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SUBGROUP GROWTH OF RIGHT-ANGLED ARTIN AND COXETER GROUPS

We determine the factorial growth rate of the number of finite index subgroups of right-angled Artin groups as a function of the index. This turns out to depend solely on the independence number of the defining graph. We also make a conjecture for right-angled Coxeter groups and prove that it holds in a limited setting.

1. Introduction 1.1. Subgroup growth. This paper is a contribution to the topic of subgroup growth. This is the study of the functions n Þ Ñ s n pΓq as n Ñ `8, where Γ is a finitely generated group and s n pΓq " ˇˇtΓ 1 ď Γ : |Γ{Γ 1 | " nu ˇǐs the number of subgroups of index exactly n in Γ. An introduction to the topic, together with a survey of the state of the art at the beginning of the millenium, are given in the book [START_REF] Lubotzky | Subgroup growth[END_REF] by A. Lubotzky and D. Segal. In what follows, we will recall only the parts of the theory which are directly relevant to what we want to do.

The starting point for most results in this area is the immediate relation between subgroups and transitive permutation representations: if Γ contains a subgroup Γ 1 with index n then the action on the left-cosets Γ{Γ 1 gives, once they are labeled with 1, . . . , n, (with the coset identity labeled 1, but otherwise arbitrarily) a homomorphism from Γ to the symmetric groups S n (the group of bijections of the set t1, . . . , nu), the image of which acts transitively on t1, . . . , nu. In the other direction, if Γ acts transitively on t1, . . . , nu then the stabiliser of 1 is a subgroup of index n in Γ. The second map is a section of the first, and it is easily seen that the preimage of a subgroup corresponds to the relabelings of 2, . . . , n, so there are pn ´1q! of them. Thus if we define t n pΓq " |tρ P HompΓ, S n q : Impρq is transitiveu| we have s n pΓq " t n pΓq pn ´1q! .

Studying t n pΓq directly is rather hard and usually one instead considers the total number of permutation representations. Thus let h n pΓq " |HompΓ, S n q| .

In many cases the asymptotic behaviours of h n and t n are similar. Let us briefly consider the case of the free groups (which will be useful to us later). Let Γ be freely generated by a 1 , . . . , a r . An element in hompΓ, S n q is just a r-tuple of permutations, corresponding to the images of the generators. Thus h n pΓq " pn!q r , and while it seems hard to directly count the transitive representations, the very fast growth of h n pΓq together with the fact that an arbitrary representation decomposes into smaller transitive ones allows to prove that the proportion of non-transitive representations is Op1{nq (see [18, p. 40] or [START_REF] Dixon | The probability of generating the symmetric group[END_REF] for a more precise result). In particular, as n Ñ 8:

s n pΓq " t n pΓq{pn ´1q! " h n pΓq{pn ´1q! " n ¨pn!q r´1

for the free group 1 . When Γ is not free one must count tuples of permutations with added constraints and this is much harder. A character-theoretical approach succeeded in getting an asymptotic equivalent for cofinite Fuchsian groups (groups acting properly discontinuously on the hyperbolic plane H 2 with a fundamental domain of finite volume). In [START_REF] Müller | Character theory of symmetric groups and subgroup growth of surface groups[END_REF] T. Müller and J.-C. Schlage-Puchta deal with surface groups and in [START_REF] Liebeck | Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks[END_REF] M. Liebeck and A. Shalev deal with more general Fuchsian groups (free products of finite groups were studied earlier by Müller [START_REF] Müller | Subgroup growth of free products[END_REF]). In all these cases the final result takes the form

s n pΓq " F Γ pnq ¨pn!q ´χpΓq
where χpΓq ă 0 is the Euler characteristic of the orbifold associated to the Fuchsian group and 1 ď F Γ pnq ď OpC ? n q for some C ą 1, which together with Stirling's approximation implies in particular that:

(1.1) lim nÑ`8 log s n pΓq n logpnq " ´χpΓq " volpΓzH 2 q 2π .

A beautiful application of a slightly different version of this result is the counting of arithmetic surfaces by M. Belolipetsky-T. Gelander-A. Lubotzky-A. Shalev [START_REF] Belolipetsky | Counting arithmetic lattices and surfaces[END_REF]. The first step in establishing the asymptotic behaviour of s n for a given group is thus to study the growth of s n pΓq at the scale n n . In general we can ask whether the limit (1.2) lim nÑ`8 log s n pΓq n logpnq exists, and try to compute it in terms of known quantities associated to Γ. An example-driven approach to this is given in [START_REF] Müller | Some examples in the theory of subgroup growth[END_REF]. The more specific motivation for this paper was to study the limit (1.2) for higher-dimensional hyperbolic lattices, in particular in dimension 3. We will review in some detail what is known in general (following the work of I. Agol [START_REF] Agol | The virtual Haken conjecture[END_REF] and D. Wise) in 2.5 below, but let us say now that the picture is much wilder and there is no hope of a result as clean as this. In particular there can be no linear relation between covolume and subgroup growth as in (1.1) (see Section 2.5). We therefore limit our study here to the simplest (in the sense of group presentations) family of known hyperbolic lattices, that of Coxeter groups and more particularly right-angled ones (for which all relations are commutators). Even in this setting we do not reach a complete answer, but we do make a conjecture providing an explicit limit in terms of combinatorial invariants of the Coxeter graph.

We also study right-angled Artin groups for which the problem is somewhat simpler and for which we can compute the limit in (1.2) in all cases. To finish this overview we mention [START_REF] Liskovets | Enumeration of subgroups in the fundamental groups of orientable circle bundles over surfaces[END_REF] in which the subgroup growth of the fundamental groups of certain (non-hyperbolic) 3-manifolds is computed. 1 Recall that we write f pnq " gpnq as n Ñ 8 for two functions f, g : N Ñ R to indicate that f pnq{gpnq Ñ 1 as n Ñ 8.

Artin groups.

Let G be a finite graph: throughout this paper we will represent it by a set of vertices (which we will also denote by G) together with a symmetric relation " which signifies adjacency; to simplify matters we do not allow v " v (thus our graphs are combinatorial graphs: they have no loops or mutliple edges). The right-angled Artin group associated to G is the group Γ Art pGq given by the presentation Γ Art pGq " xσ v : v P G, σ v σ w " σ w σ v if v " wy In particular, the complete graph on r vertices corresponds to the free abelian group Z r , and a graph with no edges yields a free group.

To state our result we need to recall the definition of a well-known invariant of finite graphs. An independent set of vertices in G is a subset S Ă G such that no two distinct elements of S are adjacent in G. The independence number of the graph G is the maximal cardinality of such a subset. We will use the notation αpGq for it. Our theorem is then stated as follows.

Theorem A. Let G be a finite graph and Γ " Γ Art pGq. Then: and it is almost immediately proven from the case of the free group: let S " tv 1 , . . . , v α u be a maximal independent set (that is |S| " αpGq), then the map on generators

(1.
σ v i Þ Ñ a i , σ v , v R S Þ Ñ Id
defines a surjective morphism from Γ to the free group Φ α on a 1 , . . . , a α . It follows that t n pΓq ě t n pΦ α q and we have seen that t n pΦ α q ě pn `Op1qq ¨pn!q α , so we get (1.4). where C depends (rather transparently, but we will not give a precise statement here) on G, and the proof is much more involved. We use induction on the number of vertices to prove it. To carry out the induction step one fixes a vertex v P G. Ideally, for ρ P hompΓ, S n q, whenever ρpσ v q has few fixed points every ρpσ w q for w " v must have many small orbits and this drastically limits their number; while when ρpσ v q has many fixed points we can forget it and use the induction hypothesis on the remaining vertices. In practice this vague idea is in default, and we apply a scheme reminescent of it by separating the count according to the size of the orbits of the group xρpσ w q : w " vy: the three steps (separating, counting with large orbits and counting with small orbits) are given in Lemmas 4.2, 4.3 and 4.4.

Sharper upper bounds.

There are cases where we get both a much sharper upper bound and a much simpler proof. For example, if G is a 2r-gon then removing one edge every two we get a surjection pZ 2 q r Ñ Γ Art pGq and since the number of commuting pairs of permutations equals exactly Πpnq¨n! (where Πpnq counts the number of partitions of the integer n) we get that s n pΓ Art pGqq ď nΠpnq r ¨pn!q r´1 , which is much smaller than the bound given by (1.5) since Πpnq " OpC ? n q. This trick can in fact be applied to all bipartite graphs to get an upper bound of the same order, which we do in Proposition 3.1. It does not work in general, for example for a p2r `1q-gon it cannot give better than an upper bound nΠpnq r ¨pn!q r which is off by a factor of n!.

1.2.4.

A short survey on independence numbers of graphs. First we note that the independence number has some geometric significance with respect to right-angled Artin groups: the group Γ Art pGq is naturally the fundamental group of a cube complex, called the Salvetti complex, and α counts the maximal number of disjoint hyperplanes in this complex (see for instance [START_REF] Vogtmann | OutpFnq and everything in between: automorphism groups of RAAGs, Groups St Andrews[END_REF]Example 5.2]).

The independence number is rather hard to compute in general: the fastest known algorithms have exponential complexity (in the number of vertices). The problem of finding a maximum independent set is equivalent to finding a maximum clique in the complement graph, and a survey of the algorithmic aspects of the latter is given in [START_REF] Bomze | The maximum clique problem, Handbook of combinatorial optimization[END_REF]. For certain classes of sparse graphs such as graphs of bounded degree and planar graphs naïve algorithms for the clique problem work in linear time; thus, the computation of the independence number is fast for very dense graphs.

For various models of random graphs the behaviour of the independence number is rather well-understood. In the Erdös-Rényi model G r,p there is the following result of A. Frieze [START_REF] Frieze | On the independence number of random graphs[END_REF]. Let ε ą 0 be fixed, then ˇˇˇα pG r,p q ´2 p plogprpq ´log logprpq ´log 2 `1q ˇˇˇď ε p with probability going to 1 as N Ñ 8, if d {N ď p " pprq " op1q for some fixed sufficiently large constant d ε . For regular random graphs there are upper and lower bounds which are linear in the number of vertices. Tables for the best ones to date are given in [START_REF] Duckworth | Large independent sets in random regular graphs[END_REF]. In particular for a random trivalent graph G r,3 on r vertices we have, almost surely as r Ñ `8:

0.43 ď αpG r,3 q r ď 0.46 and (older) experimental data suggests there might exist α -0.439 such that αpG r,3 q{r " α `op1q almost surely as r Ñ 8 [START_REF] Mckay | Independent sets in regular graphs of high girth[END_REF].

