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Abstract. The discovery of SARS-CoV-2, the responsible virus for the Covid-19 epidemic, 
has sparked a global health concern with many countries affected. Developing models that can 
interpret the epidemic and give common trend parameters are useful for prediction purposes 
by other countries that are at an earlier phase of the epidemic; it is also useful for future 
planning against viral respiratory diseases. One model is developed to interpret the fast-growth 
phase of the epidemic and another model for an interpretation of the entire data set. Both 
models agree reasonably with the data. It is shown by the first model that during the fast phase, 
the number of new infected cases depends on the total number of cases by a power-law relation 
with a scaling exponent equal to 0.82. The second model gives a duplication time in the range 
1 – 3 days early in the start of the epidemic, and another parameter (𝛼 = 0.1 − 0.5) that 
deviates the progress of the epidemic from an exponential growth. Our models may be used for 
data interpretation and for guiding predictions regarding this disease, e.g. the onset of the 
maximum in the number of new cases. 
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1.   Introduction 
An outbreak of an infectious respiratory disease emerged in the city of Wuhan, in the Chinese 
province of Hubei, in December 2019. One month later, the discovery of the responsible virus, 
SARS-CoV-2, was announced [1]. The respiratory disease, which is termed Covid-19, is an 
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ongoing global health concern with many countries affected so far. While a great momentum 
in the scientific community is to find therapeutics and vaccines against Covid-19 [2], it seems 
beneficial to develop simple models to understand the trends of the epidemic [3, 4]. Previous 
attempts have been made to this end. New models are generally adopted from the previous 
models of avian and swine flu epidemics [5, 6], and may be used to make predictions regarding 
the Covid-19 epidemic, e.g. to simulate spreading to neighboring regions from hot spots, and 
to evaluate the effectiveness of the mitigating measures [7-9]. Available models have generally 
estimated a human-to-human transmissibility of disease, which is described by the basic 
reproduction number,	𝑅*. In particular, 𝑅* > 1 is associated with an infection that will spread 
in a population, whereas 𝑅* < 1 corresponds to an epidemic that will decrease. Estimations of 
𝑅* for Covid-19 give values larger than 2 denoting a highly contagious virus [5, 10, 11]. 
Simpler models exist and have been used for example to compare between different SARS 
epidemics [12, 13]. 
 
This letter seeks to interpret the available data using a simple model making use of physically 
meaningful parameters. In particular, with respect to the several periods for an epidemic, the 
presented analysis focuses on the first period, before the so-called herd immunity period. In the 
herd immunity and in the absence of a vaccine, the virus stops expanding when 60% of a 
population is contaminated [14-16]. A Californian study has shown that the number of 
contaminated people in this region was 50 times more than the total number of reported cases 
[17]. Applying this factor to France’s numbers, with a total case of about 1.8×105, this factor 
gives about 7.5 million contaminated cases. This number of cases is equivalent to 12% of the 
French population. Recently, another study stated that this number was about 5.7% on average 
and about 12% in the region Ile-de-France [18]. In general, epidemiological models focus on 
the number of new cases as a function of time. In the first period of the epidemic – sometimes 
described as the first “wave” – the number of new cases shows characteristic features: the initial 
exponential growth is followed by a maximum and then a decrease. The shape of this curve 
depends on various factors such as the basic reproduction number associated with the epidemic, 
environmental conditions or the behavior of the infected population, among others. Later the 
epidemic can evolve following different scenarios, which can be a steady and low background 
of new cases, or a second wave; the latter showing characteristics similar to those of the first 
wave. The available data and the model presented in this work are for the first period of the 
epidemic.  
 
The focus of this letter is initially placed on the data that is available for China and South Korea 
because at the time of writing this letter these countries have apparently reached the end of the 
first period of their epidemic. The data from these countries together with a few others, such 
as Iran, Turkey, Italy, Spain, France, the United States, Russia, Germany, the United Kingdom 
and Brazil are considered to develop common trend parameters using a simple physical model. 
The developed models in this work may be used for prediction purposes by other countries or 
with respect to future respiratory viral infections. 
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2.   Results and discussion 
The data of temporal variation of total number of cases is gathered from an online source [19] 
from 22-02-2020 to 20-05-2020 and reproduced in Figs. 1a and 1b for China and South Korea, 
respectively. It is expected that the trends of the other countries during the pre-herd immunity 
period will be similar. In particular for China and South Korea, in the first period of the 
epidemic, three phases may be assigned to the temporal variation of the total number of cases 
data, whereby an initial fast-growing phase is followed by a slow-growing phase and then a 
plateau. These phases are respectively marked f (fast), s (slow) and p (plateau) on Figs. 1a and 
1b. These phases may be discerned from the apparent variations in the growth exponent of the 
total number of cases versus time. For example, in the f phase of China, the apparent growth 
exponent , where  is the total number of cases and  the time, is about 0.1, while 

