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Abstract. In this paper, we study two topics. One is the divisibility problem of class groups of quadratic number fields and

its connections to algebraic geometry. The other is the construction of Selmer group and Tate-Shafarevich group for an abelian
variety defined over a number field.
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1. Introduction

An interesting and important fact about the ideal class group of the ring of integers in a number field
is that it is finite. So it is natural to ask whether given any positive integer n there exists n-torsion
elements in the class group of the number field. This is related to the so called ‘divisibility problem’
of the class group: given a positive integer n whether it divides the order of the class group. In the
paper [BaHo19], the authors studied the relations of this divisibility problem with the elements of
n-torsions in the Picard group of a hyperelliptic surface. More precisely, suppose that we consider a
hyperelliptic surface S defined over Q̄ given by a precise equation. Suppose that S admits a regular
map to the affine plane A2

Q̄ defined over Q̄. Then spreading out S,A2 over Spec(Z) we have a family
of ring of integers of a family of specific number fields. Now suppose that we start with a n-torsion
element in the Picard group of S, then restricting it to fibers we have n-torsion elements in the class
group of each member of the above family of ring of integers. Moreover a certain family of subgroups
of n-torsions’ of the class group of each member of the above family has same cardinality for each fiber
over a Zariski open subgroup of A2

Z. This phenomena supports the so called Cohen-Lenstra heuristic
which proposes the conjectural fact that given any n a positive proportion of the number fields has
an element whcih are n-torsion in its class group. Atleast we can say that for the above family the
number fields having the divisibility property is“parametrized” by a Zariski open subset of the affine
plane over Spec(Z).

The main theme of this work was to use the Mumford-Rŏitman argument for the natural map
from relative Chow schemes to the relative Picard group, which says that the fibers of this map are
countable union of Zariski closed subsets varying in a family.

The other theme of this paper is the Selmer and Tate-Shafarevich group constructions of an
abelian variety defined over a number field. The notion of Selmer group and the Tate-Shafarevich
group is very much important from the perspective of local-global principle in arithmetic geometry.
The Tate-Shafarevich group measures the failure of the local to global principle. The studies of these
groups have been initiated by Cassels, Lang, Selmer, Shafarevich, Tate, [Cas62a], [Cas62b], [LaTa58],
[Sel51], [Sha59], [Ta58]. The famous conjecture about the Tate-Shafarevich group tells that this group
associated to an abelian variety is finite. The first case where it has been proven is the case of elliptic
curves with complex multiplication having rank atmost 1, by Karl Rubin, [Rub87]. The next is the
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case of modular elliptic curves with analytic rank atmost 1, by V.Kolyvagin, [Kol88]. The paper
by Selmer [Sel51] has many examples of genus one curves for which the Tate-Shafarevich group has
non-trivial elements. The perception of the Tate-Shafarevich group of abelian varieties comes from
the first Galois cohomology of the Abelian variety defined over a number field. On the other hand it
can be described as the non-trivial torsors on the abelian variety which become trivial over a local
field. The Selmer group has been defined by a certain kernel at the level of first Galois cohomology
and it is known that this group is finite.

In the paper [BaCh19], the aim was to study the notion of Selmer group and the Tate-Shafarevich
group from the perspective of algebraic cycles. That is the authors, consider the Galois action of
the absolute Galois group of a number field on the group of degree zero cycles on an abelian variety
defined over a number field. Then consider the Selmer and the Tate-Shafarevich group associated to
this group of degree zero cycles on the abelian variety by considering the kernel at the level of first
Galois cohomology of this particular Galois module.