1.3. Coxeter groups. Let G be a graph. The right-angled Coxeter group Γ Cox pGq associated to G is obtained from the Artin group by adding the condition that every generator be an involution. Namely :

Γ Cox pGq " xσ v : v P G, σ 2 v " Id, σ v σ w " σ w σ v if v "
wy. We will comment on the geometric significance of this presentation below, for now let us state our conjecture on subgroup growth. For this we need a new invariant γ of a graph. Recall that a clique in G is a subset of vertices, any two of which are adjacent to each other (in other words, a complete induced subgraph). We will call an induced subgraph C of G a clique collection if each connected component of C is a complete graph.

If C 1 , . . . , C q are the connected components of a clique collection C then we put wpCq "

q ÿ i"1 ˆ1 ´1 2 |C i |
ȧnd we define γpGq as the maximum for w:

(1.6) γpGq " max C wpCq
where the maximum is taken over all clique collections in G. Figure 1 shows two different collections realising γpGq " 7{4 for the icosahedral graph. Conjecture B. Let G be a finite graph and Γ " Γ Cox pGq. Assume that G is not a complete graph (so Γ is infinite), then we have :

(1.7) lim nÑ`8
ˆlog s n pΓq n log n ˙" γpGq ´1.

We note that the limit inferior in this conjecture holds for all finite graphs, and is proven similarly to the case of Artin group above (we will explain this below). Proving that the upper bound holds (if it does) in general seems much harder than in the case of Artin groups; on the other hand it is not hard to construct many examples where simple tricks can be used to demonstrate that it is correct (see 2.2.1 for a large family of examples, and 2.5.2 for a geometric example). We also give a result, whose proof is much harder than the constructions above, establishing the upper bound for s n pΓ Cox pGqq under strong structural constraints on the graph G. It includes the case of trees, for which we also give a simpler proof (see Proposition 3.6). In the theorem below (and in the rest of the paper), N 1 pvq denotes the set of neighbours of a vertex v P G. The results is as follows.

Theorem C. Let G be a finite graph such that there exist vertices v 0 , . . . v l and w 1 , . . . , w s in G such that the 1-neighbourhood of each v i is a tree, as is the 2-neighbourhood of each w j , these neighbourhoods are pairwise disjoint, and the graph Gz ˜tv 1 , . . . , v l u Y s ď j"1 N 1 pw j q is a union of trees. Then Conjecture B holds for G.

In practical terms the graphs to which this theorem applies can be constructed as follows: take a tree G 0 and choose disjoint sets S 1 , . . . , S l and T 1 , . . . , T s of leaves of G 0 . Add vertices v 1 , . . . , v l such that v i is adjacent to every vertex in S i , and star graphs S 1 , . . . , S s such that every vertex in T j is adjacent to exactly one leaf of S j . Figure 3 pictures two examples of such graphs (with the v i s marked red and the w j s and neighbours green). Many graphs do not satisfy the hypotheses of this theorem: for example, a simple obstruction to do so is to have a triangle. There are no 3-dimensional hyperbolic right-angled polyhedra of finite volume whose dual graph does; however we give an elementary proof of the conjecture for a simple example (the ideal octahedron) in 2.5.2 below. We note that our result recovers a crude form of Liebeck and Shalev's asymptotic (1.1) for Fuchsian reflection groups associated to right-angled hyperbolic polyhedra (see section 2.4 below); however we actually make use of a particular case of their result in our proof.

1.3.1. The lower bound. As mentioned above the limit inferior in Conjecture B always holds and its proof is quite simple. Let C " Ť q i"1 be a clique collection realising γpGq. Since C is an induced subgraph in G we get a surjection

Γ Cox pGq Ñ Γ Cox pCq -pZ{2Zq |C 1 | ˚. . . ˚pZ{2Zq |Cq| ,
where for groups G, H the group G ˚H denotes their free product. Now as a particular case of Müller's result on free products [START_REF] Müller | Subgroup growth of free products[END_REF] (see also [START_REF] Lubotzky | Subgroup growth[END_REF]Theorem 14.2.3], and we give an elementary proof in 3.5 below) we get that (1.8) s n pΓ Cox pCqq " F pnq ¨pn!q

ř q i"1 ´1´1 2 |C i | ¯´1
where 1 ď F pnq ď C ? n .

1.3.2. The upper bound. For the upper bound we would like to proceed in a similar manner as we did for Artin groups. However a major complication arises, which we were not able to overcome without the additional hypotheses on G in Theorem C. The problem is that when removing a neighbourhood of a vertex γ can decrease by 1/2 instead of 1 and this forbids a naive application of the inductive hypothesis. Instead we have to study the representations of the group on the smaller graph with constraints coming from the removed vertices, which we were only able to carry to term for the graphs satisfying the hypotheses in the theorem (see Proposition 5.1). It would be easy to somewhat artificially include more graphs in our statement without complicating much the arguments in the proof (for example we might add new vertices adjacent to the free leaves of the glued star graphs) but we will not do so here as it represents little progress towards Conjecture B and we are not aware of any interesting further example which this would apply to. We also note that the argument we used for bipartite graphs in the Artin case completely breaks down for Coxeter groups. It gives bounds which are better than the trivial bound h n pΓ Cox pGqq ď n |G|n{2 but in the general case these upper bounds are still far away from the lower bound.

1.4. Layout of the paper. The further sections in this paper are logically independent from each other. We begin by discussing various examples of Coxeter groups in relation with Conjecture B, in Section 2. We also discuss Fuchsian groups, and fundamental groups of hyperbolic 3-manifolds, at the end of this section. In section 3 we give simpler proofs for some particular cases of Theorems A and C. The proof of the former is given in Section 4 and that of the latter in Section 5. The appendix A contains some results on symmetric groups which we use in these proofs, regrouped here for the reader's convenience.

Examples

2.1. Subgroup growth gap for right-angled groups. In general the subgroup growth type can be essentially any growth type (see [START_REF] Lubotzky | Subgroup growth[END_REF]Chapter 13]. Restricting to linear groups, a gap in the growth between polynomial and n logpnq{ log logpnq appears (loc. cit., Chapter 8). For right-angled Artin or Coxeter groups we observe that the gap is much wider. For the representation growth h n it follows that either h n pΓq ě pn!q 1`δ for some δ ą 0, or h n pΓq ď C n n! for some C in the case Γ is virtually abelian (this follows easily from the fact that t n pΓq ď n A n!, and the recursive formula [START_REF] Lubotzky | Subgroup growth[END_REF]Lemma 1.1.3]). In the companion paper [START_REF] Baik | Subgroup growth of virtually cyclic right-angled Coxeter groups and their free products[END_REF] we study the finer growth of h n and s n for some examples of virtually abelian Coxeter groups.

Proof. We deal with Artin and Coxeter groups separately. For Artin groups we first note that as soon as there are two non-adjacent vertices, i.e. if the graph is not complete, the group surjects onto a nonabelian free group and hence the limit inferior is positive. On the other hand, for a complete graph the group is free abelian.

For Coxeter groups if there are three pairwise non-adjacent vertices then the group surjects onto the group Z{2 ˚Z{2 ˚Z{2 for which the limit inferior is positive (using (1.8)). Similarly, if neither in a pair of neighbouring vertices is adjacent to a third vertex the group surjects onto Z{2 ˚pZ{2 ˆZ{2q for which the limit inferior is positive as well (again using (1.8)). On the other hand, in any other situation the group is virtually abelian: assume the graph is not complete, and let v 1 , v 2 be two nonadjacent vertices, then any third vertex must be adjacent to both hence the group is isomorphic to D 8 ˆΓ and we can use an induction argument on Γ.

The result on subgroup growth follows immediately since abelian groups have polynomial subgroup growth (this is an easy exercise, see [START_REF] Lubotzky | Subgroup growth[END_REF]Lemma 1.4.1]) and for a subgroup Γ 1 ď Γ we have s n pΓq ď Cn |Γ{Γ 1 | s n pΓ 1 q (see [START_REF] Lubotzky | Subgroup growth[END_REF]Corollary 1.2.4]).

Note that this argument actually gives a lower bound of 1 (respectively 1{4) in the limit inferior for non-virtually abelian right-angled Artin groups (respectively Coxeter groups).

2.2.

Constructing graphs satisfying Conjecture B.

2.2.1.

A simple construction of many graphs that satisfy Conjecture B. One simple construction to turn a graph G into a graph G 1 for which Conjecture B holds is to attach two leaves to each vertex of G. If G has N vertices then G 1 will have 3N vertices. The number of graphs we construct like this has the same rough growth type as the total number of graphs on 3N vertices (it follows from Pólya's enumeration theorem that this is roughly exppc N 2 q).

To see that G 1 indeed satisfies Conjecture B, we argue as follows. We have two surjections

Γ Cox pΛ 3 q ˚N Γ Cox pG 1 q pZ{2Zq ˚2N ,
where Λ 3 is the line on 3 vertices. The first comes from removing the edge set of G from G 1 and the second is obtained by removing G from G 1 entirely. It follows from Theorem C that the groups on the left and right have the same factorial subgroup growth rate. Since the leaves we added to G realise γpG 1 q, G 1 indeed satisfies the conclusion of Conjecture B.

2.2.2. Joins. Let G 1 , G 2 be two graphs. Their join G 1 ‹ G 2 is the graph on G 1 Y G 2
where two vertices in a G i are adjacent if they are adjacent in G i , and any two pair of vertices in different G i s are adjacent to each other. We have

Γ Cox pG 1 ‹ G 2 q " Γ Cox pG 1 q ˆΓCox pG 2 q.
Proposition 2.2. Suppose there exist β 1 , β 2 P s0, 8r so that

lim nÑ8 logps n pΓ Cox pG i qqq n logpnq " β i , for i " 1, 2. Then (2.1) lim nÑ8 logps n pΓ Cox pG 1 ‹ G 2 qqq n logpnq " maxtβ 1 , β 2 u.
Furthermore if either of the two G i 's is not complete then

(2.2) γpG 1 ‹ G 2 q " maxpγpG 1 q, γpG 2 qq.
In particular, if G 1 and G 2 both satisfy Conjecture B then their join does as well.

