 1: LCA

The whole building is the functional unit. To study the LCA impacts, we respected the NF EN
15804 [69]; the fixed scope is until the delivery on the construction site (A1–A3, according to EN
15804 [69]). Although LCA is a cradle to grave evaluation, further papers are limited to the production
phase, [4,27,70]. In this study, we follow the same methodology. Furthermore, limits of scope are not
the purpose of this study, since its objective is to demonstrate the application of the toolchain described
in the methodology. The vast majority of impacts are related to the production and transportation of
the elements. The choice of materials is decided long before the construction or deconstruction process.

4.2. Step 2: New BIM Parameters and LOD Framework for Load-Bearing Elements

The information previously identified and required for reuse was incorporated into the BIM
model in the form of shared parameters (specific to the chosen BIM software) created specifically and
for generalization. We also established a bill of materials to name these attributes. We must take a
precaution so that the shared parameter is present during the IFC export, by specifying a value. An
overview of the parameters created for a steel beam is shown in Table 1.
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Table 1. Application of the nomenclature to a steel beam named “BEAMS - STR_BEA_HEM”.

Attribute Attribute Type Group Application

Section: BEA_width Length Dimensions Type
Section: BEA_height Length Dimensions Type

Web plate area Area Structural analysis Type
Steel composition (including weldability) Text Materials and finishing Type

Steel designation (grade and quality including Re and Rr) Text Materials and finishing Type
Rolling process Text Materials and finishing Type

Type of rolled products Text Data Type
Environmental impact (kg eq CO2) Mass Data Occurrence

EPD URL Data Occurrence
Young’s modulus E (MPa) Constraint Materials and finishing Type
Structure exposure class Text Data Occurrence

Resistance fy (MPa) Constraint Structural analysis Occurrence
Structural class Text Data Occurrence

Restraint applied Constraint Structural analysis Occurrence
Work rate (MPa) Constraint Structural analysis Occurrence

Deflection Deflection, displacement Structural analysis Occurrence
Camber Text Structural analysis Occurrence

Bending moment or lateral buckling Moment Structural analysis Occurrence
Conditions of connections Text Structure Occurrence

Corrosion protection or state of corrosion Text Data Occurrence
Relative position of the element (local reference x, y, z) - - -

Quality procedure for deconstruction Yes/No Data Occurrence
Quality procedure for deconstruction - Sheet URL Data Occurrence

Cost per kg (euro) Currency Data Type
Density Mass density Data Type

GHG data (kg CO2 eq) Number Data Type
Calculation software denomination Text Identification data Type

These newly created parameters make it possible to maintain exhaustive physical and mechanical
characteristics. Ensuring the long-term traceability of these characteristics allows an engineer in 20- or
50-years’ time to have a perfect knowledge of the structural element and its capacities to put it back
into operation in another building in complete safety. This traceability facilitates the EOL by avoiding
an exhaustive resource diagnosis and/or the implementation of redhibitory characterization processes.

4.3. Step 3: Exportation Towards the Material Bank and Just-In-Time Circular Flow

After creating the necessary parameters for reuse, we transferred the information to a database.
Then export of the structural and environmental parameters contained in the digital mockup to
the chosen database, Microsoft SQL, is performed. A BIM software extension is developed in
Visual Studio to export the parameters, and to create the first gateway between the model and
the database. The realization of such an extension is possible thanks to the existence of the BIM
software API. We detailed these developments in Figure 6. To retrieve all the information entered, the
extension, developed entirely in C#, realizes a filter according to the existing category in BIM software:
BuiltInCategory.OST_StructuralColumns, BuiltInCategory.OST_StructuralFraming, etc., using logical
filters, LogicalOrFilter. In practice, buttons are created and integrated into the BIM software ribbon, so
that pressing them produces what is called an external command.

The connection to Microsoft SQL is made directly in the BIM software extension, by writing
parameters to the database. A division into several tables according to the type of the element (column,
beam, sail or plate) is implemented when writing to the database.

