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Abstract: In this paper, we present an abstraction-based approach to safety controller synthesis
for continuous-time nonlinear systems. To reduce the computational burden associated with
symbolic control approaches, we develop a lazy controller synthesis algorithm, which uses
the incremental forward exploration of the symbolic dynamics, allowing us to restrict the
controller synthesis computations to reachable states only. We propose using this algorithm with
novel multi-scale abstractions, which also use adaptive time sampling. Transition duration is
constrained by intervals that must contain the reachable set, which enables a better control of the
symbolic transitions as opposed to using transitions of predetermined duration. Implementation
of the algorithm and controller refinement are discussed. We provide a simple example to
illustrate this benefits of the approach.

Keywords: Safety, lazy controller synthesis, multi-scale abstraction, adaptive sampling.

1. INTRODUCTION

Robust control synthesis for nonlinear dynamical systems
subject to state and input constraints is a challenging
problem in modern control theory. To tackle this problem,
computational techniques are used within an abstraction-
based framework. This method consists in creating a finite-
state abstraction (or a symbolic model) for a continuous
or a hybrid system, a procedure where a controller synthe-
sized for the abstraction can be refined to a controller for
the original system (Belta et al. (2017), Tabuada (2009)).
This approach makes it possible to use discrete controller
synthesis techniques (Cassandras and Lafortune (2009),
Cormen et al. (2001)), which in turn allow us to address
a broad class of specifications given, for instance, by au-
tomata or temporal logic formula. In this paper, though,
we focus on simple safety specifications, which consist in
keeping the state of the system inside a given safe set. This
type of specification often appears in real-world problems,
e.g. temperature regulation in smart-buildings (Meyer
et al. (2018b), Thavlov and Bindner (2015)), blood glucose
rate control for diabetic patients (Kushner et al. (2019),
Gillis et al. (2007)), safety of vehicle platoons (Saoud et al.
(2019), Ames et al. (2017), Alam et al. (2014)), satellite
station keeping (Weiss et al. (2018)), etc.

A key-issue in abstraction-based control is computational
complexity. Indeed, symbolic models are usually obtained
by partitioning or by discretizing the sets of states and in-
puts, and finer discretizations that provide more accurate
abstractions result in symbolic models with a larger num-
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ber of states and inputs, and thus require more time and
memory for computations. Moreover, the computational
complexity of the discrete controller synthesis algorithms
typically depends on the size of symbolic models. Finally,
while all these computations are typically handled off-
line, a controller obtained via abstraction-based techniques
using symbolic models with a large number of states would
require a huge amount of memory for its real-time imple-
mentation. Possibilities to mitigate these intensive compu-
tational requirements are to refine abstractions iteratively
(Gol et al. (2013); Nilson et al. (2017)), e.g. using multi-
layered grids (Girard et al. (2016); Hsu et al. (2018b)).
Starting from coarse abstractions, these are refined locally
only where it is needed.

Symbolic models are often represented as finite transi-
tion systems. The computation of the transition relation
is a demanding process, requiring over-approximation of
the reachable sets. Several methods exist for computing
such over-approximations (Girard (2005), Kurzhanski and
Varaiya (2014), Reissig et al. (2017), Meyer et al. (2018a)),
with a compromise between precision and simplicity of
implementation. We can occasionally use structural prop-
erties of the dynamics such as monotonicity (Coogan
and Arcak (2015)) or incremental stability (Girard et al.
(2016)) to ease these computations. However, reducing the
number of transitions that should be computed, renders
the process less demanding. This is the purpose of lazy con-
troller synthesis algorithms (Girard et al. (2016); Hussien
and Tabuada (2018); Hsu et al. (2018a); Saoud et al.
(2019)) where the transitions are explored as needed and
computed on the fly during a controller synthesis. Given
an ordering of transitions, transitions of lower priority are



only explored if the specification cannot be enforced using
transitions of higher priority.

In the first part of this paper, we present a novel lazy con-
troller synthesis algorithm for safety (set invariance) spec-
ifications. A major difference with (Hussien and Tabuada
(2018); Hsu et al. (2018a); Saoud et al. (2019)) is that
our algorithm uses incremental forward exploration of
the symbolic dynamics and thus allows us to restrict the
controller synthesis computations to reachable states only.
While this idea was used in (Girard et al. (2016)) for
deterministic symbolic models, the algorithm presented in
this paper makes it possible to deal with non-deterministic
transition relations. In the second part of the paper, we
propose a novel approach to compute multi-scale abstrac-
tions. Similar to (Girard et al. (2016); Hsu et al. (2018a)),
our approach uses multi-layered grids on the state-space.
The main contribution in this part is a novel method for
adaptive time sampling. The duration of the transitions
is constrained by a state interval that should contain the
reachable set, as opposed to a predetermined duration.
This provides the opportunity to control, approximately,
where symbolic transitions end. The resulting abstraction
is equipped with priorities on transitions, which makes it
possible to use lazy controller synthesis algorithms.