Proof. Not every transitive permutation representation ρ : Γ 1 ˆΓ2 Ñ S n restricts to a transitive permutation representation of ρ 1 : Γ 1 Ñ S n . However, because Γ 2 can only permute ρ 1 pΓ 1 q-orbits of equal size and ρ is transitive, all the orbits of ρ 1 pΓq do need to be of equal size. Let us call this orbit size d. If we write OpΓ 1 q " t1, . . . , nu{ρ 1 pΓ 1 q, we have a map

ρ 2 pΓ 2 q ãÑ S d SpOpΓ 1 qq » S d S n{d ,
where SpOpΓ 1 qq denotes the group of bijections OpΓ 1 q Ñ OpΓ 1 q and ρ 2 denotes the restriction of ρ to Γ 2 . Using the fact that Γ 1 is transitive within its orbits, the number of possibilities for the action of Γ 2 in the ρ 1 pΓ 1 q orbits is very limited (Lemma A.3). As such, we obtain

t n pΓ 1 ˆΓ2 q ď ÿ d|n t d pΓ 1 q ¨pd!q n d ´1 ¨tn{d pΓ 2 q ¨dn{d .
By assumption there exists a function F : N Ñ R so that for i " 1, 2, 1 F pnq ď s n pΓ i q{pn!q β i ď F pnq and logpF pnqq " opn logpnqq. Filling this into the bound above, we get

logpt n pΓ 1 ˆΓ2 qq ď max d|n ! log ´nβ 2 n{d d n´d`β 1 d´β 2 n{d ¯) `opn logpnqq
and (2.1) follows.

To prove (2.2) we observe that if C is a clique collection which contains a vertex in both of the two G i 's then it must consist of a single clique, so that wpCq ă 1 and if one of G i has γ ě 1 then any clique collection realising γpG 1 ‹ G 2 q must be contained in one of G 1 , G 2 .

2.2.3.

Graphs with bounded degree. The graphs satisfying the hypotheses of Theorem C directly are atypical but there are still many of them. For instance, the simplest construction of regular graphs that satisfy the hypotheses gives at least pcN q! graphs (where we can take c ě 1{5 ´ε for any ε ą 0) on N vertices (for a particular sequence of N s) (it is easy to modify it to get many more similar examples with better density but we only describe a particularly simple case below).

We proceeds a follows: let T r be the rooted binary tree of height r, to which we add a single vertex adjacent only to the root. We have |T r | " 2 r`1 and we will construct a graph on N " 2 r`1 `2r´1 vertices by gluing 2 r´1 vertices to the 2 r leaves (excluding the leaf connected to the root) of T r . Let M " 2 r´1 " N {5, let l 1 , . . . , l 2M these leaves and v 1 , . . . , v M the additional vertices, then there are p2M q!{p2 M M !q possibilities for joining each v i to two l j s, such that no leaf is adjacent to more than one v i . Any isomorphism between resulting graphs induces an automorphisms of T r , of which there are 2 2M ´1 (at each non-leaf vertex we choose whether to switch its descendents or not). In the end we thus get p2N {5q!{ppN {5q!2 3N {5´1 q pairwise non-isomorphic graphs on N vertices satisfying the conclusion of Conjecture B.

The following easy lemma will allow us to construct, in a different way, large families of examples.

Lemma 2.3. Let G 1 , G 2 be two graphs and C i two clique collections such that γpG i q " wpC i q. Assume that G 1 , G 2 both satisfy the conclusion of Conjecture B. Let G be a graph on G 1 Y G 2 so that 1.
G induces G i on its vertices and 2. no vertex of C 1 is adjacent to a vertex of C 2 in G. Then the conjecture holds for G as well.

Proof. We have

γpGq ď γpG 1 Y G 2 q " γpG 1 q `γpG 2 q and since C 1 Y C 2 is a clique collection in G it follows that γpGq " γpG 1 q `γpG 2 q.
Similarly, the fact that

Γ Cox pG 1 q ˚ΓCox pG 2 q Γ Cox pGq Γ Cox pC 1 q ˚ΓCox pC 2 q
and that the conjecture holds for the G i (as for the C i ) implies that

γpG 1 q `γpG 2 q ´1 ě lim sup nÑ`8 log s n pΓq n log n ě lim inf nÑ`8 log s n pΓq n log n ě γpG 1 q `γpG 2 q ´1
which finishes the proof. Now let I be a graph such that there exists a clique collection C in I with wpCq " γpIq and IzC contains at least three vertices such that no two of them are adjacent to each other. Assume that I satisfies Conjecture B; for example we may take I to be the cycle graph on six vertices. Then for any trivalent graph H we may construct a graph H I satisfying the conclusion of the conjecture, by gluing copies of I along vertices outside C, according to the pattern prescribed by H. Indeed, as There are thus plenty of word-hyperbolic Coxeter groups. A simple example of such a group, for which we know that the conclusion of Conjecture B holds, is any right-angled Coxeter group defined by a tree on more than three vertices. The first family of examples given in 2.2.3 also satisfy Moussong's condition, if we ask that the added vertices do not connect two leaves at distance 2 (as an illustration the first graph in Figure 3 gives an hyperbolic group, but not the second). Thus we have plenty of examples of hyperbolic Coxeter groups for which our conjecture is true.

Ť
Geometric hyperbolic Coxeter groups (that is, Coxeter groups which act cocompactly on an hyperbolic space) are much harder to construct and in fact they do not exist in high dimensions. For example right-angled Coxeter groups cannot embed as discrete cocompact subgroups of POpn, 1q for n ě 5. For cofinite subgroups the best known upper bound is 12 [START_REF] Dufour | Notes on right-angled Coxeter polyhedra in hyperbolic spaces[END_REF] while there are examples known up to dimension 8. Unfortunately, beyond the 2-dimensional case Theorem C does not apply to these groups. We will give an elementary proof for a 3-dimensional cofinite group below.

2.4. Fuchsian groups. We will give three-dimensional examples for the theorem and for the conjecture in the next subsection. For now we explain how our result overlaps with that of Liebeck and Shalev mentioned above. The right-angled Coxeter group Γ " Γ Cox pGq is Fuchsian if and only if G is either a disjoint union of lines, or a cycle with at least five vertices: clearly, both classes of graphs satisfy the hypotheses of Theorem C. Computing γ in this case is easy:

(1) for G " L r , a line with r vertices we have γpL r q " pr `1q{4 ;

(2) for G " P r is a cycle on r vertices we have γpP r q " r{4.

In the former case the group can be either cofinite or not and in the latter case it is always cocompact. If G " L r 1 Y ¨¨¨Y L rs then γpGq " ps `řs i"1 r i q{4 by 1. On the other hand the volume of an hyperbolic right-angled polygon with k right angles and l ideal vertices equals pk `l ´2qπ ´kπ{2, and if it is a fundamental domain for Γ Cox pGq then l " s and k " ř s i"1 pr i ´1q. So we see that

γpGq ´1 " 1 4 ˜´4 `s `s ÿ i"1 r i " 1 4 p´4 `l `pk `lqq " p´2 `l `k{2qπ 2π 
" ´χpΓq so we recover (1.1) in this case. The cocompact case is immediate: the volume of a right-angled r-gon in H 2 is pr ´2qπ ŕπ{2 " pr{4 ´1q2π so by 2 we see that our result and (1.1) are also in accordance for this case.

2.5. Hyperbolic three-manifolds and orbifolds. We saw that in the case of Fuchsian groups the subgroup growth rate (which we consider here only through the factorial growth rate, as in (1.2)) and the covolume are linearly related. We will see here that this is not the case for lattices in three-dimensional hyperbolic space. There is still some relation, though not as precise and only in one direction: a result of T. Gelander [START_REF] Gelander | Volume versus rank of lattices[END_REF] states that there is a constant C such that, if Γ Ă PSL 2 pCq is a discrete subgroup of finite covolume (a lattice-the result is proven more generally for all lattices in semisimple Lie groups) then it is generated by at most C volpΓzH 3 q elements. The subgroup growth rate is at most the number of gerenators minus one so we see that it is linearly bounded by the volume.

The solution of Thurston's conjectures on hyperbolic 3-manifolds by I. Agol [START_REF] Agol | The virtual Haken conjecture[END_REF] (following the work of D. Wise) allows to give an overall picture of subgroup growth for their fundamental groups. Let Γ be a lattice in PSL 2 pCq. The two results of loc. cit. which are of interest to us here are:

(1) There exists a finite-index subgroup Γ 1 Ă Γ which admits a surjective morphism to a nonabelian free group Φ. (2) There exists a surface S of finite type, a pseudo-Anosov diffeomorphism f of S and a subgroup Γ 1 Ă Γ of finite index such that:

Γ 1 -xπ 1 pSq, t : tgt ´1 " f ˚g, @g P π 1 pSqy. log s n pΓ r q n log n ě r ´1 ě δ volpΓ r zH 3 q for some δ ą 0 depending only on Γ. On the other hand, statement 2 allow to construct examples where the volume goes to infinity but the growth rate of s n stays bounded. More precisely, let S, f, Γ 1 be as in the statement and let Γ r " xπ 1 pSq, t r y Ă Γ 1 .

Then Γ r is of index r in Γ 1 (so that volpΓ r zH 3 q goes to infinity) but it is of rank at most 3 ´χpSq and so lim sup nÑ`8 log s n pΓ r q n log n ď 2 ´χpSq is bounded.

In conclusion, the subgroup growth of fundamental groups of hyperbolic 3-manifolds is a land of contrasts: the growth rate is always positive but it can be as large (linear in the volume) or as small (bounded) as possible.

2.5.1. Right-angled Coxeter polytopes in H 3 . Let X be a constant curvature space. A Coxeter polytope in X is a convex polytope P , all of whose dihedral angles (angles between the normals to top-dimensional faces) are of the form π{m for some integer m ě 2. It is right-angled if all of these are π{2. The subgroup of IsompXq generated by the reflections in the top-dimensional faces of P is then a discrete subgroup of IsompXq, of which P is a fundamental domain (this follows from Poincaré's polyhedron theorem). Since two reflections whose mirrors are perpendicular to each other commute, the group associated to a right-angled polytope is a right-angled Coxeter group.

Here we will look at groups for which P is a finite-volume polytope in H 3 . Compared to the general case the growth rate for s n when restricted to these groups is well-behaved with respect to the volume. We observe the following fact. Proof. The upper bound follows from Gelander's much more general result and thus we need only to prove the lower bound. Let P have N vertices. By [2, Corollary 1] there exists C 0 such that volpP q ď c 0 N.

It follows that we may replace volpP q in the statement by N . Let F be the number of faces and A of edges in P , then by Euler's formula we have N ´A `F " 2. By Andreev's theorem (see [START_REF] Christopher | Two-sided combinatorial volume bounds for non-obtuse hyperbolic polyhedra[END_REF]Theorem 3]) all vertices of P are 3-or 4-valent and it follows that we have

3N {2 ď A ď 2N hence N {2 `2 ď F ď N `2
and thus we only have to prove that c|G| ď lim inf nÑ`8

s n pΓ Cox pGqq n log n .

We first note that the graph G has A edges and as above we see that A ď 3F ´6 and so if we denote by dpvq the degree of a vertex we have :

ÿ vPG dpvq " 2A ď 6F ´12
and by Markov's inequality it follows that at least N {7 vertices have degree at most 6 in G.

Let H be the graph induced on the vertices of degree at most 6 in G. Note that αpGq ě αpHq. Now [26, Theorem I.b]2 implies that:

αpHq ě |H| 7 ě N 49 ,
which finishes the proof since γpGq ě αpGq{2.