This chain of tools could be generalized to an entire territory within the framework of political
incentives such as the French government’s roadmap for a circular economy.
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4.4. Step 4: Proof of Concept

The aim is to produce a functional toolchain that allows an exhaustive generalization afterwards.
When a structural engineer designs a project, she/he models the load-bearing elements on finite element
software to execute the calculation model. Thus, in our methodology, this finite element software is
then used to query the database to find a reusable load-bearing element and to incorporate it into the
model. The database hosts reuse elements that make up the materials bank. In this way, the model can
now include reused elements and replace new elements.

Choosing a reused element means choosing an element that is oversized compared to the new
one, either for lack of choice or for safety reasons. For this first request application, we established
certain limitations. To prove that the proposed approach is feasible, we limit the ULS check to axial
forces (pure traction and compression).

This method provides results for the two scenarios presented above. The scenario “design from a
stock” allows reusing 100% of the elements by adjusting the design to the available stock. The possible
variants have the following characteristics in Table 2.

Table 2. Scenario “design from a stock”: variants of Building A.

Existing Building A and Its
Created Variants

Number of Levels
Per Building

Building(s)
Footprint Area

Total Building(s)
Floor Area

Reused Elements Stock
Utilization

Building A (constituting
the stock) 48 1791 m2 85,968 m2 100% (with one building)

Building A1 24 3582 m2 85,968 m2 100% (with two buildings)
Building A2 12 7164 m2 85,968 m2 100% (with four buildings)
Building A3 4 2149 m2 85,968 m2 100% (with one building)

We made adjustments to the toolchain for the scenario “design with a stock”. We developed
an algorithm to perform a database query that allows the comparison between the stock table and
the results (of the constraints determined in the building being designed). We then evaluated the
best choice for replacing the columns of the model (of the building being designed) with reused
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elements. During a query, the user can determine the margin of tolerance. The user enters a value
to fix the allowable difference between the length of the stored columns and the theoretical length of
the columns being designed. It is also possible to fix the acceptable difference between the theoretical
capacities and the real one in stock for pure compression. As a result, most of the reused elements
are slightly oversized concerning the strength requested in the theoretical calculation of the building
being designed. The allowable values also limit material waste or over-consumption. As soon as the
allowable limits are input, the algorithm starts.

The algorithm runs through each pole in the stock table, comparing it with each pole in the model,
analyzing whether or not the allowable limits have been met. Therefore, several iterations are to
be expected to take into account the change. Thus, as the building mass changes, then we need to
recalculate the loads. As this situation will be frequent, the tool developed in this study allows the
user to set the tolerances on the dimensional and load-bearing capacity overruns of the elements to
retain. In our case, we proposed a progressive increase of the acceptable margin for the capacity of the
reused elements, to maximize numbers of reused columns (from the deconstructed HRB A). The final
acceptable value is +110% for the allowed capacity difference of the reuse elements. The results of the
application are presented in Tables 3 and 4.

Table 3. Scenario "design with a stock": final building B.

Elements Complete New Option Reuse Alternative Difference

Number of columns 420 412 (new) +8 reused 2% of reused elements
Mass (tons) 298 333 +12%

Table 4. Details on reused columns with the scenario “design with a stock”.

Units New Option Reuse Alternative Difference

Mass/mL (tons/mL) 4.8 11.5 –6.6
Length (m) 3.75 4.67 –0.92
Mass (tons) 18.1 53.5 –35.4

In our example, the stock of columns to be reused from the HRB is very limited but it is possible
to reuse 8 columns among 420 columns constituting the building B. Oversizing was limited to keep
elements with a reasonable size for this case study, but this criterion is questionable. However, the
limited stock relating to a single original building is not suitable for a new “Design with a stock”
scenario. The new reversible medium-high building standard has spans and ceiling heights that require
particular load-bearing elements. A more classical building with the same office function would be
able to integrate more reused elements. However, an enlarged and generalized stock for territory
would allow a more excellent choice and would avoid such a considerable oversizing. Despite this
significant oversizing of +12% in mass, there is a gain on environmental impacts, compared to a new
variant of Building B.

When the final structure integrating a maximum of reused elements is fixed, new modeling on the
software can be carried out and, in turn, feed the material bank database.

This proof of concept shows that a generalized reuse policy must be accompanied by new design
standards such as identical ceiling height and span for offices and housing. Thus, a load-bearing
element will be able to correspond to several types of programs (offices, housing) and will be more
easily reusable in a large number of future buildings.