This paper is organized as follows. In Section 2, we
present a lazy safety controller synthesis algorithm for
non-deterministic transition systems. In Section 3, we
present an abstraction-based approach for synthesizing
safety controllers for nonlinear systems. We introduce a
type of multi-scale adaptive-sampling abstractions, which
can be used in combination with lazy synthesis algorithms.
Practical implementation of the algorithm and controller
refinement are discussed. In Section 4, we consider a simple
illustrative example to show the benefits of the approach.

2. LAZY SAFETY CONTROLLER SYNTHESIS

In this section, we present a lazy controller synthesis al-
gorithm for finite transition systems and safety specifica-
tions.

Definition 1. A finite transition system is a tuple Σ =
(Q,U, F ), consisting of a finite set of states Q, a finite
set of inputs U , and a transition relation F ⊆ Q×U ×Q.

For every transition (q, u, q′) ∈ F the state q is named
u-predecessor of q′ and similarly the state q′ is named
u-successor of q. For the set of all u-predecessors of the
state q the notation F−1(q, u) is used, while the set of all
u-successors of a state q is denoted by F (q, u). If there
is q ∈ Q, u ∈ U such that |F (q, u) | > 1, then the
transition system is called non-deterministic, otherwise it
is deterministic.

Since F (q, u) may be empty let us introduce a set
EnabF (q) = {u ∈ U | F (q, u) 6= ∅} of all enabled inputs
at a state q ∈ Q. If EnabF (q) = ∅, then q is said to be
blocking, otherwise it is non-blocking. We also use notation
BlockF (Q′) to describe the set of all blocking states in a
set Q′ ⊆ Q. If BlockF (Q) = ∅, then the transition system
is called non-blocking.

Definition 2. A trajectory of a transition system Σ =
(Q,U, F ) is a finite or infinite sequence of transitions

q0
u0−→ q1

u1−→ q2
u2−→ q3

u3−→ . . ., s.t. qi ∈ Q, ui ∈ U and
qi+1 ∈ F (qi, ui) for all i ≥ 0.

A state q′ ∈ Q is reachable from the state q, if q′ = q or
there exists a trajectory connecting them. The set of all
reachable states from the state q is denoted by ReachF (q).
This definition could be naturally extended for a subset
Q′ of the set of states Q: ReachF (Q′) = ∪q∈Q′ ReachF (q).

2.1 Safety Controllers

Definition 3. A controller for a transition system Σ =
(Q,U, F ) is a map C:Q→ 2U , such that C(q) ⊆ EnabF (q)
for every q ∈ Q.

Let us use notation Dom(C) = {q ∈ Q | C(q) 6= ∅} for
a domain of controller C. We also define the controlled
transition relation FC = {(q, u, q′) ∈ F | u ∈ C(q)}.
Definition 4. A safety controller for a transition system
Σ = (Q,U, F ) and a safe set Qs ⊆ Q is a controller C such
that the following two properties holds

(1) Dom(C) ⊆ Qs;
(2) for all q ∈ Dom(C) and for all u ∈ C(q) the inclusion

F (q, u) ⊆ Dom(C) is satisfied.

For a given specification, there are usually several safety
controllers, however, the following standard result (Tabuada
(2009)) states that there is a unique maximal one:

Lemma 5. For a given transition system Σ = (Q,U, F ),
a safety specification Qs ⊆ Q there is a unique maximal
safety controller C̄ such that for any safety controller C
the following holds

(1) Dom(C) ⊆ Dom(C̄);
(2) for all q ∈ Dom(C), C(q) ⊆ C̄(q).

The maximal safety controller C̄ is the best possible safety
controller in the sense that any other controller solving
the same safety problem would be more restrictive. That
justifies the following notion of controllability.

Definition 6. Let Qs be a safe set. A state q ∈ Q of the
transition system Σ = (Q,U, F ) is safety controllable if
and only if q ∈ Dom(C̄). The set of safety controllable
states is denoted Cont(Σ, Qs).

Though there is (see Tabuada (2009)) a simple fixed-
point algorithm converging to the controller C̄ for any
given finite safe set Qs, its computational complexity
essentially depends on the number of safe states, making
C̄ too labour-intensive for many real-world problems. In
light of this, in the next section, we relax, under certain
assumptions, the maximality requirement for a desirable
controller, while retaining other important properties.

2.2 Maximal Lazy Safety Controller

Let us suppose that the initial set Qinit ⊆ Q is fixed.
In this case, we have no interest in providing a controller
for non-reachable states. Moreover, if a set of inputs U is
equipped with a partial order, and for some state several
inputs preserve safety, it would to be reasonable to keep
only those which have the highest priority. Here we say
that an input u ∈ U has higher priority than u′ ∈ U if and
only if u � u′.



Assumption 7. Let the set of inputs U be split into N
non-intersecting subsets U = U1 ∪ U2 . . .∪ UN and for all
u′ ∈ Ui, u′′ ∈ Uj , i < j, i, j ∈ {1, . . . , N} it holds that
u′ ≺ u′′, while inputs belonging to the same subset are
considered as equivalent.