2.5.2. Ideal octahedron. We can rather easily give good bounds for the subgroup growth rate of the reflection group associated to the ideal right-angled octahedron. The graph G for this polytope is the cubical graph and we have γpGq " 2. On the other hand we can remove four edges from the cube to get a disjoint union of two squares. As the right-angled Coxeter groups associated to a square is D 8 ˆD8 (where D 8 is the infinite dihedral group) we obtain a surjection pD 8 ˆD8 q ˚pD 8 ˆD8 q Ñ Γ Cox pGq which shows that there exists C such that

h n pΓ Cox pGqq ď C 2n ¨pn!q 2
as D 8 ˆD8 is virtually abelian and hence h n pD 8 ˆD8 q ď C n n! (see the remark after Proposition 2.1). In particular we obtain

(2.3) lim nÑ`8 log s n pΓq n log n " 1.
It is also easy to compute the covolume of Γ Cox pGq: the octahedron decomposes as a union of 4 tetrahedra with dihedral angles ppπ{2q 2 , pπ{4q 4 q whose volume is thus given by volpOq " 8Lpπ{4q `4Lpπ{2q " 8Lpπ{4q -3.664...

where L is the Lobachevsky function.

Direct combinatorial approaches

In this section we record two upper bounds on the growth rates we are after. On the one hand the proofs here are much simpler than those in the following sections. Moreover these proofs give sharper bounds. On the other hand, the methods in this section apply to a much more restricted set of graphs.

3.1. Right-angled groups associated to bipartite graphs.

We start with the case where the defining graph is bipartite. 3.1.1. Artin groups.

It turns out that in the case of right-angled Artin groups, a classical theorem from graph theory, due to König, gives the growth rate. Proposition 3.1. Let G be a bipartite graph and Γ " Γ Art pGq. Then we have s n pΓq ď Πpnq αpGq ¨pn ¨pn!q αpGq´1 q for all n ě 1, where Πpnq denotes the number of partitions of an integer n.

It is well-known that log Πpnq " c ? n (see for example [START_REF] Erdös | On an elementary proof of some asymptotic formulas in the theory of partitions[END_REF]) so the upper bound above is much sharper than the general one we obtain in the proof of Theorem A. In particular, it follows from Dixon's theorem [START_REF] Dixon | The probability of generating the symmetric group[END_REF] that the bound is saturated (as n Ñ 8) by all RAAGs of the form Z 2 ˚. . . ˚Z2 .

Proof. We will prove that h n pΓq ď Πpnq αpGq ¨pn!q αpGq . The proof is purely graph-theoretical, we will cover G by a union of αpGq vertices and edges and the use the fact that h n pZ 2 q " n!Πpnq.

For this we use König's theorem. Before stating it we need some terminology (which won't be used in the rest of the paper). A matching in a graph G " pV, Eq is a set of edges M Ă E so that e X e 1 " H @e, e 1 P M.

A maximal matching in a graph is a matching with the maximal number of edges among all matching in that graph. Let us write µpGq for the number of edges in a maximal matching in G.

A vertex cover of a graph G " pV, Eq is a set of vertices C Ă V so that for all e P E there exists an v P C so that v P e. A vertex cover is called minimal if it contains a minimal number of vertices among all vertex covers of a graph. We will write νpGq for the number of vertices in a minimal vertex cover of G. Because every vertex cover is complementary to an independent set, we have νpGq `αpGq " |G| .

König's theorem then states that : µpGq " νpGq.

and so we can find a matching of |G| ´αpGq edges in G. These edges account for 2p|G| ´αpGqq vertices of G. As a result, there are 2αpGq ´|G| vertices that are not a part of this matching. So, we obtain a surjection

`Z2 ˘˚p|G|´mpGqq ˚F2mpGq´|G| Ñ Γ.
This implies that h n pΓq ď pΠpnq ¨n!q |G|´αpGq pn!q 2αpGq´|G| " pΠpnqq |G|´αpGq ¨pn!q αpGq .

Because G is bipartite, we have αpGq ě |G| {2. As such:

h n pΓq ď pΠpnq ¨n!q αpGq which finishes the proof.

3.1.2. Coxeter groups. We will only briefly comment on this case. The proof above adapts verbatim to Coxeter groups, now using Müller's result on the homomorphism growth rate of finite groups [START_REF]Finite group actions and asymptotic expansion of e P pzq[END_REF]. However the bound obtained is not sharp, because unlike in the case of Artin groups, h n ppZ{2Zq 2 q does not have the same factorial growth rate as h n pZ{2Zq. We obtain the following statement. Note that the bound above is phrased in terms of the independence number αpGq rather than γpGq, which we expect to be the invariant that determines the limit we are after. Because γpGq ě αpGq{2, we could rephrase the bound above in terms of γpGq. However, this makes the bound strictly weaker: there are many bipartite graphs for which γpGq ą αpGq{2.

3.2.

An elementary proof for complete graphs. Let r ě 1, K r the complete graph on r vertices and Γ " Γ Cox pK r q -pZ{2Zq r . In this subsection we give a short combinatorial proof of the following fact (which of course follows from Müller's much more precise and general result):

(3.1) lim nÑ`8 log h n pΓq n log n " 1 ´1 2 r .
For the lower bound we use the left-action of Γ on itself, which gives a morphism Γ Ñ S 2 r . By a diagonal embedding, for any n ě 2 r this gives an embedding

φ : Γ Ñ pS r q t n 2 r u Ñ S n whose centraliser is Z Sn pφpΓqq " ´St n 2 r u Γ ¯ˆS n´2 r t n 2 r u . We see that |Z Sn pφpΓqq| ď Y n 2 r ] ! ¨2r¨n{2 r ¨p2 r q!.
Hence it follows that the conjugates of φ give up to an at most exponential factor pp1 ´2´r qnq! pairwise distinct representations of Γ into S n . Now we prove the upper bound. We recall the notation for sets of involutions :

I n,k " |tσ P S n : σ 2 " Id, |fixpσq| " n ´2ku|;

I n " tn{2u ď k"0 I n,k .
Likewise, we use IpXq to denote the involutions on a set X. Given U Ă S n , we will denote the set of orbits of xU y ă S n on t1, . . . , nu by OpU q. We will use the following two lemmas.

Lemma 3.3. Let k, n P N and U Ă S n . Then ˇˇˇ" π P Z In pU q; the action of π on OpU q has k orbits of size 2 *ˇˇˇˇď 2 n ˇˇI |OpU q|,k ˇˇ.

Proof. Write K " ker pZ In pU q Ñ SpOpU qqq ă ź oPOpU q Z Spoq pU q, so that the cardinality we are after has size |K| ¨ˇI |OpU q|,k ˇˇ. Because xU y acts transitively on each o P OpU q, Lemma A.2 applies, so |K| ď ź oPOpU q |o| ď 2 n , from which the lemma follows.

The proof of the following we leave to the reader. Proof. Let us once and for all label the vertices of K r by the numbers 1, . . . , r. The idea of the proof is to order homomorphisms according to the number of 2-cycles the j th generator has on the orbits of the first j ´1 generators. To this end, let us write π 0 " e P S n and π i for the image of the generator corresponding to vertex i under our homomorphism. Moreover, we write k i for the number of 2-cycles of the image of π i in IpOpπ 0 , . . . , π i´1 qq.

The crucial observation is that |Opπ 0 , . . . , π i q| " |Opπ 0 , . . . , π i´1 q| ´ki . 

Using Lemma 3.3 together with with this observation we obtain

h n pΓ Cox pK r qq ď 2 rn tn{2u ÿ k 1 "1 |I n,k 1 | tpn´k 1 q{2u ÿ k 2 "1 |I n´k 1 ,k 2 | ¨¨¨t
n k 1 tpn´k 1 q{2u ÿ k 2 "1 n k 2 ¨¨¨t pn´k 1 ´...´k r´1 q{2u ÿ kr"1 n kr .
Bounding the innermost sum by its largest term, we get

h n pΓ Cox pK r qq ď 4 rn ¨n tn{2u ÿ k 1 "1 n k 1 tpn´k 1 q{2u ÿ k 2 "1 n k 2 ¨¨¨t pn´k 1 ´...´k r´1 q{2u ÿ kr"1 n k r´1 n pn´k 1 ´...´k r´1 q{2 " 4 rn ¨n ¨tn{2u ÿ k 1 "1 tpn´k 1 q{2u ÿ k 2 "1 ¨¨¨t pn´k 1 ´...´k r´1 q{2u ÿ kr"1 n n{2`pk 1 `...`k r´1 q{2 .
Repeating this estimate another r ´1 times, we obtain h n pΓ Cox pK r qq ď 4 rn ¨nr ¨nn¨ř r j"1 2 ´j " 4 rn ¨nr ¨np1´2 ´r qn .

3.3.

Trees. The same basic idea we used for complete graphs also allows us to get a bound on the number of permutation representations of a right angled Coxeter group associated to a tree.

Proposition 3.6. Let T be a finite tree. Then

h n pΓ Cox pT qq ď n 2¨|T | ¨4|T |¨n ¨nγpT q¨n .
Proof. Let us root the tree T at an arbitrary vertex v 0 . Our root gives us a way to divide T into shells. Denoting the graph distance on T by d : T ˆT Ñ N, we define the i-th shell by S i " tv P T ; dpv, v 0 q " iu for all i " 0, . . . , R, where R denotes the largest integer so that S R ‰ H. We would like to apply Lemma 3.3 in the same way as we did in the case of complete graphs by going through the shells. However, by only recording the number of two-cycles of the vertices in S i on orbits of the vertices in S i´1 , we lose track of how many two-cycles the actual involutions have and hence on their numbers of orbits. This means that given only this data for the involutions corresponding to the shell S i , our bounds on the number of choices for the shell S i`1 are not sharp enough.

The solution is to make a slightly more detailed analysis using the same basic idea. Suppose v P S i and w P S i`1 are neighbors. Instead of considering σ w as an involution on Opσ v q, we will consider it as a pair of involutions in

IpO 1 pσ v qq ˆIpO 2 pσ v qq,
where O j pσ v q denotes the number of orbits of σ v on rns size j for j int1, 2u. A similar argument as in Lemma 3.3 shows that ˇˇˇ" π P Z In pσ v q; the action of π on O j pσ v q has k j orbits of size 2, j " 1, 2

*ˇˇˇˇď 2 n ˇˇI |O 1 pσvq|,k 1 ˇˇ¨ˇˇI |O 2 pσvq|,k 2 ˇˇ.
In fact, the exact value of the number on the left hand side can also easily be computed, but the above is sufficient for us. Note that every vertex v has a unique parent ppvq: a neighbor in the shell before its own. In what follows we will label the vertices of T by the numbers 1, . . . , r so that the root gets labeled 1. Moreover we will sort the permutation representations of Γ Cox pT q according to the numbers k ij of two-cycles of each vertex i on O j pσ ppiq q for i " 1, . . . , r and j " 1, 2.