Without these new design paradigms, reuse can only concern a small part of the stock (“design
with a stock” scenario). This is why it is highly preferable to generalize the concept of “design from a
stock” as a new standard to reach 100% of reused load-bearing elements.
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5. Discussion

This study sets up the tool suite to allow the transfer of structural properties between the BIM
modeling software, the structural calculation software and a database hosting the ready-to-reuse
materials bank. The accuracy of the properties attached to the BIM objects allows us to perform a finer
LCA. With this toolchain and the database, the structural engineer’s competence is now to control
and reduce the environmental impact. Two cases are to be apprehended: the restrictive database or
the almost unlimited database. In the case of the massification of reuse, the unlimited database is
plausible and expected. The establishment of such a bank at the national level would generate a supply
of materials more compatible with the real demand for current projects. Different points are discussed
in the following parts.

5.1. Embodied Carbon and Scope Extension

Previous studies have mentioned targets to reduce GHG emissions in construction [71] through
reuse and recycling. We have shown that reuse reduces GHG emissions more drastically than recycling
(“design from a stock” scenario) and that efforts must continue to generalize reuse before recycling.
The past studies showed that the embodied carbon is mainly due to the elements composing the
load-bearing system in a building. This is why this study focused on the impact and reuse of these
elements. However, an in-depth look at these studies to extend the scope to other building components,
as well as technical equipment, is necessary for a more generalized application without neglecting
secondary impacts. Other studies have chosen to focus on the reuse of a building as a whole and
reconversion [72]. Reconversion allows for a massive conversation of the material already implemented.
Our research promotes change in our current construction methods and facilitates these building
reconversions thanks to a better dismantling.

5.2. Database Maintenance

This article introduced a parametric BIM-workflow and database that should be accessible and
interoperable throughout the lifetime of the buildings, up to hundreds of years. Software maintenance
during such a long period is a critical issue, as there is little return on experience on this topic in the
construction industry. However, some industries are already facing these challenges. For example,
on-board software in a spacecraft or an extra-terrestrial rover should remain operational at any time,
which brings the obligation to assemble a team devoted to software maintenance [73]. The cost of such
maintenance cannot be avoided in the reuse of buildings and may be very high in the long run. Two
main options are available:

• First, the BIM model and database are based on an open-source core with interoperability done by
private companies. Maintenance is performed in an open and collaborative framework.

• Second, the BIM model and database rely fundamentally on proprietary software. Private actors
perform maintenance.

Both options have their advantages and associated risks. For open-source solutions, the appearance
of different branches is highly likely for a long-term project, which means that interoperability in
practice becomes harder and harder to achieve. For proprietary solutions, this issue is less problematic,
but the appearance of a monopolistic private software editor taking maintenance in charge is a risk
that cannot be neglected.

Finally, the central learning from this remark is that the BIM-Workflow and database should
remain as simple as possible, to ease maintenance. The inflation of BIM complexity should be regarded
with concern, as it also has an environmental impact that is not yet evaluated. In essence, the data
necessary to the implementation of a deconstruction scheme should be stored safely, possibly on
servers in different locations, and remain accessible to project teams in a distant future.
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5.3. BIM-LCA Workflows and Generative Design

Recent studies have dealt with the automation of the exchanges between BIM and LCA, allowing
a reactive LCA to design changes. But the lack of data for initial LCA approaches during the early
phases of a project needs to be improved. In general, better interoperability between all BIM and
LCA software is still expected [10,30,74]. BIM is a data source for LCA—and in the same way that
parametric design has been developed for design—a parametric LCA [75] would be linked to the BIM
model to enable immediate consideration of model changes in terms of environmental impacts. In this
way, we could estimate the impact of different structural design options. Developments to integrate
deconstruction plans with long-term tracked data would facilitate the anticipation of reuse. [46,57].
There is also a part of a lack of adequate information and uncertainties about future technologies,
which complicates scenarios based on high information traceability. Most researches have focused on
the impact of climate change [26], but the set of LCA impact indicators now needs to be developed to
avoid pollution displacements.