Definition 8. (Girard et al. (2016)). For a given transition
system Σ = (Q,U, F ), a safety specification Qs ⊆ Q, and
a fixed initial set Qinit ⊆ Q a maximal lazy safety (MLS)
controller C∗ is a safety controller satisfying the following
properties

(1) Qinit ∩ Cont(Σ, Qs) ⊆ Dom(C∗);
(2) Dom(C∗) ⊆ ReachFC∗ (Qinit ∩Dom(C∗));
(3) for all states q ∈ Dom(C∗):

(a) if u ∈ C∗(q) then for all u′ ∈ EnabF (q) such that
u′ ' u, it holds that u′ ∈ C∗(q) if and only if
F (q, u′) ⊆ Cont(Σ, Qs);

(b) if u ∈ C∗(q), then for all u′ ∈ EnabF (q) with u ≺
u′, it holds that F (q, u′)∩Cont(Σ, Qs) 6= F (q, u′).

The term maximal comes from the fact that all safety
controllable initial states are in Dom(C∗), and if the
controller enables an input, it also enables all inputs which
have the same priority and preserve safety. The term lazy
refers to the fact that while several inputs can preserve
safety, the controller enables only inputs with the highest
priority. Hence, C∗ represents a trade-off between maximal
permissiveness and efficiency.

Theorem 9. (Girard et al. (2016)). For a given transition
system Σ = (Q,U, F ), a finite safety specification Qs ⊆ Q,
and a fixed initial set Qinit ⊆ Q there is a unique MLS
controller C∗.

Intuitively, the MLS controller C∗ can be obtained from
the maximal safety controller C̄ by keeping, for every state,
only those enabled controls which have a higher priority,
and by removing the states that are not reachable from
initial states. Of course, it is not the best way to find C∗

since it needs first to compute C̄.

2.3 Efficient MLS Controller Synthesis

In this section, we provide a more efficient algorithm for
computing the MLS controller, which is based on two
ideas: to explore, for each state, inputs with a lower
priority only if we failed to find a safe input with higher
priority, and to set aside states that are non-reachable from
the initial set.

To implement the first idea, we introduce for every state
q ∈ Q a notion of a state priority p(q) and define for every
given p:Q → {0, . . . , N} a reduced transition relation Fp
such that (q, u, q′) ∈ Fp if and only if p(q) ∈ {1, . . . , N},
u ∈ Up(q), (q, u, q′) ∈ F and for all q′′ ∈ F (q, u) the
equality p(q′′) 6= 0 is satisfied. Intuitively, this means that
for states with priority from 1 to N, only transitions with
the same priority inputs are considered, while states with
priority 0 are blocking and non-reachable. Starting with
the highest priority for states in a safe set Qs and with
the lowest one for the others (line 2-6), we iteratively
update the function p in the main block of Algorithm 1
(lines 7-12) until a corresponding transition relation Fp can
be used as a basis for a desirable safety controller (lines
13-17). As concerns the second idea, only states that are

Algorithm 1: MLS Controller Synthesis

Input: Σ = (Q,U, F ), Qinit, Qs
Output: MLS controller C

1 begin
2 for q ∈ Q do
3 if q ∈ Qs then
4 p(q) := N ;

5 else
6 p(q) := 0;

7 R := ReachFp ({q ∈ Qinit | p(q) 6= 0}) ;
8 while BlockFp(R) 6= ∅ do
9 B := BlockFp(R);

10 for q ∈ B do
11 p(q) := p(q)− 1;

12 R := ReachFp ({q ∈ Qinit | p(q) 6= 0}) ;

13 for q ∈ Q do
14 if q ∈ R then
15 C(q) := EnabFp(q);

16 else
17 C(q) := ∅;

18 return C;

reachable (regarding the current version of Fp) from initial
set (lines 7, 12) are explored. Because of space limitations,
the following result is stated without proof:

Theorem 10. Let C computed by Algorithm 1. Then, C is
the MLS controller.

In simple words, Algorithm 1 is an alternation procedure
between a forward state space exploration and a backward
correction of the obtained transition system in order to
satisfy the safety requirements. At the beginning of every
iteration, we update for every state a set of enabled inputs,
which depends on the priority of the state. Then we try to
find a safety controller. If we fail, we reduce the priorities
of all uncontrollable states by one point and start again.

3. ABSTRACTION BASED CONTROL SYNTHESIS

In this section, we consider a safety control problem for
continuous-time nonlinear systems, and propose a solution
based on Algorithm 1, combined with a novel type of multi-
scale adaptive sampling abstractions.

3.1 Problem Formulation

A control system Σ = (T,Rn, U,W, f) consists of a time
domain T = [0,+∞), a state space Rn, a compact set
U ⊂ Rm, a compact set W ⊂ Rp, and a non-linear
function f :Rn × U ×W → Rn, such that for any control
u(·) ∈ L∞(T,U), any disturbance w(·) ∈ L∞(T,W )
and any initial condition x(0) ∈ Rn there is a unique
solution xf (t | x(0), u(·), w(·)), t ∈ T of the following
differential equation ẋ(t) = f(x(t), u(t), w(t)) in the sense
of Caratheodory. The notation L∞(T, S) is used for the
space of all measurable on T functions s(·) such that
s(t) ∈ S, for almost all t ∈ T .