Using Lemma 3.4 together with the inequality above, we obtain that

h n pΓ Cox pT qq ď 4 rn ÿ pk ij q i,j PKnpT q n k 1,1 `k1,2 `...`k r,1 `kr,2
where

K n pT q " $ ' ' & ' ' %
pk i,j q i,j P Mat rˆ2 pNq;

0 ď k 1,1 ď X n 2 \ , k 1,2 " 0 0 ď k i,1 ď Y n´2k ppiq,1 ´4k ppiq,2 2 
] , i " 2, . . . r 0 ď k i,2 ď Y k ppiq,1 `2k ppiq,2 2 
] , i " 2, . . . r , / / . / / and where we have used the simple observation that if σ i has k i,1 two-cycles as an involution in IpO 1 pσ ppiq qq and k i,2 two-cycles as an involution in IpO 2 pσ ppiq qq, then it has k i,1 `2k i,2 two cycles as an involution in I n .

Write

k max pnq " max # ÿ i,j
k ij ; pk i,j q ij P K n pT q

+ .
Since |K n pT q| ď n 2r , we obtain h n pΓ Cox pT qq ď n 2r ¨4rn ¨nkmaxpnq .

All that remains to show is therefore that k max pnq ď γpT q ¨n.

To this end, we turn the problem of finding k max pnq into a convex optimization problem in a real vector space. That is, we define the convex polytope

X n pT q " $ ' &
' % px i,j q i,j P Mat rˆ2 pRq;

0 ď x 1,1 ď n 2 , x 1,2 " 0 0 ď x i,1 ď n´2x ppiq,1 ´4x ppiq,2 2 , i " 2, . . . r 0 ď x i,2 ď x ppiq,1 `2x ppiq,2 2 
, i " 2, . . . r , / .

/ and the number

x max pnq " max # ÿ i,j
x ij ; px i,j q ij P X n pT q

+ .
Clearly k max pnq ď x max pnq.

Because we are now maximizing a linear function over a compact convex real polytope, the maximum is realized at a vertex of X n pT q. That is, to find our maximum x max pnq we need only consider the sequences px i,j q i,j that saturate the inequalities that define X n .

Eventually, we want to prove that x max pnq " γpT q ¨n. First we claim that, if a sequence px ij q ij saturates the inequalities, then

x i,1 P # t0, n{2u if x ppiq,1 `2 x ppiq,2 " 0 t0u if x ppiq,1 `2 x ppiq,2 " n{2 and 
x i,2 P # t0u if x ppiq,1 `2 x ppiq,2 " 0 t0, n{4u if x ppiq,1 `2
x ppiq,2 " n{2 Indeed, this follows from induction on the number of vertices of T . For the tree of one vertex, this follows by definition. The induction step is done using a leaf of T : if px i,j q 0ďiďr,j"1,2 is a vertex of X n pT q, then px i,j q 0ďiďr´1,j"1,2 is a vertex of X n pT zrq. So the statement follows by considering the possible values of x pprq,1 `2 x pprq,2 and the implications of these for the values of x r,1 and x r,2 .

This means that vertices px ij q ij of X n pT q are determined by the equations

x i,1 `xi,2 P # t0, n{2u if x ppiq,1 `xppiq,2 " 0 t0, n{4u if x ppiq,1 `xppiq,2 ą 0 and hence that (3.2) x max pnq " max $ ' ' & ' ' % ÿ i x i ;
x 1 P t0, n{2u,

x i P # t0, n{2u if x ppiq " 0 t0, n{4u if x ppiq ą 0 , / / . / / - .
To show that this is equal to γpT q ¨n, note that the only complete graphs that can appear as subgraphs of T are K 1 and K 2 . As such, we need to show that there exists a maximizer for (3.2) that is supported on a disjoint union of such subgraphs.

To this end, suppose that px i q i is a sequence that satisfies the conditions of (3.2) that contains a connected graph on 3 vertices a, b and c in its support. With respect to the shells, three such vertices can have two types of relations: one parent (b) and two children (a and c) or a grandparent (a), a parent (b) and a child (c). In both cases, we want to show that the value of ř i x i can be made (not necessarily strictly) larger by choosing a sequence px 1 i q i that still satisfies the conditions in (3.2) and satifies x 1 b " 0. In the first case, we have

x a `xb `xc P tn, 3n{4u, depending on whether or not b has a parent and if so whether x ppbq is positive. Setting x 1 b " 0, we are allowed to set x 1 a " x 1 c " n{2. Moreover, if b has other children td j u j then x d j P t0, n{4u and we set

x 1 d j " # 0 if x d j " 0 n{2 if x d j " n{4
Since none of this does changes any of the conditions on the descendents of td j u j , a and c, we can leave the rest of the sequence as is. Since we now have

x 1 a `x1 b `x1
c " n, the sum of the resulting sequence has not decreased.

Likewise, in the second case, the sequence we start with satisfies

x a `xb `xc P tn, 3n{4u and x b " x c " n{4 depending on whether or not a has a parent and if so whether x ppaq is positive. Setting x 1 b " 0, we are allowed to set x 1 c " n{2. Again, if b has other children td j u j then x d j P t0, n{4u and we set

x 1 d j " # 0 if x d j " 0 n{2 if x d j "
n{4 and again none of the conditions on the descendents of the vertices c and td j u j change, which implies that we can leave the rest of the sequence as is. Finally, we again have

ÿ i x 1 i ě ÿ i x i .
What the above shows that there exist vertices of X n pT q that maximize ř i,j x ij and moreover, when interpreted as functions on T ˆt1, 2u, are supported on a disjoint union of subgraphs isomorphic to either K 1 or K 2 . For these maximizers, the analysis can be reduced to understanding the maxima of T » K 1 and T » K 2 . An elementary computation (which is essentially what we did in the proof of Proposition 3.5) shows that these are n{2 and 3n{4 respectively, which means we are done.

The proof above also illustrates a stark difference with the case of Artin groups: the vertices of X n pT q that realize the maxima are not exclusively those supported on independent unions of complete subgraphs of T . A simple example of a tree T for which X n pT q has such vertices is the line Λ r on r vertices. We have γpΛ r q " r `1 4

An example of a vertex of X n pΛ r q that also has coordinate sum r`1 4 n is the vertex ˆn{2 0 ¨¨¨0 0 n{4 ¨¨¨n{4 ˙P X n pΛ r q.

Phrased in terms of homomorphisms, this means that the homomorphisms where all the generators have roughly n{2 two-cycles contribute enough to show up in the asymptotic we are after, which is very different from the situation of RAAGs.

Sharp rough upper bound for the subgroup growth of RAAGs

Let G be a finite graph on r vertices, Γ " Γ Art pGq. The ultimate goal of this section will be to prove: Proposition 4.1. There exists a constant D ą 0 (depending only on G) so that h n pΓ Art pGqq ď D n log logpnq pn!q αpGq for all n large enough.

We will prove this proposition by induction on the number of vertices r. That is, we assume that we know that for any graph H on at most r ´1 vertices (so for any proper subgraph of G) we have (4.1) h n pΓ Art pHqq ď B n log logpnq pn!q αpHq .

Throughout this section we also fix a vertex v 0 P G. Let v 1 , . . . , v d be its neighbours in G and σ 0 , . . . , σ d the corresponding generators. We enumerate (arbitrarily) the remaining generators of Γ as σ d`1 , . . . , σ r . Finally, we will use the shortened notation Γ for Γ Art pGq. 4.1. Splitting into small and large orbits.

We will bound h n pΓq from above by splitting it into more manageable summands as follows : for , K ě 0 let Lp , Kq " tρ P HompΓ, S q : all orbits of xρpσ 1 q, . . . , ρpσ d qy are of size ą Ku and Sp , Kq " tρ P HompΓ, S q : all orbits of xρpσ 1 q, . . . , ρpσ d qy are of size ď Ku.

Lemma 4.2.

There is C 0 ą 0 (depending only on G) such that for all n ě 1 we have :

(4.2) h n pΓq ď C n 0 n ÿ m"0 ˆn m ˙|Lpn ´m, Kq| ¨|Spm, Kq| .
Proof. Given a set of vertices W Ă V pGq and a ρ P HompΓ, S n q, write O ρ ěK pW q Ă t1, . . . , nu for the union of all orbits of size at least K of ρptσ w ; w P W uq. In what follows, we will abuse notation slightly and write ρpW q " ρptσ w ; w P W uq.

Given m, n P N with m ď n and two disjoint sets of vertices W 0 , W 1 Ă V pGq, define H n,m pΓ, W 0 , W 1 q " # ρ P HompΓ, S n q; O ρ ěK pW 0 q " t1, . . . , n ´mu and ρpW 1 q preserves t1, . . . , n ´mu + ;

note that H n,m pΓ, N 1 pv 0 q, GzN 1 pv 0 qq is naturally identified with Spm, Kq ˆLpn ´m, Kq. Finally, we write h n,m pΓ, W 0 , W 1 q " |H n,m pΓ, W 0 , W 1 q| so that (4.3) h n,m pΓ, N 1 pv 0 q, GzN 1 pv 0 qq " |Spm, Kq| ¨|Lpn ´m, Kq|.

Given v P V pGqzpW 0 Y W 1 q, we have h n,m pΓ, W 0 , W 1 Y tvuq " ÿ ρPHn,mpΓ Art pGztvuq,W 0 ,W 1 q ˇˇZ S n´m ˆSm pρpN pvqq ˇˇ,
where we have written S n´m ˆSm " Spt1, . . . , n ´muq ˆSptn ´m `1, . . . , nuq ă S n . Now we use Lemma A.3 and obtain

h n,m pΓ, W 0 , W 1 Y tvuq ě 2 ´n ÿ ρPHn,mpΓ Art pGztvuq,W 0 ,W 1 q |Z Sn pρpN pvqq| " 2 ´n ¨hn,m pΓ, W 0 , W 1 q.
Applying this to all vertices in GzN 1 pv 0 q in turn we see that

h n pΓq " n ÿ m"0 ˆn m ˙hn,m pΓ, N 1 pv 0 q, Hq ď 2 |V pGq|´|N 1 pv 0 q| n ÿ m"0 ˆn m ˙hn,m pΓ, N 1 pv 0 q, V pGqzN 1 pv 0 qq.
which together with (4.3) finishes the proof. 4.2. Large orbits. Now all that remains is to control the quantities |Lpn ´m, Kq| and |Spm, Kq|. We start with the former: Lemma 4.3. Let K " tlogpnqu. There exists a constant C 1 ą 0 (depending only on G), so that for all m, n P N so that m ď n we have: Proof. Let Γ 1 " xσ 1 , . . . σ r y -Γ Art pGzv 0 q.