5.4. Evolution of LCA

The LCA applied in this study is based on standard NF EN 15804-A1 [69]. Additional indicators
to better evaluate reuse are expected. The time parameter remains a missing parameter for the moment.
Thus, the aspect of material aging and their monitoring would allow a better evaluation of reusability
and residual lifetime in real-time to control life cycle durations better. Monitoring linked to the LCA
tool would enable the evolution or degradation of the material at the different stages of its life cycle [62].
EOL scenarios could be integrated better into the LCA to anticipate reuse and obtain more easily the
impacts according to the different reuse operations envisaged conceptually. The problem of anticipation
also lies in the uncertainty linked to the long term, which is difficult to take into account upstream.

Similarly, we could not explore the impact deconstruction phase of reuse due to a lack of data. It
is both very time-consuming and very uncertain to include the impact on construction sites in LCAs.
This is why a methodology integrating the notion of prospective scenarios with an estimate of the
impact of the construction phase would allow the first approach in order not to neglect this impact.
Other studies have chosen to focus on the creation of sustainability indicators [76] to complement the
LCA tool. We can include the reuse and its specifications among these indicators.

Finally, a transcription of these environmental data into IFC formats [46] would facilitate the
transmission between different BIM and LCA software. Some incompatibilities between BIM and LCA
still exist due to errors in the export or import of IFC [49].

6. Conclusions and Perspective

This study has demonstrated the practical application of reuse through applied case studies with a
suite of tools and constitute guidelines for practitioners. The constructive arrangements and structure
typology feed the design for reuse (DfReu) concept, which is also based on a BIM framework and
complete traceability defined in this study.

The study is limited for the time being to the use of passive data, i.e., data entered during the
design and execution phases. A certain number of data are variables during the life of the structure,
and other data are generated during the operation phase. Thus, the methodology did not integrate
the possibility of having data emitted by sensors, for example. Another challenge is to link data from
data acquisition systems, sensors, laser scan, drones, during the monitoring of buildings to evaluate
the real-time impacts. Moreover, due to the lack of data collected on construction and deconstruction
processes, the link with real-time interactive LCA could not be developed. Concerning the data
identified in the study, the implementation of a quality control process at the national level, with
insurers, in particular, would make it possible to specify the devices chosen (number of RFID chips per
element, type of data protection, etc.) to develop professional construction rules.
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This study is already leading to the recommendation of new standards. Thus, construction policies
will be able to favor the implementation of a specific type of structure for high-rise buildings, offices
and housing (determination of span, height under ceiling) both to reduce environmental impacts
during construction and also during deconstruction to reuse. The toolchain presented and tested in
this paper can be extended to a national practice in order also to benefit from a territory-wide pooled
stock of elements.

Moreover, this process is generalizable and adaptable for all BIM software, which would give
more extensive access to the methodology proposed in this paper.

The generalization of the stock would also increase the number of elements available for reuse.
We had to make simplifications in terms of queries for the calculation model. The next part of the

research is to make possible queries integrating more complex requests (such as compound bending).
Another avenue for our future research is an adaptation of the LOD and LOI 600 and 700 of the

BIM to LCA. Thus, a correlation between the BIM data of the project with their respective LOI levels in
terms of environmental information and the data in the LCA database could generate LCA levels in
first approaches at the beginning of the design. Subsequently, LOI for the EPDs would allow us to
specify the environmental impacts progressively before a final comprehensive LCA. Further research
on LCA LOIs is needed as well as structural design principles that maximize reuse from the early
stages of a project.

Future research to assess the impact of the construction and deconstruction phase of different
types of structures has also been initiated in this paper. For this purpose, a large amount of data
needs to be acquired. We also need experimental construction sites, with involved clients to encourage
all stakeholders to measure, control, and capitalize on environmental data (such as time of use of
construction machines).
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LCI Life Cycle Inventory
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Appendix A

Table A1. Detailed properties of the new LOD/LOI for load-bearing systems.