In this paper, we are looking for admissible safety con-
trollers, which keep all trajectories of the closed-loop sys-



tem inside a safety set Y , while supposing that an initial
set X0 is known before computation. Here the controller is
said to be admissible if it is robust against any measurable
bounded disturbance w(·) ∈ L∞(T,W ) and a solution of
the closed-loop system exists. To synthesize such a con-
troller, we use an abstraction-based approach. In the next
section, the continuous system Σ = (T,Rn, U,W, f) is ab-
stracted by a finite transition system ΣA = (QA, UA, FA),
which approximates the behavior of the original plant.
Then, we explain how to refine the controller for the
abstraction (which could be found using Algorithm 1) to
a controller for the concrete system.

3.2 Symbolic Model for the Original Plant

Let us first remark that all the vector operations appearing
in this section are considered as component-wise.

We start the construction of a symbolic model for the
original plant Σ = (T,Rn, U,W, f) by discretizing the state
space Rn. Let X = [x, x) be an n-dimensional interval
including a safe set Y . Given a number L > 0, and a state
space sampling parameter nx > 0, nx ∈ Nn we introduce
for every l = 1, . . . , L a uniform partition

Ql = {q ∈ 2X | ∃z ∈ Zn s.t. q = [x+z ∗ηl, x+(z+1)∗ηl)}
where ηl = (x− x)/(2l−1nx) and we associate every state
x ∈ X with a unique cell q ∈ Ql such that x ∈ q. We
also define for every q ∈ Ql, the center of the interval
qc = x+(z+ 1

2 )∗ηl. Depending on the context, we regard an
element q ∈ Ql either as an atomic symbol, representing an
infinite number of states from X, or as a subset of X. It is
obvious from the definition that for any qi, qj ∈ Ql, qi 6= qj
the intersection qi ∩ qj = ∅ and that X = ∪q∈Qlq.
Proposition 11. For any l = {1, . . . , L − 1} and for any
q ∈ Ql there exists a unique set a states {qi}2

n

i=1, qi ∈ Ql+1

such that q = ∪2ni=1qi.

Regarding the safety specification, an element q ∈ Ql is a
safe state if and only if q ⊆ Y , an initial state if and only
if q ∩X0 6= ∅. Let us denote by Ql,s a set of all safe states
in Ql, and by Ql,init a set of all initial states.

We then combine all these partitions into a multilayered
grid QA = ∪Ll=1Ql and use it as a set of states for the
abstraction ΣA = (QA, UA, FA). Considering that for any
q ∈ QA there exists a unique layer Ql ⊂ QA such that
q ∈ Ql, let us define a function l : QA → {1, . . . , L}
returning the index of the layer to which q belongs. We
also introduce an input up, allowing switching from the
current layer to the previous (coarser) one.

In the next step, a control set U is approximated by its
finite subset Uµ ⊆ U . For every q ∈ Ql, uµ ∈ Uµ we
consider the set of all reachable states at the time t ∈ T :

Reach(t | q, uµ) = {x ∈ Rn | ∃x(0) ∈ q
and ∃w(·) ∈ L∞([0, t],W ) such that

xf (t | x(0), u∗(·), w(·)) = x},
corresponding to an initial set q, a constant control func-
tion u∗ : [0, t] → uµ and all admissible disturbances w(·).
Since exact computation of reach set is seldom possible,
an over-approximation Reach(t | q, uµ) is commonly used
to built symbolic models.

Reach(τu,2q | q, u)

q′

qup

u

Reach(τu2,2
q | q, u2)

Reach(τu1,1
q | q, u1)

q
qc

u2

u1

(2 + 1/2)ηl

(1 + 1/2)ηl

ηl

Fig. 1. Transitions on a 2-layered grid. Left figure illus-
trates (1), (2). Right figure illustrates (3).

In this paper, a multi-scale symbolic model is considered,
which means that for every given state q ∈ QA and
control uµ ∈ Uµ we construct np transition with different
duration. Let us now define a transition relation FA for
every available input in the set UA = (Uµ×{1, . . . , np})∪
{up}.
• for any q′ ∈ QA \Q1 the transition (q′, up, q) ∈ FA if

and only if q ∈ Ql(q)−1 and q ⊂ q′. See Fig.1 (left).
• for any q ∈ QA and any (uµ, j) ∈ Uµ × {1, . . . , np}

the transition (q, (uµ, j), q
′) ∈ FA if and only if

q′ ∈ QL, q′ ∩ Reach(τuµ,jq | q, uµ) 6= ∅, (1)

and the condition of a collision avoidance

Reach(t | q, uµ) ∩ (X \ Y ) = ∅, t ∈ [0, τuµ,jq ] (2)

is satisfied. Here τ
uµ,j
q = min(τl, τ

uµ,j
q − ε), where τl

is a given parameter which determines the maximal

evolution time allowed at this layer, while τ
uµ,j
q is a

moment in time

τuµ,jq = inf
t∈[0,+∞)

{
Reach(t | q, uµ) 6⊂

6⊂ [qc − (j + 1/2) ∗ ηl, qc + (j + 1/2) ∗ ηl)
}

(3)

when the over-approximation of a reachable set leaves
the interval with a radius (j+1/2)ηl and a center in qc.