There are certain things known about the group of degree zero cycles on a smooth projective variety
over the algebraic closure of a number field. One is the Mumford-Rŏitman argument [Mum68],[Roi72]
about Chow schemes which says that the natural map from the symmetric power of an abelian variety
to the Chow group has fibers given by a countable union of Zariski closed subsets in the symmetric
power. This result enables us to give a scheme theoretic structure on the first Galois cohomology
of the group of degree zero cycles on the abelian variety. Next, there is the famous theorem due
to Rŏitman, [Roi80], which says that the torsion subgroup of the group of degree zero cycles on an
abelian variety and the torsion subgroup on the abelian variety are isomorphic. This leads us to
study of n-divisibility of the group of the degree zero cycles defined over the number field from a
cohomological perspective. The main result of [BaCh19] is:

Theorem 1.1. Let A denote an abelian variety defined over a number field K. Let A0(A) denote the
group of degree zero cycles on the abelian variety. Let G be the absolute Galois group of automorphisms
of K̄ fixing K. Let A0(A)(K) denote the group of G-fixed elements of A0(A). Then the group
A0(A)(K)/nA0(A)(K) is finite.

The importance of this result from the perspective of algebraic cycles lies in the Bloch-Beinlinson’s
conjecture on the albanese kernel which says that the kernel of the albanese map from the group of
degree zero cycles on a smooth projective variety over Q̄ to the albanese variety has trivial kernel.
It is known that this restriction on the ground field is sharp. That is, if we consider an one variable
transcendental extension of the field Q̄, then over this field there are varieties for which the albanese
kernel is non-trivial (see [GoGu13],[GGP04]). From the above result we can only say that the quotient
T (A(K))/nT (A(K)) of the Albanese kernel (denoted by T (A)) for an abelian variety A is finite. Here
n-is a positive integer and A(K) denote the group of K-points on A. So it is worth studying the
Tate-Shafarevich group and the Selmer group of the albanese kernel.

Here we have two constructions: one is the link between divisibility of class groups in a family
with that of the Picard group of a hyperelliptic surface. On the other hand we can consider the Selmer
group and the Tate-Shafarevich group of the Chow group of degree zero cycles on the hyperelliptic
surface. A natural question is: What is the connection between n-divisibility of the Selmer group
with that of the class group of the number fields in the above mentioned family?

The paper is organized as follows: in the second and third section we recall the results and
techniques used in [BaCh19],[BaHo19] and then in the fourth section we attempt to connect these
two techniques by answering the question posed in the last paragraph.

Acknowledgements: K. Banerjee and A. Hoque thanks the hospitality of Harish-Chandra Research Institute,

India, for hosting this project. K.Banerjee was funded by DAE, Govt. of India, for this project and A. Hoque

is supported by SERB N-PDF (PDF/2017/001958), Govt. of India.



K. Banerjee, K. Chakraborty & A. Hoque, Divisibility of Selmer groups and class groups 87K. Banerjee, K. Chakraborty & A. Hoque, Divisibility of Selmer groups and class groups 87

2. Mumford-Rŏitman argument on Chow schemes and relative Pi-
card schemes

For a smooth, projective scheme X, let D denote a Weil divisor on it. For a flat morphism X → B of
projective schemes, we consider the Chow scheme, C1

d(X/B) of relative divisors, that is co-dimension
one subschemes of X → B of degree d, that is

C1
d(X/B) = {(Db, b)|Supp(Db) ⊂ Xb, deg(Db) = d}.

Then there is a natural map C1
d(Xb)→ Pic(Xb) associating to a D in its divisor class [D]. In this set

up, we consider the following:

Z := {(b,Db)|[Db] = 0 ∈ Pic(Xb)}.

The proof of the following theorem is based on the idea introduced by Mumford in [Mum68]. This
idea had been elaborated by Rŏitman in [Roi71] and Voisin in [Voi12]. This idea had also been used
in [BaGu].

Theorem 2.1. Z is a countable union of Zariski closed subsets in C1
d(X/B).

Proof. Assume that the relation Db = D+
b − D

−
b is rationally equivalent to zero. This means that

there exists a map f : P1 → C1
d,d(Xb) such that

f(0) = D+
b + γ and f(∞) = D−b + γ,

where γ is a positive divisor on Xb. In other words, we have the following map:

ev : Homv(P1
k, C

1
d(X/B))→ C1

d(X/B)× C1
d(X/B),

given by f 7→ (f(0), f(∞)) and image of f is contained in C1
d,d(Xb).