LOD/LOI of 6D BIM Element Static Properties Element Mechanical
Properties Overall Structural Behavior Properties Reuse Process Properties

100: Concept Design geometry, resistance class, relevant standard position, approximate type of
loads, exposure class

200: Developed Design

Geometry (length, cross section), approximate
composition (weight, Young’s moduli,
densities, mass inertia, Poisson’s ratio),

resistance class, relevant standard

position, type of loads, nominal
loading capacity, stress applied, exposure class

300: Technical Design

Geometry (length, cross section), detailed
composition (weight, Young’s moduli,
densities, mass inertia, Poisson’s ratio),

resistance class, relevant standard

position, type of loads, nominal
loading capacity, stress applied,

connection conditions, creep,
ultimate normal effort

exposure class, approximate differential
shortening, approximate soil compaction,
approximate differential displacements

between floors, scaling criterion,

anticipated deconstruction phasing,
environmental impact (EPD),

theorical service life

400: Construction

Geometry (length, cross section), detailed
composition (weight, Young’s moduli,
densities, mass inertia, Poisson’s ratio),

resistance class, relevant standard

position, type of loads, nominal
loading capacity, stress applied,

connection conditions, creep,
ultimate normal effort

exposure class, detailed differential shortening,
detailed soil compaction, detailed top

displacement, detailed top acceleration,
detailed differential displacements between

floors, scaling criterion

anticipated deconstruction phasing,
environmental impact (EPD),

theorical service life, exit scenario

500: As Built Geometry (length, cross section), real
composition, resistance class, relevant standard

Real position, type of loads,
nominal loading capacity, stress

applied, detailed connection,
creep, ultimate normal effort,

aging characteristics

exposure class, real differential shortening, real
soil compaction, real top displacement, real top

acceleration, real differential displacements
between floors, scaling criterion

checks required at EOL, anticipated
deconstruction phasing, hosting on

the digital material bank
environmental impact (EPD),

theorical service life, exit scenario,
anticipated probabilities of failure

600: In Use

Damages on element (impacts, chemical
attacks, corrosion, fatigue degradation, rust
formation and plasticization,), component

replacement

monitoring the aging of the
materials and the data obtained

by the monitoring system

exposure class, differential shortening, soil
compaction, top displacement, top

acceleration, differential displacements
between floors, scaling criterion, useful life of

structure and damages (storm, fire,
earthquakes, heavy snow, high and low

temperatures, coastal or marine environments)

700: Deconstruction and Reuse Checks between theoretical data and
physically traced data

Checks between theoretical data
and physically and monitoring

traced data checks of aging
characteristics

Checks between theoretical data and
monitoring (frequency and duration of loading,

displacements) traced data

Checks required and protocol,
characterization test, residual

performance tests, probabilities of
failure, deconstruction phasing
(transport and reuse or disposal

scenario), element availability, LCA
of deconstruction process, remaining

lifespan estimation
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28. Veselka, J.; Růžička, J.; Lupíšek, A.; Hájek, P.; Mančík, S.; Žd’ára, V.; Široký, M. Connecting BIM and LCA:

The Case Study of an Experimental Residential Building. In Proceedings of the SBE D-A-CH 19 IOP Conf.
Ser. 323, Graz, Austria, 11–14 September 2019; IOP Science: Bristol, UK, 2019; p. 012106. [CrossRef]

29. Anderson, J.E.; Silman, R. A Life Cycle Inventory of Structural Engineering Design Strategies for Greenhouse
Gas Reduction. Struct. Eng. Int. 2009, 19, 283–288. [CrossRef]

30. Wong, J.K.W.; Zhou, J. Enhancing environmental sustainability over building life cycles through green BIM:
A review. Autom. Constr. 2015, 57, 156–165. [CrossRef]

31. Fivet, C. Design of Load-Bearing Systems for Open-Ended Downstream Reuse. In Proceedings of the SBE19
Brussels BAMB-CIRCPATH IOP Conf. Series: Earth and Environmental Science 225, Brussels, Belgium, 5–7
February 2019; IOP Science: Bristol, UK, 2019; p. 012031. [CrossRef]

32. Akadiri, P.O.; Chinyio, E.A.; Olomolaiye, P.O. Design of A Sustainable Building: A Conceptual Framework
for Implementing Sustainability in the Building Sector. Buildings 2012, 2, 126–152. [CrossRef]

33. Bertin, I.; Lebrun, F.; Braham, N.; Le Roy, R. Construction, deconstruction, reuse of the structural elements:
The circular economy to reach zero carbon. In Proceedings of the SBE D-A-CH 19 IOP Conf. Ser. 323, Graz,
Austria, 11–14 September 2019; IOP Science: Bristol, UK, 2019; p. 012020. [CrossRef]

34. ISO 14040:2006. Environmental Management—Life Cycle Assessment—Principles and Framework; International
Standardisation Organisation: Geneva, Switzerland, 2006.