We chose ε < τ
uµ,j
q arbitrary small to stop evolution

just before leaving, while τl should be big enough
since it serves only to manage situations where a
solution is stuck within the box. In the Fig.1 there
is illustration of the idea.

Such a definition of transition duration using adaptive
time-sampling is a contribution of this paper. Instead of
using prescribed time sampling parameters (Girard et al.
(2016), Hsu et al. (2018b)), this approach allows us to
control, approximately, where symbolic transitions finish
and better analyze the behaviour of the system. At the
same time, the collision avoidance condition allows us to
eliminate solutions, which start and end in the safe set but
passes some unsafe regions during the evolution. However,
since the intersection of the reachable set with the grid is
checked at every instant of time, the authors recommend
using simple interval over-approximations (Reissig et al.
(2017), Moor and Raisch (2002), Meyer et al. (2018a), Za-
mani et al. (2011), Maidens and Arcak (2014)), trading
accuracy for simplicity of implementation. We also finish
any non-up transition at the finest layer to be more flexible
while moving close to the obstacles.



Since the idea of working with a multi-layered grid is
to explore states from a coarser level before exploring
states from a finer one, control up has the highest priority.
We also prefer a transition with a longer duration to a
transition with a shorter one. That is why it is reasonable
to define a partial order on Uµ × {1, . . . , np} as follows:
(uµ, j1) < (u′µ, j2) if and only if j1 < j2 for all j1, j2 ∈
{1, . . . , np}, uµ, u′µ ∈ Uµ. As illustration in the Fig.1(right)
a control (u2, 2) is more prioritized than a control (u1, 1).
Splitting a set UA into np + 1 equivalence classes with
respect to the introduced partial order and defining a safe
set QA,s = ∪Ll=1Ql,s and an initial set QA,init = QL,init
we can use now the Algorithm 1 to find a maximal lazy
safety controller. Let us underline here that Algorithm 1
does not require that the transition relation FA is pre-
computed and we calculate transitions on the fly and only
for reachable states.

3.3 From a Multilayered to an Adaptive Grid

Though the introduction of an artificial input up allows us
to manipulate a multi-layered grid and transition duration
using one general framework, the abstraction considered
in the previous section has two significant disadvantages.
First, when we run Algorithm 1, we have to store a
multilayered grid QA, while it is better to work with
an adaptive grid, consisting of cells with different sizes.
Second, for every fixed distribution of priorities of states
p:QA → {0, . . . , np+ 1} a reduced transition relation FA,p
(see section 2.2 for the definition) includes a lot of auxiliary
transitions which serves only for switching from a finer
layer to a coarser one, while we prefer to keep in memory
only those transitions which are directly related to the
dynamic of the original system.

For a given p let us choose as an adaptive grid Q∗,p =
Qpup(QL), where Qpup:QL → QA is defined as follows

Qpup(q) = {q′ ∈ QA | FA,p(q′, up) = ∅ and

∃{qi}Ni=0, qi ∈ QA, i = 0, N s. t. q0 = q,

q′ = qN , qj+1 = FA,p(qj , up), j = 0, N − 1}
and its extension for all Q ⊆ QL is Qpup(Q) = ∪q∈QQpup(q).
So, a state of multilayered grid QA is included in Q∗,p if
and only if it is reachable from the finest layer only with up
transitions and there is no possibility to go higher for this
state. Let us remark that for any qi, qj ∈ Q∗,p, qi 6= qj the
following qi ∩ qj = ∅ is satisfied, moreover X = ∪q∈Q∗,pq.
For the associated transition relation let us introduce
F∗,p ⊆ Q∗,p × UA × Q∗,p such that (q, u, q′) ∈ F∗,p if
and only if q′ ∈ Qpup(FA,p(q, u)). Its definition is correct
because for any q ∈ Q∗,p, u ∈ UA the set FA,p(q, u) either
empty, or included in QL.

The following propositions show why we can operate with
a grid Q∗,p and a transition relation F∗,p, instead of QA
and FA,p, respectively.

Proposition 12. For any q ∈ QA, q ∈ R∗, where

R∗ = ReachF∗,p(Qpup({q ∈ QA,init | p(q) 6= 0}))
if and only if q ∈ R, where

R = ReachFA,p({q ∈ QA,init | p(q) 6= 0})
and FA,p(q, up) = ∅.