Let us denote C1
d(X/B) by C1

d(X) for simplicity.
We now consider the subscheme Uv,d(X) of B × Homv(P1

k, C
1
d(X)) consisting of the pairs (b, f)

such that image of f is contained in C1
d(Xb) (such a universal family exists, for example see [Kol88,

Theorem 1.4]). This gives a morphism from Uv,d(X) to B × C1
d,d(X) defined by

(b, f) 7→ (b, f(0), f(∞)).

Again, we consider the closed subscheme Vd,d of B × C1
d,d(X) given by (b, z1, z2), where (z1, z2) ∈

C1
d,d(Xb). Suppose that the map from Vd,u,d,u to Vd+u,d+u is given by

(A,C,B,D) 7→ (A+ C,C,B +D,D).

Then one writes the fiber product V of Uv,d(X) and Vd,u,d,u over Vd+u,d+u. If we consider the projection
from V to B ×C1

d,d(X), then we observe that A and B are supported as well as rationally equivalent
on Xb. Conversely, if A and B are supported as well as rationally equivalent on Xb, then one gets the
map

f : P1 → C1
d+u,u,d+u,u(Xb)

of some degree v satisfying

f(0) = (A+ C,C) and f(∞) = (B +D,D),
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where C and D are supported on Xb. This implies that the image of the projection from V to
B × C1

d,d(X) is a quasi-projective subscheme W u,v
d consisting of the tuples (b, A,B) such that A and

B are supported on Xb, and that there exists a map

f : P1
k → C1

d+u,u(Xb)

such that f(0) = (A+C,C) and f(∞) = (B +D,D). Here f is of degree v, and C,D are supported
on Xb and they are of co-dimension 1 and degree u cycles. This shows that Wd = ∪u,vW u,v

d . We now
prove that the Zariski closure of W u,v

d is in Wd for each u and v. For this, we prove the following:

W u,v
d = pr1,2(s̃−1(W 0,v

d+u ×W
0,v
u )),

where
s̃ : B × C1

d,d,u,u(X)→ B × C1
d+u,d+u,u,u(X)

defined by
s̃(b, A,B,C,D) = (b, A+ C,B +D,C,D).

We assume (b, A,B,C,D) ∈ B × C1
d,d,u,u(X) in such a way that s̃(b, A,B,C,D) ∈ W 0,v

d+u ×W
0,v
u .

This implies that there exists an element (b, g) ∈ B × Homv(P1
k, C

p
d+u(X)) and an element (b, h) ∈

Homv(P1
k, C

p
u(X)) satisfying

g(0) = A+ C, g(∞) = B +D and h(0) = C, h(∞) = D

as well as the image of g and h are contained in C1
d+u(Xb) and C1

u(Xb) respectively.
Also if f = g×h then f ∈ Homv(P1

k, C
p
d+u,u(X)) such that the image of f is contained in C1

d+u,u(Xb)
as well as it satisfies the following:

f(0) = (A+ C,C) and (f(∞)) = (B +D,D).

This shows that (b, A,B) ∈W d
u,v.

On the other hand, we assume that (b, A,B) ∈W d
u,v. Then there exists f ∈ Homv(P1

k, C
1
d+u,u(Xb))

such that
f(0) = (A+ C,C) and f(∞) = (B +D,D),

and image of f is contained in the Chow scheme of Xb.
We now compose f with the projections to C1

d+u(Xb) and to C1
u(Xb) to get a map g ∈ Homv(P1

k, C
1
d+u(X))

and a map h ∈ Homv(P1
k, C

1
u(X)) satisfying

g(0) = A+ C, g(∞) = B +D

and
h(0) = C, h(∞) = D.