35. Slobodchikov, R.; Lohne Bakke, K.; Ragnar Svennevig, P.; O’Born, R. Implementing climate impacts in road
infrastructure in the design phase by combining BIM with LCA. In Proceedings of the SBE D-A-CH 19 IOP
Conf. Ser. 323, Graz, Austria, 11–14 September 2019; IOP Science: Bristol, UK, 2019; p. 012089. [CrossRef]

36. ISO 14044:2006. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International
Standardisation Organisation: Geneva, Switzerland, 2006.

37. Nizam, R.S.; Zhang, C.; Tian, L. A BIM based tool for assessing embodied energy for buildings. Energy Build.
2018, 170, 1–14. [CrossRef]

38. Najjar, M.K.; Figueiredo, K.; Palumbo, M.; Haddad, A.N. Integration of BIM and LCA: Evaluating the
environmental impacts of building materials at an early stage of designing a typical office building. J. Build.
Eng. 2017, 14, 115–126. [CrossRef]

39. Yung, P.; Wang, X. A 6D CAD Model for the Automatic Assessment of Building Sustainability. Int. J. Adv.
Robot. Syst. 2014, 11, 131. [CrossRef]

40. Vandervaeren, C.; Galle, W.; De Temmerman, N. Parametric life cycle assessment of a reusable brick veneer.
In Proceedings of the SBE D-A-CH CONFERENCE 2019 IOP Conf. Ser. 323, Graz, Austria, 11–14 September
2019; IOP Science: Bristol, UK, 2019; p. 012137. [CrossRef]

41. Won, J.; Cheng, J.C.P. Identifying potential opportunities of building information modeling for construction
and demolition waste management and minimization. Autom. Constr. 2017, 79, 3–18. [CrossRef]

http://dx.doi.org/10.1016/j.proeng.2015.08.485
http://dx.doi.org/10.1061/9780784412688.018
http://dx.doi.org/10.28991/cej-2020-03091453
http://dx.doi.org/10.1016/j.jclepro.2018.11.247
http://dx.doi.org/10.1016/j.jclepro.2017.03.138
http://dx.doi.org/10.1088/1755-1315/323/1/012106
http://dx.doi.org/10.2749/101686609788957946
http://dx.doi.org/10.1016/j.autcon.2015.06.003
http://dx.doi.org/10.1088/1755-1315/225/1/012031
http://dx.doi.org/10.3390/buildings2020126
http://dx.doi.org/10.1088/1755-1315/323/1/012020
http://dx.doi.org/10.1088/1755-1315/323/1/012089
http://dx.doi.org/10.1016/j.enbuild.2018.03.067
http://dx.doi.org/10.1016/j.jobe.2017.10.005
http://dx.doi.org/10.5772/58446
http://dx.doi.org/10.1088/1755-1315/323/1/012137
http://dx.doi.org/10.1016/j.autcon.2017.02.002


Sustainability 2020, 12, 3147 23 of 24

42. Liu, Z.; Osmani, M.; Demian, P.; Baldwin, A. A BIM-aided construction waste minimisation framework.
Autom. Constr. 2015, 59, 1–23. [CrossRef]

43. Bilal, M.; Oyedele, L.O.; Akinade, O.; Ajayi, S.; Alaka, H.A.; Owolabi, H.A.; Qadir, J.; Pasha, M.; Bello, S.A.
Big data architecture for construction waste analytics (CWA): A conceptual framework. J. Build. Eng. 2016, 6,
144–156. [CrossRef]

44. Akinade, O.; Oyedele, L.O.; Bilal, M.; Ajayi, S.; Owolabi, H.A.; Alaka, H.A.; Bello, S.A. Waste minimisation
through deconstruction: A BIM based Deconstructability Assessment Score (BIM-DAS). Resour. Conserv.
Recycl. 2015, 105, 167–176. [CrossRef]

45. Akanbi, L.A.; Oyedele, L.O.; Akinade, O.; Ajayi, A.O.; Delgado, M.D.; Bilal, M.; Bello, S.A. Salvaging building
materials in a circular economy: A BIM-based whole-life performance estimator. Resour. Conserv. Recycl.
2018, 129, 175–186. [CrossRef]