it is 0.006 and < 0.001 respectively in the s phase and the p phase. For South Korea, the 
apparent growth exponents are 0.137, 0.006 and 0.001 respectively during the f phase, the s 
phase, and the p phase. Since the data are presented as a function of the number of days starting 
from 22-02-2020, a note should be made for the data-days prior to this date. This data is not 
available; however, it may be assumed that the temporal variation of the total number of cases 
prior to 22-02-2020 follows the behavior of the f phase. The onset of the s phase and the p 
phase is about two to four weeks for both China and South Korea.  
 

 
Figure 1: (a, b) Total number of cases as a function of the number of days starting from 22-
01-2020 for China (a) and South Korea (b). The fast-growing phase (f), slow-growing phase 
(s) and plateau phase (p) are marked. These phases may be discerned from the apparent 
variations in the growth exponent. (c, d) Number of new cases as a function of the number of 
days starting from 22-01-2020 for China (c) and South Korea (d). Peak in the number of new 
cases is marked with asterisks. All data are collected until 20-05-2020. 
 
 

( )( )1 n dn dt n t



  June 01, 2020 

 
  4 
 

The number of new cases is calculated from the previous data and presented in Figs. 1c and 1d 
respectively for China and South Korea. In particular, these data show peaks which are marked 
with asterisks on Figs. 1c and 1d. As mentioned in the introduction, a peak-shaped number of 
new cases is a common feature of epidemic outbreaks. The onset of the peak corresponds 
approximatively to the start of the s phase discussed earlier [14]. 
The models presented hereafter in this work address the first period of the epidemic (before the 
herd immunity), when typically the proportion of the infected population is inferior to 10% 
[18]. One common trend is obtained by plotting the number of new cases as a function of the 
total number of cases in the f phase, i.e. prior to the onset of maximum in the number of new 
cases. Here we include the f phase data from 12 different countries with leading total number 
of infected cases [19, 20]. As shown in Fig. 2, this data presentation leads to the expression: 
 
            (1) 
 
where  is the number of new cases,  the prefactor and  a scaling exponent. It is found 
that Eq. 1 can reasonably interpret the data with an exponent . The prefactor  is found 
to vary from 0.5 to 2.2 for all the investigated countries, including China, South Korea, Iran, 
Turkey, Italy, Spain, France, the United States, Russia, Germany, the United Kingdom, and 
Brazil. The high value of the exponent  signifies the wide spread of the virus during the f 
phase. It also shows that the number of new cases is strongly dependent on the total number of 
cases during the f phase. However, as , the spread during this phase is sub-exponential. 
Similar plots for individual countries are included in the supplementary information, Fig. SI 1.  
 

 
 
Figure 2: Number of new cases as a function of the total number of cases showing the power-
law dependence of Eq. 1. The exponent  is found to interpret the data reasonably. The 
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prefactor  gives the lower bound and  the upper bound. Data from all countries 
(12 countries) are included [19, 20]. In supplementary information Fig. SI 1 we provide the 
figures for individual countries.  
 
 
Table 1 gives predictions for the number of new cases from the total number of cases during 
the f phase. The values are calculated for the exponent , and the prefactor  (resp. 

) to obtain a minimum (resp. maximum) value. The results show that by controlling the 
total number of cases at the start of the epidemic, significant reduction in the number of new 
cases can be obtained. It further shows that 1 to 3 orders of magnitude increase in the total 
number of cases in the f phase, results in about 7 – 288 times higher number of new cases. 
Table 1: Predictions for the number of new cases from the total number of cases during the f 
phase. Calculations are based on Eq. 1, for , , and  to obtain a minimum and 

 to obtain a maximum. 
 