Also, the image of g and h are contained in the respective Chow schemes of the fibers Xb. Therefore,
we have

Wd = pr1,2(s̃−1(Wd+u ×Wu)).

We are now in a position to prove that the closure of W 0,v
d is contained in Wd. Let (b, A,B) be a

closed point in the closure of W 0,v
d . Let W be an irreducible component of W 0,v

d whose closure contains
(b, A,B). Assume that U is an affine neighborhood of (b, A,B) such that U ∩W is non-empty. Then
there is an irreducible curve C in U passing through (b, A,B). Suppose that C̄ is the Zariski closure
of C in W . The map

e : Uv,d(X) ⊂ B ×Homv(P1
k, C

1
d(X))→ C1

d,d(X)
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given by
(b, f) 7→ (b, f(0), f(∞))

is regular and W 0,v
d is its image. We now choose a curve T in Uv,d(X) such that the closure of e(T )

is C̄. Let T̃ be denote the normalization of the Zariski closure of T , and T̃0 be the pre-image of T in
this normalization. Then the regular morphism T̃0 → T → C̄ extends to a regular morphism from T̃
to C̄. If (b, f) is a pre-image of (b, A,B), then f(0) = A, f(∞) = B and the image of f is contained
in Cp

d(Xb) by the definition of Uv,d(X). Therefore, A and B are rationally equivalent. This completes
the proof.

As a consequence, one gets the following:

Corollary 2.2. The collection

Zd := {(b,Db)|n[Db] = 0 ∈ Pic(Xb)}

is a countable union of Zariski closed subsets in the scheme C1
d(X/B).

2.A. Mumford-Rŏitman arguments and monodromy representation

Following an idea using monodromy due to Voisin [Voi02, Chapter 3] and the above mentioned
argument due to Mumford and Rŏitman, we have the following theorem:

Theorem 2.3. The cardinality of the subgroup of torsions in Xb coming from the fibration ZiC,U →
UC for each b ∈ U remains constant and they vary in a family.

Proof. For a proof see [BaHo19, Thoerem 3.1].

We now consider a smooth projective curve C over an algebraically closed field K ⊂ C in the
projective plane P2 over K. Let U be an affine piece of C. That is, U is C minus finitely many points,
viz. P1, · · · , Pm. Consider the following localization exact sequence of Picard groups

⊕iZ[Pi]→ Pic(C)→ Pic(U)→ 0.

Then the set of all torsion points in Pic(U) gives rise to elements of Pic(C) of the form nz such that

nz =
∑
i

niPi

where P1, · · · , Pm are the finite number of points that are deleted. As before, we consider a fibration
of smooth projective schemes X → B over Q̄, where X is a surface embedded in P3 such that each
fiber Xb is contained in a projective plane P2 over Q̄ and B is an algebraic curve. Suppose that the
degree of the algebraic curve Xb remains constant over a Zariski open set U in B. For an affine piece
Ub of the algebraic curve Xb, we consider the following:

P := {(x, b)|x ∈ Xb \ Ub} → U.

By the above assumption, this a finite-to-one map from P to U and the degree of this map is constant.
For given any b ∈ U , let us suppose the fiber Pb contains the points P1b, · · · , Pmb. We define the set:

Zd = {(b, z)|Supp(z) ⊂ Xb, nz =
∑
i

niPib} → U.

Then as a conseqeunce of Theorem 2.1 one gets the following result.
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Corollary 2.4. Zd is a countable union of Zariski closed subsets in the ambient relative Chow scheme
C1
d(XU/U), where XU → U is the pullback of the family X → B to U .

This corollary along with the Theorem 2.3 gives the following:

Corollary 2.5. The cardinality of the set of z in Zib for b ∈ U such that

nz =
∑
i

niPib

for points Pib ∈ Xb is constant as b varies over U .

These points on Pic(Xb) correspond to the torsion elements in Pic(Ub), where Ub is the open comple-
ment of Xb obtained from Xb by deleting the points P1b, · · · , Pmb.