46. Akinade, O.; Oyedele, L.O.; Omoteso, K.; Ajayi, S.O.; Bilal, M.; Owolabi, H.A.; Alaka, H.A.; Ayris, L.;
Looney, J.H. BIM-based deconstruction tool: Towards essential functionalities. Int. J. Sustain. Built Environ.
2017, 6, 260–271. [CrossRef]

47. Lee, S.; Tae, S.; Roh, S.; Kim, T. Green Template for Life Cycle Assessment of Buildings Based on Building
Information Modeling: Focus on Embodied Environmental Impact. Sustainability 2015, 7, 16498–16512.
[CrossRef]

48. Ilhan, B.; Yaman, H. Green building assessment tool (GBAT) for integrated BIM-based design decisions.
Autom. Constr. 2016, 70, 26–37. [CrossRef]

49. Forth, K.; Braun, A.; Borrmann, A. BIM-integrated LCA - model analysis and implementation for practice. In
Proceedings of the SBE D-A-CH 19 IOP Conf. Ser. 323, Graz, Austria, 11–14 September 2019; IOP Science:
Bristol, UK, 2019; p. 012100. [CrossRef]

50. Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building Information Modeling (BIM) for green buildings: A critical review
and future directions. Autom. Constr. 2017, 83, 134–148. [CrossRef]

51. BIMFORUM. LEVEL OF DEVELOPMENT (LOD) SPECIFICATION PART I COMMENTARY, April 2019.
Available online: https://bimforum.org/wp-content/uploads/2019/04/LOD-Spec-2019-Part-I-and-Guide-
2019-04-29.pdf (accessed on 9 January 2020).

52. Ganter, M.; Lützkendorf, T. Information management throughout the life cycle of buildings—Basics and new
approaches such as blockchain. In Proceedings of the SBE D-A-CH 19 IOP Conf. Ser. 323, Graz, Austria,
11–14 September 2019; IOP Science: Bristol, UK, 2019; p. 012110. [CrossRef]

53. Röck, M.; Hollberg, A.; Habert, G.; Passer, A. LCA and BIM: Visualization of environmental potentials in
building construction at early design stages. Build. Environ. 2018, 140, 153–161. [CrossRef]

54. Röck, M.; Passer, A.; Ramon, D.; Allacker, K. The coupling of BIM and LCA—Challenges identified through
case study implementation. In Proceedings of the Sixth International Symposium on Life-Cycle Civil
Engineering, Ghent, Belgium, 28–31 October 2018; Caspeele, R., Taerwe, L., Frangopol, D.M., Eds.; CRC
Press: Boca Raton, FL, USA, 2018; pp. 841–846.

55. Figl, H.; Ilg, M.; Battisti, K. 6D BIM–Terminal: Missing Link for the design of CO2-neutral buildings. In
Proceedings of the SBE D-A-CH 19 IOP Conf. Ser. 323, Graz, Austria, 11–14 September 2019; IOP Science:
Bristol, UK, 2019; p. 012104. [CrossRef]

56. Cavalliere, C.; Hollberg, A.; Dell’Osso, G.; Habert, G. Consistent BIM-led LCA during the entire building
design process. In Proceedings of the SBE D-A-CH 19 IOP Conf. Ser. 323, Graz, Austria, 11–14 September
2019; IOP Science: Bristol, UK, 2019; p. 012099. [CrossRef]

57. Akinade, O.; Oyedele, L.O.; Ajayi, S.; Bilal, M.; Alaka, H.A.; Owolabi, H.A.; Bello, S.A.; Jaiyeoba, B.E.;
Kadiri, K.O. Design for Deconstruction (DfD): Critical success factors for diverting end-of-life waste from
landfills. Waste Manag. 2017, 60, 3–13. [CrossRef]

58. Wastiels, L.; Decuypere, R. Identification and comparison of LCA-BIM integration strategies. In Proceedings
of the SBE D-A-CH 19 IOP Conf. Ser. 323, Graz, Austria, 11–14 September 2019; IOP Science: Bristol, UK,
2019; p. 012101. [CrossRef]