Reach(τ̄u,2
q

| q, u) Reach(τ̄u,2
q

| q, u)

q q

u u

Fig. 2. Left: 2-layered grid. Right: adaptive grid

Proposition 13. Let us run Algorithm 1 for the transition
system ΣA = (QA, UA, FA). The following

BlockFA,p(R) = BlockF∗,p(R∗)

is satisfied at every iteration of loop 8-12.

So, we can reinitialize the priority of states p (line 11),
using only knowledge about Q∗,p and F∗,p. Now we explain
how to update the adaptive grid Q∗,p and a transition
relation F∗,p, while changing p during the evolution of
Algorithm 1.

After execution of lines 2-6, a state in QA is reachable
from the finest layer if and only if it is safe or belonging
to QL. Hence, if we start from the coarsest layer Q1 and
recursively split all unsafe states into 2n pieces while it
is possible (i.e. while they do not belong to the finest
layer QL) we finally get a grid Q∗,p, corresponding to
the distribution of priority of states p just before the
loop 8-12 execution. Since with every iteration of the loop
only states included in Q∗,p change their priorities (see
Proposition 13), we can also update our adaptive grid
Q∗,p without direct usage of the transition relation FA,p.
Indeed, if a state q ∈ QA \QL gets a priority 0, then, from
Lemma 11 and definition of up transition, it follows that
we should replace it by 2n states q′i ∈ Ql(q)+1, such that

q = ∪2ni=1q
′
i.

There also exists a way to compute the transition relation
F∗,p, using only current version of Q∗,p.

Proposition 14. For any q ∈ Q∗,p, u ∈ UA \ {up} a state
q′ ∈ Q∗,p belongs to a set F∗,p(q, u) if and only if

q′ ∩ Reach(τuµ,jq | q, uµ) 6= ∅,
and the condition of a collision avoidance

Reach(t | q, uµ) ∩ (X \ Y ) = ∅
is satisfied for all t ∈ [0, τ

uµ,j
q ].

We illustrate the difference between a multilayered grid
and an adaptive grid in Fig. 2. There, unsafe states are
marked with black boxes, and successors filled with blue
color.

Finally, we show that we can fully simulate the main
part of Algorithm 1, using only adaptive grid Q∗,p and a
transition relation F∗,p. It also important to mention that
the abstraction is not required to be pre-computed, but
constructed on the fly. Let us write, C∗(q) := EnabF∗,p(q)
for all q ∈ R∗ and empty otherwise, for a controller ini-
tialization part (lines 13-17). It is obvious, that C∗(q) is a
safety controller for a transition system Σ∗ = (Q∗, UA, F∗),
where a state space Q∗ and a transition relation F∗ are



correspondingly Q∗,p and F∗,p after we exit the loop. More-
over, since for any p:QA → {0, . . . , np + 1}, any q ∈ Q∗,p
the set F∗,p(q, up) = ∅, the input up never appears in a
final safety controller C∗. So, we can just skip it from the
earlier beginning by initializing in line 4 every safe state
with priority N − 1, instead of N .

3.4 Refinement of the controller

In the previous section, we computed a safety con-
troller C∗(q) for a transition system Σ∗ = (Q∗, Uµ ×
{1, . . . , np}, F∗), which is an abstraction for the original
plant. Let us now provide a safety controller for the system
Σ = (T,Rn, U,W, f).

First of all we introduce a controller Cdur∗ : Q∗ → Uµ × T,
such that for every q ∈ Q∗ \Dom(C∗) we say Cdur∗ (q) = ∅,
while if q ∈ Dom(C∗) and (uµ, j) ∈ EnabF∗(q), then the

pair (uµ, τ
uµ,j
q ) ∈ Cdur∗ (q). Hence, a controller Cdur∗ store

real durations of safe transitions, instead of the sizes of the
boxes.

We then explain with the following proposition how to
refine the controller Cdur∗ to a safety controller u for the
original continuous system.

Proposition 15. There exists a unique trajectory of the
closed-loop system

ẋ(t) = f(x(t), u(t), w(t)), t ∈ T
u̇ = 0, t ∈ [tk, tk+1)

tk+1 = tk + τ

(u(x(tk), tk), τ) = Cdur∗ (q),where q ∈ Q∗ s.t. x(tk) ∈ q
t0 = 0

x(t0) = x0, x0 ∈ X0 ∩Dom(Cdur∗ )

and it remains inside the safe set Y , no matter which
disturbance w(·) ∈ L(T,W ) has been applied.

The statement of the proposition directly follows from
the discussion above. We only remark here, that the
computation of the controller for the abstraction is usually
implemented off-line and then stored in a control device
memory, while a controller for the continuous system is
calculated online using this pre-computed information.