We have for any integer k ě 1 that :

|Lpk, Kq| ď h k pΓ 1 q ¨max ρPLpk,Kq
|Z S k pρpσ 1 q, . . . , ρpσ d qq| .

Let ρ P Lpk, Kq and H " Zpρpσ 1 q, . . . , ρpσ d qq. Moreover let H 1 be the normal subgroup of H which preserves setwise every orbit of xρpσ 1 q, . . . , ρpσ d qy. Let O " Opρpσ 1 q, . . . , ρpσ d qq be the set of orbits, so that H{H 1 ãÑ SpOq. Since all orbits have cardinality at least K we have | O | ď k{K of them and it follows that |H{H 1 | ď | SpOq| ď tk{Ku!. Note that if k ď n and K " tlog nu we have logptk{Ku!q ď k{K logpk{Kq ď n log n ¨plogpnq ´log log nq ď n hence we have tk{Ku! ď 3 n and it follows that |H{H 1 | ď 3 n . On the other hand H 1 is the product of centralisers of the restrictions to the orbits. Letting λ 1 , . . . , λ | O | be the cardinalities of the orbits, we get that H 1 is of size at most

ś i 2 λ i " 2 k by Lemma A.2.
Putting the above together for k " n ´m, we get that for 1 ď m ď n and K " tlog nu we have :

|Lpn ´m, Kq| ď max ρ p|H{H 1 | ¨|H 1 |q ¨hn´m pΓ 1 q ď 6 n ¨hn´m pΓ 1 q for all n ě 0. Since αpGzv 0 q ď αpGq it follows from the induction hypothesis (4.1) that for some C 0 depending only on G we have h n´m pΓ 1 q " h n´m pΓ Art pGzv 0 qq ď C n log log n 0 ppn ´mq!q αpGq and so we get |Lpn ´m, Kq| ď C pn´mq log logpn´mq 1

ppn ´mq!q αpGq , for some constant C 1 ą 0. 4.3. Small orbits.

For |Spm, Kq| we prove:

Lemma 4.4. There exists a constant C 2 ą 0 (depending only on G), so that for all m, n P N so that m ď n we have:

(4.5) |Spm, Kq| ď C n log logpnq 2 pm!q αpGq
Proof. Let ρ P Spm, Kq and let π be the partition of r1, ms into the orbits of the group ρpxσ 1 , . . . , σ d yq, the elements of which are of size at most K. Furthermore, let z π the size of the corresponding centraliser: if π " p1 λ 1 ¨¨¨K λ K q we have

z π " K ź i"1 i λ i ¨λi !.
In particular, by Lemma A.2 we have that

(4.6) |Zpσ 1 , . . . , σ d q| ď ź i p2 i q λ i λ i ! " 2 ř i iλ i ź i λ i ! ď 2 m z π .
Now let Γ 2 " xσ d`1 , . . . , σ r y -Γ Art pGzN pv 0 qq.

For a ρ P Spm, Kq we have at most h m pΓ 2 q possibilities for pρpσ d`1 q, . . . , ρpσ r qq. The number of possibilities for pρpσ 1 , . . . , ρpσ d qq with the orbit profile π " p1 λ 1 ¨¨¨K λ K q is at most :

(4.7) m! z π K ź i"1 pi!q dλ i
Here the first factor counts the number of realisations of π in r1, ms and the second is the number of representations of the free group on d generators preserving each element of the partition. We have: log

˜K ź i"1 pi!q dλ i ¸ď K ÿ i"1 dλ i ¨pi log iq ď d logpKq ÿ i λ i ¨i " d log logpnq ¨m so that (4.8) K ź i"1 pi!q λ i ď 3 dm log logpnq
In the end, using (4.6), (4.7) and (4.8) we obtain :

(4.9) |Spm, Kq| ď h m pΓ 2 q ÿ π 2 m z π ¨m! z π K ź i"1
pi!q λ i ď 6 m log logpnq ¨m! ¨hm pΓ 2 q for large n. Now we have the following easy lemma.

Lemma 4.5. For any vertex v of G, if G 2 is the subgraph induced on vertices at distance at least 2 of v then αpG 2 q ď αpGq ´1.

So we get from the induction hypothesis (4.1) that h m pΓ 1 q ď B m log log m pm!q αpGzN pv 0 qq ď B m log log m pm!q αpGq´1

and together with (4.9) this finally implies that |Spm, Kq| ď 6 m log logpnq B m log logpnq ¨pm!q αpG 2 q ¨m! ď C n log logpnq 2 pm!q αpGq , for some constant C 2 ą 0.

Conclusion.

We are now ready to prove our bound. Plugging (4.4) and (4.5) into (4.2) we get :

h n pΓq ď C n 0 ¨pC 1 ¨C2 q n log logpnq n ÿ m"0
pm!q αpGq ppn ´mq!q αpGq ď C n 0 ¨pC 1 ¨C2 q n log logpnq ¨n ¨pn!q αpGq so we can conclude that there exists D depending only on G such that h n pΓq ď D n log logpnq pn!q αpGq .

Sharp rough upper bound for the subgroup growth of some RACGs

In this section we prove the upper bound in Theorem C. We will use an induction argument based on the following more precise statement. We denote by P ďl pnq the set of partitions π of t1, . . . , nu with all parts at most l, and for such π we denote by π j the number of its blocks which are of size j. If G is a graph, S a set of vertices of G and π P Ppnq S we define h π n pΓ Cox pGqq " |tρ P hompΓ Cox pGq, S n q : @v P S, ρpσ v q P Stabpπ v qu|.

Proposition 5.1. Let G be a graph satisfying the hypotheses of Theorem C and S a set of leaves of G 0 . Let π P P ď2 pnq S . Then

h π n pΓ Cox pGqq ď C n log logpnq pn!q γpGq pn!q 1 2n ř vPS π v,2
.

The proof of this takes the whole section. We proceed by steps, first dealing with the simplest cases (graphs with one, two or three vertices in Lemmas 5.2, 5.3 and 5.4), then deducing the proposition for all trees (Proposition 5.5). From the case of trees it is not hard to deduce the case where G is a tree with isolated vertices glued to the leaves (Proposition 5.6). Finally (in subsection 5.4), we prove the full version using an argument similar to what we did with RAAGs.

In all proofs below C is a large enough constant which we allow to vary between instances but in the end will be independent of all parameters except the graph G (we use this somewhat unusual convention instead of the big O notation because it seems typographically more adapted to our proof). Proof. Let us order the involutions σ that preserve π by the numbers k 1 and k 2 of 1-blocks and 2-blocks respectively of π that contained in the fixed point set of σ. So k " 2k 2 `k1 . Note that the number of choices for the decomposition of the parts of π into fixed blocks and non-fixed blocks is exponential in m.

The involution σ preserves the unions of 1-and 2-blocks respectively. The number of possibilities for the action of σ on the union of 1-blocks is at most

C m ˆπ1 ´k1 2 ˙! " C m ˆm ´k1 2 ´π2 ˙!.
Indeed, this is just the number of involutions on π 1 points fixing k 1 of them (see Lemma 3.4).

The number of choices for the action on the union of 2-blocks is at most

C m ˆπ2 ´k2 2 ˙!.
Multiplying these two inequalities we get that the number of choices for σ is at most

C m ˆm 2 ´π2 2 ´k1 `k2 2 ˙! " C m ˆm 2 ´π2 2 ´k ´k2 2 ˙! ď C m ˆm 2 ´π2 2 ´k 4 ˙!,
which, together with Stirling's approximation, finishes the proof. Proof. If an involution σ has k fixed points, then

|Z Im pσq| " |I k | ¨|I m´k | ď C m k k{2 pn ´kq pn´kq{2
(see Lemma 3.4). Combining this with Lemma 5.2, we obtain

N 2 π pmq " tm{2u ÿ k"0 N 1 π pmq ¨|Z Im pσq| ď C m pm!q 3 4 ´π2 2m .
The last case we need for the induction is harder, and we will need to use results on Fuchsian groups from [START_REF] Liebeck | Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks[END_REF] to deduce it. Lemma 5.4. Let G 0 be the graph on three vertices v 1 , v 2 , v 3 where v 3 is adjacent to both v 1 and v 2 . Let m ě 1 and π " pπ v 1 , π v 2 q P P ď2 pmq 2 . Let

N 3 π pmq " h π m pΓ Cox pG 0 qq. Then N 3 π pmq ď C m log log m pm!q 1´π 1,2 `π2,2 2m .
Proof. Let λ " π 1 _ π 2 (the set partition generated by π 1 and π 2 ). Then N 3 π pmq depends only on π 1,2 , π 2,2 and the integer partition associated to λ, as any two π 1 , π 2 that generate the same partition λ are conjugated to each other by an element of S m .

We will first reduce to the case where all blocks of λ have the same size ď logpmq. Using the proof of the estimate (4.2) (which also works when Γ is a Coxeter group, using the second statement in Lemma A.3) we obtain that

N 3 π pmq ď C m m ÿ k"0 N 3 π ělogpmq pm ´kqN 3 π ďlogpmq pkq
where π ďl denotes the partition π induces on the union of blocks of λ of size at most l.

We first estimate the factor N 3 π ělogpmq pm´kq. We will do this by comparing N 3 π ělogpmq pm´kq to the homomorphism count of a larger group: the RACG defined by the line on five vertices.

Note that pπ 1 q ělogpmq and pπ 2 q ělogpmq define involutions in S m´k . We will denote these involutions by σ π 1 , σ π 2 P S m´k respectively. Let H be the centraliser in S m´k of xσ π 1 , σ π 2 y. Then, since λ ělogpmq is the partition of t1, . . . , m ´ku into orbits of xσ π 1 , σ π 2 y we have that |H| ď m ź j"logpmq pλ j q! ¨j ď C m log log m , where we have used Lemma A.2. Thus ˇˇS λ logpmq logpmq ˆ. . . ˆSλm m ˇˇě C ´m log log m pm ´kq! and hence, using Proposition A.1, there are at least C ´m log log m pm ´kq! pairs of involutions σ π 1 " σ 4 , σ π 2 " σ 5 that generate a partition with profile λ.