Total cases,  Minimum new cases,  Maximum new cases,  

100 22 96 

1000 144 634 

10000 953 4192 

100000 6295 27696 
 
Next, a common trend for the temporal evolution of the total number of cases is sought. The 
following expression is used to interpret the latter data [21]: 
 

        (2) 

 
where  and  correspond to the total number of cases at the start and the end of epidemic 
respectively (i.e. the boundaries),  is similar to the duplication time, and  is a parameter 
that controls the temporal variation of the data trend, strictly its deviation from an exponential 
growth which we find to occur early in each data set. A high value of  also corresponds to a 
fast transition from the f phase to the s phase and the p phase.  
 
The form of Eq. 2 is inspired from the growth of eukaryotic cells in Petri dish, where the 
boundary conditions slow the initial exponential growth [21]. For cell culture, it was found that 

 gave good results. Here, 𝛼 is left as an adjustable parameter controlling the different 
measures taken by the states to mitigate the virus expansion, including social distancing and 
barrier gestures. Although the effects of social confinement are different from Petri dish 
boundary conditions, it is shown below that Eq. 2 can reasonably interpret the data. It is noted 
that other functions may be used for data interpretation [11, 14, 22, 23]; the preference in the 
use of Eq. 2 is its simplicity and physically meaningful parameters. For example as compared 
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to Gumbel’s model recently adopted to interpret the data, we show our model to give reasonable 
agreements over a longer period of the epidemic [23, 24]. It is noted however that cell division 
is fundamentally different from disease spreading in that, in the simplest form of argument, 
one cell divides to two related daughter cells while one individual can infect more than one 
related or non-related individuals. The applicability of Eq. 2 is in its form and should be not 
taken as a parallel between cell growth process and disease spreading process. 
 
However, it is not possible to fit all available data to Eq. 2 as many countries are in their f phase 
and a value of  cannot be assigned without uncertainties. Data from the same selected 
countries as in Fig. 2 were then fitted to Eq. 2. These fits for China, South Korea, Iran, and 
Turkey are shown in Fig. 3. It is noted that fitting started from , and the value of  

was fixed. Thereby, the number of the fitting parameters was reduced to 3, , 𝜏 and 𝛼. From 
Fig. 3, it is evident that Eq. 2 provides a reasonable agreement with the data, especially 
considering occasional non-uniformities in the trend, e.g. in the case of South Korea’s and 
Iran’s data. These non-uniformities are best presented in the number of new cases trends. For 
example, South Korea’s number of new cases data shows one peak at around day 40 and a 
second peak at around day 65. In Iran’s data, two peaks at around day 50 and day 65 are 
observed while another peak is expected to occur beyond day 120. In this later case, the data 
could correspond to a sequence of three consecutive waves, each of them being potentially 
described with Eq. 2. The best fit parameters are presented in Table 2. One observes that the 
duplication time varies in the range 1 – 3 days among these countries and the 𝛼 parameter is in 
the range of 0.2 – 0.5. China and Iran present similar duplication time equal to 1.7 days and 
1.5 days respectively while their 𝛼 parameter differ and are respectively 0.45 and 0.17. A higher 
𝛼 parameter in the case of China corresponds to this country’s faster transition from the f phase 
to the s phase as compared to Iran. The transition from the f phase to the s phase has a reverse 
dependence on the duplication time. For example, for China and Turkey which have a similar 
𝛼 parameter, a shorter duplication time for China as compared to a longer one equal to 2.7 days 
for Turkey means that China’s transition occurred over a shorter period of time.  
 
It is noted that the duration of f phase is much longer than the duration of the exponential 
growth incorporated in Eq. 2. Indeed, we find that most countries have a short time span of 
exponential growth which is deviated in a matter of a few days. Thereby the parameters 
associated with Eq. 1 resulting in the comparisons shown in Fig. 2, and those of Eq. 2 resulting 
in Figs. 3 – 5 are not interpreting the same range of data. More precisely, f phase is all data up 
to the maximum in the number of new cases, while the exponential growth in the data only 
lasts a few days. 
 