59. Shadram, F.; Johansson, T.; Lu, W.; Schade, J.; Olofsson, T. An integrated BIM-based framework for minimizing
embodied energy during building design. Energy Build. 2016, 128, 592–604. [CrossRef]

60. Lu, K.; Jiang, X.; Tam, V.W.Y.; Li, M.; Wang, H.; Xia, B.; Chen, Q. Development of a Carbon Emissions
Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction
of Hospital Projects. Sustainability 2019, 11, 6274. [CrossRef]

http://dx.doi.org/10.1016/j.autcon.2015.07.020
http://dx.doi.org/10.1016/j.jobe.2016.03.002
http://dx.doi.org/10.1016/j.resconrec.2015.10.018
http://dx.doi.org/10.1016/j.resconrec.2017.10.026
http://dx.doi.org/10.1016/j.ijsbe.2017.01.002
http://dx.doi.org/10.3390/su71215830
http://dx.doi.org/10.1016/j.autcon.2016.05.001
http://dx.doi.org/10.1088/1755-1315/323/1/012100
http://dx.doi.org/10.1016/j.autcon.2017.08.024
https://bimforum.org/wp-content/uploads/2019/04/LOD-Spec-2019-Part-I-and-Guide-2019-04-29.pdf
https://bimforum.org/wp-content/uploads/2019/04/LOD-Spec-2019-Part-I-and-Guide-2019-04-29.pdf
http://dx.doi.org/10.1088/1755-1315/323/1/012110
http://dx.doi.org/10.1016/j.buildenv.2018.05.006
http://dx.doi.org/10.1088/1755-1315/323/1/012104
http://dx.doi.org/10.1088/1755-1315/323/1/012099
http://dx.doi.org/10.1016/j.wasman.2016.08.017
http://dx.doi.org/10.1088/1755-1315/323/1/012101
http://dx.doi.org/10.1016/j.enbuild.2016.07.007
http://dx.doi.org/10.3390/su11226274


Sustainability 2020, 12, 3147 24 of 24

61. Cavalliere, C.; Raffaele Dell’Osso, G.; Pierucci, A.; Iannone, F. Life cycle assessment data structure for building
information modelling. J. Clean. Prod. 2018, 199, 193–204. [CrossRef]

62. Iacovidou, E.; Purnell, P.; Lim, M.K. The use of smart technologies in enabling construction components
reuse: A viable method or a problem creating solution? J. Environ. Manag. 2017, 216, 214–223. [CrossRef]

63. The RIBA Plan of Work. 2013. Available online: https://www.ribaplanofwork.com/About/Concept.aspx
(accessed on 17 December 2019).

64. BS France-Mediaconstruct, Notions Clés du BIM. Available online: https://www.buildingsmartfrance-
mediaconstruct.fr/definition-notions-bim/ (accessed on 20 September 2019).

65. ISO 29481-1:2016, Building Information Models—Information Delivery Manual—Part 1: Methodology and Format;
International Standardisation Organisation: Geneva, Switzerland, 2016.

66. ISO 19650:2018, Organization and Digitization of Information about Buildings and Civil Engineering Works,
Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling;
International Standardisation Organisation: Geneva, Switzerland, 2018.

67. Singapour, « Banc D’essai » de la Ville Digitale. Available online: https://www.lemonde.fr/smart-cities/article/

2016/11/23/singapour-banc-d-essai-de-la-ville-digitale_5036699_4811534.html (accessed on 13 November
2019).

68. Pending Decree. (n◦2018-1021), Loi ELAN du 23 novembre 2018.
69. NF EN 15804+A1 April 2014, Sustainability of Construction Works—Environmental Product Declarations—Core

Rules for the Product Category of Construction Products; AFNOR, French Standardization Association, La Plaine
Saint-Denis: Saint-Denis, France, 2014.

70. Eleftheriadis, S.; Duffour, P.; Mumovic, D. BIM-embedded life cycle carbon assessment of RC buildings using
optimised structural design alternatives. Energy Build. 2018, 173, 587–600. [CrossRef]

71. Burciaga, U.M.; Sáez, P.V.; Ayón, F.J.H. Strategies to Reduce CO2 Emissions in Housing Building by Means
of CDW. Emerg. Sci. J. 2019, 3, 274–284. [CrossRef]
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