4. NUMERICAL ILLUSTRATION

In this section, we consider a problem of temperature
regulation in a two-room building. Each room is equipped
with a heater and Ti is the temperature in the room
i, i = 1, 2. The evolution of the temperatures is described
by the following system of the differential equations

Ṫ1 = α(T2 − T1) + β1(te − T1) + γ1(th1
− T1)u1

Ṫ2 = α(T1 − T2) + β2(te − T2) + γ2(th2 − T2)u2
Here te is the temperature of the external environment
of the building, th1 , th2 are temperatures of the heaters,
α is the conduction factor between rooms, β1, β2 are
conduction factors between external environment and the
first room and the second room respectively, γ1, γ2 are
conduction factor between heater and rooms. Control
parameter ui equals 1 if the room i is heated and 0
otherwise. Temperature te is considered as a bounded
disturbance.

Fig. 3. Temperature regulation in two rooms building.

We run our simulation for the following set of parameters

α = 1/2 ∗ 10−4W/J, β1 = 1/6 ∗ 10−4W/J,

β2 = 1/11 ∗ 10−4W/J, γ1 = 1.5 ∗ 10−4W/J,

γ2 = 1.5 ∗ 10−4W/J, th1
= 30C◦, th1

= 40C◦.

A safety specification is given by an initial set X0 =
[19, 23] × [19, 23], safe set Y = [19, 23] × [19, 23], and a
disturbance te ∈ [−10, 10]. We also suppose that at given
instant at most one heater is switched on, i.e. a control set
U = {{0, 0}, {0, 1}, {1, 0}}. For the abstraction, we chose
L = 4, nx = [4; 4], Uµ = U , and np = 2.

In Fig.3, the results of the simulation are provided. We use
a dark grey and a light grey for states, which are control-
lable with a (uµ, 1), uµ ∈ Uµ and with a (uµ, 2), uµ ∈ Uµ
correspondingly, while white region is uncontrollable. The
closed loop trajectory is simulated for 24 hours, supposing
that external temperature varies between−10C◦ and 10C◦

and initial point x0 = [19.084; 19.27]. The orange color
correspond to a control {0, 0}, green to a control {0, 1},
violet to a control {1, 0}.
To evaluate efficiency, we also run a simulation for two
extreme cases: L = 1, nx = [4; 4] and L = 1, nx = [25; 25],
which correspond to a coarsest grid and to a finest grid
of considered four-layered adaptive grid. One can see
the comparison of the results in Tab.1. The controllable
sets coincides for the adaptive grid and the finest grid,
but we get a noticeable time and memory gain. The
implementations has been done in C++, processor Intel
Core i7-8700, 2.5 Hg, RAM 16 GB.

Table 1. Numerical results

Grid Number of states Time Cont. Ratio

Adaptive grid 18 7 s 98%
Coarsest grid 9 5 s 89%
Finest grid 625 50 s 98%

5. CONCLUSION

In this paper, we introduced a new method of construc-
tion of symbolic models for a continuous dynamic sys-
tem, based on the adaptive sampling of time and multi-
layered state-space discretization. Then, we proposed an



efficient way of computing a safety controller for the non-
deterministic transition system. The lazy algorithm is
based on the forward exploration of the state space, while
the term lazy refers to the fact, that if we can guarantee
safety using a higher priority input, we do not explore
inputs with smaller priorities at all.

Future work will focus on extending the approach to other
types of specification such as reachability or more general
properties specified by automata or temporal logical for-
mula.
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APPENDIX

Proof of Theorem 10

The proof requires first to establish the following lemmas
regarding properties of Algorithm 1:

Lemma 16. With every iteration of the loop 8-12, the
priority of a state either decreases by one point, or remains
unchanged. If some state obtained priority 0, it keeps this
value until the end of Algorithm 1 execution.

Proof. The first part of the statement is obvious. The
second follows from the facts that B ⊆ R and any state
with priority 0 is non-reachable. 2

Lemma 17. We decrease the priority p of a state q, if either
EnabF (q)∩Up(q) = ∅, or for all u ∈ EnabF (q)∩Up(q) there
exists q′ ∈ F (q, u) such that p(q′) = 0.

Proof. It follows immediately from the definition of Fp
and the definition of a blocking state. 2

Lemma 18. Let Qzero = {q ∈ Q | p(q) = 0}. While run-
ning the Algorithm 1, the intersection Qzero∩Cont(Σ, Qs)
is always empty.

Proof. Let us use induction to prove this fact. First,
before the loop 8-12 the set Qzero consists only of unsafe
(see line 6), and, as a consequence, uncontrollable states.

Second, in the loop Qzero updates only when some state
q ∈ B ⊆ Q gets at line 11 a priority zero (see Lemma 16).
Supposing that Qizero ∩ Cont(Σ, Qs) = ∅ let us show that
Qi+1
zero ∩ Cont(Σ, Qs) = ∅, where Qi+1

zero = Qizero ∪ {q}. So,
let us show, that q 6∈ Cont(Σ, Qs). Since p(q) got value 0
using Lemma 17 we have that for all j = 1, . . . , N either
EnabF (q) ∩ Uj = ∅, or for all u ∈ EnabF (q) ∩ Uj there
exists q′ ∈ F (q, u) \ {q} such that p(q′) = 0, i.e q′ ∈ Qizero
and q′ /∈ Cont(Σ, Qs). Hence, C̄(q) is empty and q is
uncontrollable. 2

We can now provide the proof of Theorem 10.