Furthermore, the number of new cases is calculated from the total number of cases as discussed 
previously. Thereby, Fig. 3 further shows a comparison between the latter data and calculations 
from the derivative of Eq. 2 using the same fit parameters. The reasonable agreement obtained 
from the latter comparison further shows that Eq. 2 is adequate for data interpretation. 
Similarly, fits to the total of number of cases for Italy, Spain, France, and the United States, 
together with the reproduction of the number of new cases from data and from derivative of 
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Eq. 2 are shown in Fig. 4. Figure 5 shows similar data for Russian, Germany, the United 
Kingdom and Brazil. The agreement is again reasonable. We note that for certain countries 
such as Italy, France, Germany, Russia and UK, the agreement is excellent both on the total 
number of cases and the number of new cases. 
 

 
Figure 3: (a, c, e, g) Total number of cases as a function of number of days starting from 22-
01-2020 together with fits to Eq. 2. (a) China, (c) South Korea, (e) Iran, and (g) Turkey. The 
fit parameters are given in Table 2. The time has been shifted by a number of days 𝑡* for each 
country such that 𝑛(𝑡*) = 𝑛*. (b, d, f, h) Number of new cases as a function of number of days 
starting from 22-01-2020 together with reproduced curves from the derivative of Eq. 2 using 
the fitted values given in Table 2. (b) China, (d) South Korea, (f) Iran, and (h) Turkey. All data 
are collected until 20-05-2020. 
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Figure 4: (a, c, e, g) Total number of cases as a function of number of days starting from 22-
01-2020 together with fits to Eq. 2. (a) Italy, (c) Spain, (e) France, and (g) USA. The fit 
parameters are given in Table 2. The time has been shifted by a number of days 𝑡* for each 
country such that 𝑛(𝑡*) = 𝑛*. (b, d, f, h) Number of new cases as a function of number of days 
starting from 22-01-2020 together with reproduced curves from the derivative of Eq. 2 using 
the fitted values given in Table 2. (b) Italy, (d) Spain, (f) France, and (h) USA. All data are 
collected until 20-05-2020.  
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Figure 5: (a, c, e, g) Total number of cases as a function of number of days starting from 22-
01-2020 together with fits to Eq. 2. (a) Russia, (c) Germany, (e) UK, and (g) Brazil. The fit 
parameters are given in Table 2. The time has been shifted by a number of days 𝑡* for each 
country such that 𝑛(𝑡*) = 𝑛*. (b, d, f, h) Number of new cases as a function of number of days 
starting from 22-01-2020 together with reproduced curves from the derivative of Eq. 2 using 
the fitted values given in Table 2. (b) Russia, (d) Germany, (f) UK, and (h) Brazil. All data are 
collected until 20-05-2020. 
 
 
The resulting fit parameters are summarized in Table 2. One finds that the duplication time  
varies from 1 – 3 days. The significance of this range is that at the start of the epidemic, every 
1 – 3 days the total number of cases is almost duplicated. This observation coincides with the 
strong dependence of the number of new cases on the total number of cases in the f phase 

t
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discussed earlier. A high value of 𝛼 parameter implies that a turnover from the f phase to the s 
phase and the p phase occurs over a shorter time period as is the case for China (Table 2 & Fig. 
1). For Spain, which has about the same duplication time as China, a lower value of the 𝛼 
parameter has a reverse effect. It is noted that the fitted  values for all countries except China 
and South Korea may be used as predictions since these countries have not yet reached their p 
phases. 
 
Table 2: Best fit parameters obtained from fits of Eq. 2 to total number of cases data of several 
countries. In all fits  𝑛* ≥ 100. Error of fit for 𝑛3, 𝜏 and 𝛼 are respectively ± 104 cases, ± 0.1 
days, and ± 0.01. 

Country 𝑛3 × 105 
(number) 

𝜏 
(days) 

𝛼 
𝑡678∗∗  

(days) 
China 0.83 1.7 0.45 16 

South Korea 0.10 0.6 0.16 8 

Iran 1.02 1.5 0.17 32 

Turkey 1.49 2.7 0.46 27 

Italy 2.40 0.9 0.08 37 

Spain 2.80 1.8 0.25 33 

France 1.91 1.8 0.21 36 

USA 18.0 1.4 0.14 44 

Russia 5.16 2.4 0.20 53 

Germany 1.90 1.5 0.20 30 

UK 2.80 1.9 0.18 43 

Brazil 14.9 1.0* 0.04 88 
* Fixed parameter in the fit. **Counts from the start of the epidemic in each state, and not from 
22-01-2020. 
 