On the other hand, the involutions σ i , 1 ď i ď 5 satisfy σ 4 σ 1 " σ 1 σ 4 and σ 5 σ 2 " σ 2 σ 5 . So we have that |tσ 4 , σ 5 as aboveu| ¨N 3 π ělogpmq pm ´kq ď h m´k pL 5 q where L 5 is the line on five vertices (numbered 4,1,3,2,5 in order). We thus know by Proposition 3.6 that pm ´kq!N 3 π ělogpmq pm ´kq ď C m log log m ppm ´kq!q Now we deal with N 3 π ďlogpmq pkq. Using the same separating trick log logpmq times (with a "divide and conquer" approach) we get that

N 3 π ďlogpmq pkq ď C m log logpmq ÿ k 1 `¨¨¨`k log m "k log m ź l"1 N 3 π "l pk i q.
To estimate N 3 π "l pkq we use the same method as above, but with a non-right angled Coxeter group to which we apply the results of [START_REF] Liebeck | Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks[END_REF]. As above, we see that the number of σ 4 , σ 5 is at least C ´mpk!q{pk!q 1{l . Again set σ 4 " σ π 1 and σ 5 " σ π 2 .

We now have to subdivide the problem further. We first consider the case where each block of λ contains two 1-blocks of π 1 or π 2 In this case σ 4 , σ 5 satisfy the relation pσ 4 σ 5 q l " 1, and it follows that |tσ 4 , σ 5 as aboveu| ¨N 3 π "l pkq ď h k pΓ l q where Γ l is the Coxeter group associated to the pentagon with one edge marked by l. By Liebeck and Shalev's asymptote (1.1) we thus get that

pk!q 1´1 l ¨N 3 π "l pkq ď C k pk!q 3 2 ´1 2l
and we finally obtain that in this case:

(5.2)

N 3 π "l pkq ď C k pk!q 1 2 `1 2l .
This is the result we wanted since we have pπ 1,"l q 1 `pπ 2,"l q 1 " 2k{l. Finally, we deal with the case where each block of λ contains only 2-blocks of either π 1 or π 2 . In this case l is necessarily even and σ 4 , σ 5 must satisfy the relation pσ 4 σ 5 q l{2 " 1. Using the same approach as above we get that pk!q 1´1 l ¨N 3 π "l pkq ď C k pk!q 3 2 ´1 l and it follows that

(5.3) N 3 π "l pkq ď C k pk!q 1 2
in this case, which finishes the proof (note that pπ 1,"l q 1 `pπ 2,"l q 1 " 0 in this case).

5.2.

Counting representations with constraints for trees.

Proposition 5.5. Let G 0 be a tree and S a set of non-adjacent leaves of G 0 . Let π P P ď2 pnq S . Then

(5.4) h π n pΓ Cox pG 0 qq ď C n log logpnq pn!q γpGq pn!q

1 2n ř vPS π v,2 . 
Proof. We prove this by induction on the number of vertices. When there are only one, two or three vertices we may just apply Lemma 5.2 (by summing over k), Lemma 5.3 or Lemma 5.4.

We then start by proving (5.4) for stars with at least three leaves. For this we note that if G 0 is a star graph, S " tv 1 , . . . , v d u its set of leaves and π P P ď2 pnq S we have

h π n pΓ Cox pG 0 qq ď N 3 pπv 1 ,πv 2 q pnq ¨d ź j"3 N 1 πv j pnq
and estimating the right-hand side using Lemmas 5.2 and 5.4 gives the result in this case.

Now assume that G 0 has at least four vertices. Let v be a leaf and w its unique neighbour. We may choose v so that we are in one of the two following situations:

(1) w is adjacent to at least two leaves ;

(2) v is the only leaf adjacent to w and the latter has valency 2. (To prove this just observe that if this is not the case for v, then taking another leaf v 1 at maximal distance from v one of the two is satisfied by v 1 ).

Assume first that we are in the situation where (1) holds. Let v " v 1 , . . . , v d be the leaves of G 0 adjacent to w. Let

G 1 " G 0 ztw, v 1 , . . . , v d u, S 1 " S X G 1
and G 2 the graph induced on tw, v 1 , . . . , v d u with S 2 " tv 1 , . . . , v d u. Let π 1 P P ď2 pnq S 1 and π 2 P P ď2 pnq S 2 such that π " pπ 1 , π 2 q. We have

h π n pΓ Cox pG 0 qq ď h π 1 n pΓ Cox pG 1 qq ¨hπ 2 n pΓ Cox pG 2 qq ď C n log log n pn!q γpG 1 q´1 2n ř uPS 1 π u,2 ¨pn!q d 2 ´1 2n ř uPS 2 π u,2 " C n log log n pn!q γpG 1 q`d 2 ´1 2n ř uPS π u,2
where the inequality on the second line follows from the induction hypothesis applied to G 1 and G 2 . It remains to see that γpG 0 q " γpG 1 q `d 2 .

To do this we first note that any clique collection containing w cannot maximise w: if C " C 1 Y ¨¨¨Y C r is one such collection with w P C 1 then we have

wptv 1 u Y ¨¨¨Y tv d u Y C 2 Y ¨¨¨Y C r q " wpCq ´´1 ´2´|C i | ¯`d 2 ą wpCq. So if C maximises w it is of the form C 1 Y C 2
where C 1 is a clique in G 1 (necessary maximising w there) and C 2 in G 2 is a maximising clique in G 2 ztwu. The latter has weight d{2 and the equality we were after follows.

Finally we deal with the case 2. In this case w is a leaf of G 1 0 " G 0 ztvu, and we let S 1 " pSztvuq Y twu.

For σ v P S n is an involution we also define πpσq P pP ď2 pnq S 1 by (5.5)

πpσq u " # π u if u P S π σ if u " w.
where π σ is the partition into cycles of σ. Then we have, using Lemma 5.2 and the induction hypothesis, and the fact that γpG 0 q " γpG 1 0 q `1{4: h π n pΓ Cox pG 0 qq "

ÿ σPStabpπvq h πpσq n pΓ Cox pG 1 0 qq ď n ÿ k"0 N 1 k,πv pnqC n log logpnq pn!q γpG 1 0 q´1 2n p n´k 4n `řuPS 1 ,u "w π v,2q ď C n log log n n ÿ k"0 pn!q 1 2 ´πv,2 2n `γpG 1 0 q´k 4n `1 2n p n´k 4n `řuPS 1 ,u "w π v,2q " C n log log n n ÿ k"0 pn!q γpG 1 0 q`1 4 ´1 2n ř uPS π u,2 ď C n log log n pn!q γpG 0 q´1 2n ř uPS π u,2
which finishes the proof in this case.

Gluing vertices.

Proposition 5.6. If there exists vertices w 1 , . . . , w s which are pairwise nonadjacent and such that G 0 " Gztw 1 , . . . , w s u is a tree so that all vertices adjacent to one of the w i are leaves in G 0 . Then G, S satisfies the conclusion of the Conjecture B.

Proof. We prove this by induction on s. When s " 1 and G is not a tree we have that the number of neighbours of w 1 is at least two: let p ě 2 denote this number. Let S 1 " S Y tv : v " w 1 u, then we have

h π n pGq " ÿ σPSnr2s h πpσq n pG 0 q
where πpσq is defined as in (5.5). Using Proposition 5.5 it follows that:

h π n pGq ď C n log log n m ÿ k"0 pn!q γpGq´1 2n ř vPS π v,2 ´p n´k 4n pn!q 1 2 ´k 2n ď C n log log n pn!q γpGq´1 2n ř vPS π v,2 pn!q pp´2qp k 4n ´1 4 q ď C n log log n pn!q γpGq´1 2n ř vPS π v,2
which finishes the proof in this case.

If s ą 2 we can use exactly the same argument by replacing Proposition 5.5 by the induction hypothesis.

5.4. Gluing stars. In this subsection we work in the following setting: we assume we have a graph G and a vertex v 0 P G whose 1-neighbourhood N 1 pv 0 q is a star, each leaf of which is adjacent to exactly one vertex of G 0 " GzN 1 pv 0 q, which is a leaf in G 0 . Moreover we assume that the conclusion of Proposition 5.1 is known to hold for G 0 . We will forget about the constraints on leaves of G for notational ease in the proof below, but it is clear from the argument that they can be incorporated.

5.4.1.

Reducing to the small orbit counting. For any 0 ď m, K ď n we can define Spm, Kq and Lpn ´m, Kq as in Section 4.1. The the proof of the estimates (4.2) also works when Γ is a Coxeter group, using the second statement in Lemma A.3. The analogue of the estimate (4.4), namely that for K " tlog nu we have |Lpn ´m, Kq| ď C n log log n pn ´mq γpGq can also be proven to hold with no modifications to the argument there (except for the induction hypothesis used).

So we get that :

(5.6) h n pΓ Cox pGqq ď C n log logpnq n ÿ m"0 ppn ´mq!q γpGq Spm, Kq.

It remains to estimate the terms Spm, Kq. First we note that if for 1 ď l ď K we define P pm, lq to be the subset of Spm, Kq consisting of representations in which the orbits of the generators corresponding to N 1 pv 0 qztv 0 u are all of size exactly l then applying the reasoning leading to (4. |P pm l , lq| .

Here the factor up front is an upper bound for upnq log 2 pKq , where u : N Ñ R is the function defined in Lemma A.3. The rest of this section is devoted to the proof of the fact that (5.7) |P pm, lq| ď C m log log m pm!q γpGq , which together with the bounds above, implies Proposition 5.1.

G Ă S n can be written as G 1 H where r|n and r ą 1, d " n{r, G 1 Ă S r is a transitive subgroup and H Ă S d is a primitive subgroup.

A.2. The number of involutions in a permutation group. For a group G we denote by Gr2s be the subset of involutions in G (including the identity, so in particular it's never empty).

The following proposition shows that the number if involutions in a permutation group is, at the scale which interests us, equivalent to the square root of the order of the group (better bounds which close to being sharp and are proven using a completely different approach are available at least in one direction, see [START_REF] Robinson | The number of involutions in a permutation group[END_REF]).

Proposition A.1. There exists a function u : N Ñ R such that log upnq " Opn log logpnqq as n Ñ 8 so that for every n ě 1 and every permutation group G Ă S n we have

upnq ´1|G| 1 2 ď |Gr2s| ď upnq|G| 1 2 .
Proof. It is easy to see that we may assume that G is transitive. Suppose not, then we can write G " G 1 ˆ¨¨¨G k where each G i Ă S n i is transitive. Applying the argument below to each G i we get that G i r2s ď upn i q|G i | 1 2 . We will see that u is submultiplicative and hence it follows that |Gr2s| "

ź i |G i r2s| ď ź i upn i q|G i | 1 2 ď upnq|G| 1 2
and a similar argument applies to deduce the lower bound for |Gr2s| from that for the |G i r2s|.