Using the definition of Fp, Lemma 16, and the finiteness
of Q, we immediately get, that the loop 8-12 can not be
infinite. Also, we have that EnabFp(q) ⊆ EnabF (q) for
any q ∈ Q, so, the Algorithm 1 returns a controller. Let
us show that it is a maximal lazy one.

We start with safety. Since, exit condition for loop 8-
12 is BlockFp(R) = ∅ then for all q ∈ R it holds, that
EnabFp(q) 6= ∅. Hence, Dom(C) coincides with R. Since,
unsafe states are non-reachable Dom(C) ⊆ Qs and the
first condition from the definition of safety controller holds.
Moreover, from the definition of Reach operator we have
that for all q ∈ Dom(C) and for all u ∈ U it holds
Fp(q, u) ⊆ Dom(C). Combining with the fact that for all
q ∈ Dom(C) and for all u ∈ EnabFp(q) the set Fp(q, u)
coincides with F (q, u), the second requirement is satisfied.

Now, let us show that all properties of MLS controller are
satisfied (see Definition 8). Let q ∈ Cont(Σ, Qs) ∩ Qinit.
It is equivalent to q ∈ Qinit and q ∈ Cont(Σ, Qs). From
where, using the Lemma 18, we get that q ∈ Qinit and
p(q) 6= 0. Consequently, q ∈ R = Dom(C) (see line
7,12), and the first property is satisfied. Second property
is straightforward from the line 12. For any q ∈ Dom(C)

a control u ∈ C(q) if and only if u ∈ EnabFp(q). Then for
any u′ ∈ EnabF (q)∩Up(q) we have: if u′ ∈ EnabFp(q) then
F (q, u′) = Fp(q, u

′) ⊆ Dom(C) ⊆ Cont(Σ, Qs), because C
is a safety controller; if F (q, u′) ⊆ Cont(Σ, Qs) then there
is no q′ ∈ F (q, u′) such that p(q′) = 0 and u′ ∈ EnabFp(q).
So, we have (3a). The (3b) follows from the Lemma 17. 2

Proof of Proposition 12

Remembering that any non-up transition always finishes
at the lowest layer, while input up strictly prioritized that
all the others, we have from the definition of ReachFA,p ,
that q ∈ R, FA,p(q, up) = ∅ is equivalent to the existence
of a trajectory

q0,0
up−−−→
FA,p

q0,1
up−−−→
FA,p

. . .
up−−−→
FA,p

q0,n0

u1−−−→
FA,p

q1,0
up−−−→
FA,p

q1,1
up−−−→
FA,p

. . .
up−−−→
FA,p

q1,n1

u2−−−→
FA,p

. . .

. . .
um−−−→
FA,p

qm,0
up−−−→
FA,p

qm,1
up−→ . . .

up−−−→
FA,p

qm,nm = q

such that q0,0 ∈ {q ∈ QA,init | p(q) 6= 0}, qi,0 ∈ QL for all
i = 0, . . . ,m and qj,nj ∈ Q∗,p for all j = 0, . . . ,m. This is
true (see the the definition of Qpup(q)) if and only if there
exist a trajectory

q0,n0

u1−−→
F∗,p

q1,n1

u2−−→
F∗,p

. . . . . .
um−−→
F∗,p

qm,nm = q

such that q0,n0
∈ Qpup({q ∈ QA,init | p(q) 6= 0}) and

qj,nj ∈ Q∗,p for all j = 0, . . . ,m. The last is equivalent
to the fact q ∈ R∗. 2

Proof of Proposition 13

So, q ∈ BlockFA,p(R) if and only if q ∈ R and FA,p(q, u) =
∅ for any u ∈ UA, which is equivalent to q ∈ R∗ and
Qpup(FA,p(q, u)) = ∅ for any u ∈ UA. The last is true if and
only if q ∈ BlockF∗,p(R∗). 2

Proof of Proposition 14

Let q′ ∈ F∗,p(q, u). From the definition of F∗,p, this is true
if and only if q′ ∈ Qpup(FA,p(q, u)). From the definition
of Qpup last is equivalent to existence q′′ ∈ QL such that
q′ ∈ Qpup(q′′) and q′′ ∈ FA,p(q, u). This is satisfied if and
only if there exists q′′ ∈ QL such that

q′ ∈ Qpup(q′′), q′′ ∩ Reach(τuµ,jq | q, uµ) 6= ∅
and the condition of a collision avoidance

Reach(t | q, uµ) ∩ (X \ Y ) = ∅
is not violated for all t ∈ [0, τ

uµ,j
q ]. From Lemma 11 and

definition of up transition the last is equivalent to

q′ ∈ Q∗,p, q′ ∩ Reach(τuµ,jq | q, uµ) 6= ∅,
and the condition of a collision avoidance

Reach(t | q, uµ) ∩ (X \ Y ) = ∅
is satisfied for all t ∈ [0, τ

uµ,j
q ]. That ends the proof. 2