 
The form of Eq. 2 may then be used to give general trends of the epidemic using the fitted 
values in Table 2. To this end, the number of cases at the two extremities were selected to be 

 and , the duplication time was varied in the range  days and 

. In the Supporting Information Fig. SI 1, several predictions are plotted using 
these values. It is shown that for a fix value of 𝛼 parameter, a higher value of the duplication 
time 𝜏 broadens the curves whereby the turnover period to the s phase and the p phase is also 
prolonged. Similarly, the onset of the maximum in the number of new cases is delayed. It is 
otherwise found that the 𝛼 parameter has a reverse effect. For example, at a fix value of the 
duplication time 𝜏, a higher value of the 𝛼 parameter shifts the curves to the left whereby the s 
phase and the p phase occur earlier, and similarly the onset of the maximum in the number of 
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new cases is shortened. Thereby the 𝛼 parameter, which is strictly responsible for deviation 
from an exponential growth, gives approximately the time range between the initial growth 
phases and the final p phase. This variation may be abrupt when 𝛼 is large (e.g. this is the case 
in the cell model) or may be smooth when 𝛼 is small. These curves suggest that both 𝛼 and 𝜏  
control the trend behavior from  to . These two parameters can then be used for prediction 
purposes and planning regarding the trends in the other countries.  
 
Furthermore, from the estimated values of ,  and  in Table 2, it is possible to estimate 
the duration from the start of the epidemic to the onset of the maximum in the number of new 
cases. This duration which is denoted  is expressed as follows: 
 

   (3) 

 
The form of Eq. 3 shows that this time period is proportional to the duplication time ; 
however, it is inversely related to the  parameter. This relation agrees with our previous 
statement on the general trend behaviors. Furthermore, Eq. 3 shows that the dependence on the 
ratio of the total number of cases to the initial number of cases,  is weak. The estimated 

 values are provided in Table 2. It is clear that China and South Korea have reached to this 
maximum over a shorter period of time as compared to the other countries. However, in 
general, 2 – 8 weeks is the period over which these countries have reached the maximum of 
the number of their new cases. The onset of this maximum and the number of new cases at this 
maximum, which is generally compared with the medical capacity, are important parameters 
for planning and placing mitigating measures by the states.  
 
 

3.   Conclusions 
It is concluded by the analysis presented in this letter that the first period of the Covid-19 
epidemic, before the herd immunity, may be interpreted in terms of simple models containing 
physically meaningful parameters. The temporal evolution of the total number of cases may be 
divided to three phases. In the f phase, it is shown that the number of new cases depends on the 
total number of cases in a power-law relation with an exponent . The overall temporal 
evolution of the total number of cases, i.e. all three phases, may also be interpreted by 
modeling. It is found that the duplication time 𝜏 is 1 – 3 days and the 𝛼 parameter, which 
controls the exponential growth, to be in the range 0.1 – 0.5 for selected countries. The higher 
is the value of this parameter, the shorter is the period of phase change. The duplication time 
together with the 𝛼 parameter may be used to interpret the total number of case as well as the 
number of new cases. The models presented in this work, and the average values which are 
obtained by fitting to several countries with leading number of cases, may be used for 
prediction purposes as well as for guiding the implementation of proper controlling measures 
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during each phase of the epidemic. The presented model and analysis are for when the total 
number of infected cases is less than 10% of the entire population. In order to interpret the 
trends when up to 60% of the population are infected, a different model is required, which is 
out of the scope of the present work. 
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Supporting Information 

 

Figure SI 1: Number of new cases as a function of total number of cases showing the power-
law dependence of Eq. 1. The exponent  is found to interpret the data reasonably. The 
prefactor  gives the lower bound and  the upper bound. Top to bottom and left 
to right: China, South Korea, Iran, Turkey, Italy, Spain, France, United States, Russia, 
Germany, United Kingdom, and Brazil. 
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Figure SI 2: Calculation of the total number of cases (a, b) and the number of new cases (c, 
d) from Eq. (2) in the main text. The number of new cases is equivalent to the derivative of Eq. 
(2) in the main text. 𝑛* = 10:, 𝑛3 = 10;, 𝜏 = 1 − 3 days, and 𝛼 = 0.1 − 0.5. 

 