We first deal with the case where G Ă S m is primitive. In [START_REF] Praeger | On the orders of primitive permutation groups[END_REF], Praeger and Saxl prove that this implies that either |G| ď 4 m or G is either A m or S m4 Thus in the first case there is a C ą 1, independent of m and G, such that (A.1)

C ´m|G 1 | 1{2 ď 1 ď |G 1 r2s| ď |G 1 | ď C m |G 1 | 1{2 .
Moreover, in [START_REF] Chowla | On recursions connected with symmetric groups. I[END_REF], Chowla, Herstein and Moore prove that the number of involutions in S m is " pm!q 1{2 epmq where e is subexponential, from which the case of A m readily follows.

To prove the general case, we proceed by induction over n. Using the block decomposition of A.1 we may assume that there are d|n, so that d ě 2, a primitive subgroup H ď S d and a transitive subgroup G 1 ď S n{d such that G " G 1 H.

The morphism G Ñ G 1 restricts to a map π : Gr2s Ñ G 1 r2s and we have |Gr2s| ď |G 1 r2s| ¨max

g 1 PGr2s
|π ´1tg 1 u|.

Let g 1 P G 1 r2s have f fixed points. We will assume that g 1 fixes the blocks t1, . . . , f u and transposes every subsequent pair of blocks. Note that ' within the blocks that g 1 fixes, every element of π ´1tg 1 u needs to act as an involution. ' within two blocks that are permuted by g 1 , every element of π ´1tg 1 u can act by an arbitrary element of H. However, because of the wreath product structure, these two elements will be each others inverses. Figure 5 offers a graphical depiction of this situation. In symbols this means that an element in π ´1tg 1 u is necessarily of the form pg 
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 5 Figure 5. Part of the action of G 1 H on two blocks. Because h acts by a 3-cycle on three elements in the block on the left hand side, it acts in the opposite direction on their images by g 1 in the block on the right hand side.
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  ŤvPH Cq and both graphs satisfy the conjectures if follows that H I does as well.The number of trivalent graphs on M vertices is of order pM {2q! (up to at most exponential factors) by[START_REF] Bollobás | The asymptotic number of unlabelled regular graphs[END_REF] So the construction above yields about pN {12q! graphs on N vertices which satisfy Conjecture B. 2.3. Hyperbolic Coxeter groups. By a theorem of G. Moussong [20] right-angled Coxeter group is word-hyperbolic if and only if it does not contain Z 2 . If it is right-angled then in terms of its defining graph this means that the latter does not contain an induced square. From Proposition 2.1 we see that any non-virtually cyclic hyperbolic Coxeter group has subgroup growth type n n .

			vPH C and	Ť vPH I are respectively a subgraph and an
	induced subgraph of H I we get sujections						
	˚vPH Γ Cox pIq " Γ Cox	˜ď vPH	I	¸	Γ Cox pH i q	Γ Cox	˜ď vPH	C	and
	as we have γ p	Ť vPH Iq " p							

  " |Γ{Γ 1 |. Note however that Agol and Wise's arguments do not give a bound on d. In addition, taking Γ r to be the preimage in Γ 1 of a subgroup of index r in Φ we see that Γ r surjects onto a free group of rank at least r and thus

	The first statement immediately implies that		
	lim inf nÑ`8	log s nd pΓq nd logpndq	ě	1 d
	where d lim inf nÑ`8			

  1 , ph 1 , . . . , h f , h f `1, h ´1 f `1, . . . , h pn{d´f q{2 , h ´1 pn{d´f q{2 qq where h 1 , . . . , h f are involutions in H and h f `1, . . . , h pn{d´f q{2 are arbitrary elements of H. Thus there are exactly|Hr2s| f ¨|H| n{d´f 2elements in π ´1tg 1 u. Since H is primitive we have thatC ´d|H | 1{2 ď |Hr2s| ď C d |H| 1{2 so that C ´f d |H| f {2 ¨|H| n{d´f 2 ď |π ´1tg 1 u| ď C f d |H| f {2 ¨|H|Now since we have |G| " |G 1 | ¨|H| n{d we get the desired bounds from (A.2) and (A.1), if we can prove that we can find u such that (A.3) C n upn{dq ď upnq for large enough n. An elementary computation shows that the function upnq " C n log logpn`exppexpp2qqq , for example, satisfies this property. A.3. Estimates for centralisers. Lemma A.2. Let H be a transitive subgroup of S n . Then |Z Sn pHq| ď n. Proof. This follows immediately from [9, Theorem 4.2A(i)]. Lemma A.3. Let 0 ď k ď n P N and S k ˆSn´k » H ă S n . Then for any G ă S n we have |Z Sn pGq| ď 2 n ¨|Z H pGq| . In addition, if u is the function from Theorem A.1 then |Z Sn pGqr2s| ď 2 n upnq 2 ¨|Z H pGqr2s| . Proof. We have |Z Sn pGq| " |Z Sn pGq{ Z H pGq| ¨|Z H pGq| . There is well-defined injective map Z Sn pGq{ Z H pGq Ñ S n {H. |Z Sn pGq{ Z H pGq| ď |S n {H| " ˆn k ˙ď 2 n , which proves the first statement. The second one then immediately follows from this and Theorem A.1.

	As such					
							n{d´f
							2
	which in turn yields				
		C ´n|H |	n{d 2 ¨|G 1 r2s| ď |Gr2s| ď C n |H|	n{d 2 ¨|G 1 r2s|
	and using the induction hypothesis (and the fact that d ě 2) it follows that
	(A.2)	C ´n|H |	n{d 2 ¨upn{dq ´1|G 1 |	1 2 ď |Gr2s| ď C n |H|	n{d 2 ¨upn{dq|G 1 |	1 2 .

In fact, the result is only stated for regular graphs in[START_REF] Rosenfeld | Independent sets in regular graphs[END_REF], but the proof works verbatim in the slightly more general case of graphs with boudned degree.

In fact, sharper bounds are available, but the above suffices for us. See for instance[START_REF] Lubotzky | Subgroup growth[END_REF] Theorem 16.4.1] and references therein.
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5.4.2. Small orbits. When l " 1 we have P pm, 1q " h m pΓ Cox pGzN 1 pv 0 qq. We can apply the induction hypothesis to GzN 1 pv 0 q and since µ Cox Γ is decreasing in subgraphs we get (5.8) P pm 1 , 1q ď C m log logpmq pm!q µ Cox Γ pGq

Now suppose that l ě 2. Recall that we defined G 0 " GzN 1 pv 0 q.

As G has no triangles µ Cox Γ pHq P 1 4 N for any subgraph H Ă G and hence there are then three cases to consider:

(1)

The case 1 is dealt with as in (4.5), without using any further hypothesis on the graph since this is exactly the case where we can use the conclusion of Lemma 4.5. The two remaining cases need more care. 5.4.3. Case 3. Let v 1 , . . . , v d be the neighbours of v 0 in G. We want to count the representations ρ : Γ Ñ S m such that xρpσ v i q, i " 1, . . . , dy has exactly m{l orbits each of size l. As in the RAAG case (Section 4.3) there are at most (5.9)

C m log logpmq pm!q 1´1 l such representations. For such a representation ρ, ρpσ v 0 q must permute the orbits and we get that there are at most (5.10)

choices for it. Now let w 1 , . . . , w r be vertices of G 0 such that each w i is adjacent to one of the v 1 , . . . , v d . For each i we have that ρpσ w i q must preserve the partition π i P P ďl pmq given by the orbits of xρpσ v j q : v j adjacent to w i y and as we assumed that G 0 satisfies the conclusion of Proposition 5.1 it follows that there are at most

choices for the restriction of ρ to Γ Cox pG 0 q. On the other hand, since each v j is adjacent to at least one w i (otherwise we have at least γpGq ě γpG 0 q `3{4) and together the ρpσ v j q act transitively on each orbit of size l we see that we must have 3

So we get that the number of choices for the restriction is at most

.

We can finally estimate P pm, lq by the product of (5.9), (5.10) and (5.11) to obtain :

P pm, lq ď E m log logpmq pm!q p1´1 l q`1 2l ´p 1 2 ´1 2l q h m pG 0 q " E m log logpmq pm!q 1 2 h m pG 0 q

3 This follows from the general fact that if

and by the induction hypothesis and the fact that µ Cox Γ pG 0 q " µ Cox Γ pGq ´1{2 we get that (5.12)

P pm, lq ď E m log logpmq pm!q µ Cox Γ pGq which finishes the proof in this case.

5.4.4. Case 2. This case differs from the preceding in that we may have at most one vertex among the neighbours v 1 , . . . , v d of v 0 which is not adjacent to any leaf of G 0 . Thus in the sequel we will assume that v 2 , . . . , v d each have a neighbour v i P G 0 such that γpG 0 zw i q ă γpG 0 q, but not v 1 .

Thus we can now only apply the conclusion of Proposition 5.1 to the partitions π 2 , . . . , π d . We can still prove the following inequality (the proof wil be given in the next paragraph) (5.13)

Since (5.9) and (5.10) remain valid, and X l´1 2 \ ě 2 we get that P pm, lq ď E m log logpmq pm!q p1´1 l q`1 2l ´1 2 p 1 2 ´1 l q h m pG 0 q " E m log logpmq pm!q 3 4 h m pG 0 q which allows us to conclude.

It remains to prove (5.13). Let X be a set of cardinality l (one of the orbits of ρpxσ v 1 , . . . , σ v d yq). It equals the union of the orbits X 1 , . . . , X p of ρpxσ v 2 , . . . , σ v d yq and of the 2-cycles of ρpσ v 1 q. By the case treated above we have that

Now ρpσ v 1 q has at most l{2 2-cycles and it follows that

which finishes the proof when we apply it to all orbits and sum the results.

Appendix A. Lemmas on symmetric groups A.1. Block decompositions of permutation groups. For n P N we will denote by rns the set of integers between 1 and n.

Recall that a permutation group G Ă S n is said to be primitive if there does not exist disjoint nonempty subsets Ω 1 , . . . , Ω r in rns of which at least one has cardinality greater than 1 such that gΩ i P tΩ 1 , . . . , Ω r u for all g P G. If there exist such sets Ω i and in addition they cover rns then they are said to form a block system for G.

If G is transitive (but not necessarily primitive) all blocks Ω i need to be of the same size and hence r|n. We get a morphism G Ñ S r from the action of G on tΩ 1 , . . . , Ω r u. Let G 1 be its image and H the stabiliser of Ω 1 in G. We identify each Ω i with rds (where d " n{r) so that H Ă S d . Then G is isomorphic to the wreath product G 1 H that is G -G 1 ¸Hn{d and we can identify the action of G on rns with that of G 1 H where pg 1 , ph 1 , . . . , h n{d qq acts by pg 1 , ph 1 , . . . , h n{d qq ¨x " ´l´1 g 1 piq ˝hi ˝li ¯pxq for x P Ω i , where l j is the bijection from Ω j to rds.

The group H Ă S r is primitive if and only if the block system is minimal among all block systems for G. There always exists such a system and it follows that any transitive subgroup