2.B. Example of hyperelliptic surfaces

In this section, we will show that certain algebraic surfaces have n-torsion elements in the Picard
group. We begin section with the algebraic surface defined by

y2 = t2q2 − zn

over Q. Its co-ordinate ring is given by

Q[y, t, z]/(y2 − t2q2 + zn).

We now consider the maximal ideal (t−m, z− `), for some algebraic numbers m, `, in the polynomial
ring Q[t, z]. We also consider the map

Q[t, z]→ Q[y, t, z]/(y2 − t2q2 + zn)

which is defined by
t 7→ t, z 7→ z

and the map Q[t, z]→ Q which is given by

f(t, z) 7→ f(m, `).

Then the tensor product
Q[y, t, z]/(y2 − t2q2 + zn)⊗Q[t,z] Q

is given by Q[y]/(y2−m2q2 +`n). Further, if the polynomial p(y) := y2−m2q2 +`n is irreducible over
Q, then the above co-ordinate ring is isomorphic to L, where L is the imaginary quadratic extension
of Q given by adjoining a root of p(y). Therefore if we consider the family

Z[y, t, z]/(y2 − t2q2 + zn)→ Z[t, z],

then the normalizations of the fibers are the ring of integers of

Q(
√
m2q2 − `n)

Let us consider an affine surface S fibered over Å2
Q as mentioned in the beginning of this section.

Let the pullback of the fibration over Å2
Z, be SZ → Å2

Z. Then the family of mormalizations to SZ is

the family of ring of integers O(
√
m2q2 − `n). For the convenience of notation, let us continues to

denote this family as SZ. Consider the Zariski closure of S in P3
Q and the Zariski closure of the family

SZ → Å2
Z in P3

Z. We denote it by S̄Z. We also consider the Chow scheme

C1
d(S̄Z/P2

Z)
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and the subset
Zd := {(z, b)|Supp(z) ⊂ Xb, [z] =

∑
i

ni[Pib] ∈ Pic(SZ,b)},

where P1b, · · · , Pmb are the points in the complement of SZ,b inside the Zariski closure S̄Z,b. Then by
Theorem 2.1, we get the following result.

Proposition 2.6. The set Zd is a countable union of Zariski closed subsets in the Chow scheme.

Applying the same argument as in Corollary 2.5, we see that there exists an irreducible Zariski closed
subset Zi inside the relative Picard scheme Pic(SZU → U), where U is Zariski open in Å2

Z, such that
the complexification of Zi,C maps dominantly onto UC as well as the number of points in the fiber of
this map is constant. Therefore, one gets the following:

Theorem 2.7. The cardinality of a certain subgroup of Pic(SZ,b) which is nothing but the class group

of the quadratic field Q(
√
m2q2 − `n) for some fixed integers m and `, remains constant as b varies

over U .

This concludes that given an element of order n in Pic(SZ,b), one can find an element of the same
order in Pic(SZ,b′) for some b′ ∈ U which is different from b.

3. Tate-Shafarevich group of the Chow group of an abelian variety

Let K be a number field and let K denote its algebraic closure. Let A be an abelian variety defined
over K. Then we have a natural Galois action of the absolute Galois group Gal(K̄/K). This action
induces further an action on the Chow group of zero cycles on the abelian variety A. Here the Chow
group is the free abelian group generated by closed points on A(K̄) modulo the rational equivalence.
We denote this group by CH0(A).

Consider the continuous functions f from G = Gal(K̄/K) to CH0(A) satisfying the property that

f(στ) = f(σ) + σf(τ) .

The set of all such functions form a group denoted by Z1(G,CH0(A)). Let us consider the subgroup
of Z1(G,CH0(A)) consisting of elements f such that

f(σ) = σ.x− x

where x some element in the group CH0(A). Denote this subgroup by B1(G,CH0(A)). Then we
define the quotient

Z1(G,CH0(A))/B1(G,CH0(A))

as
H1(G,CH0(A)) .

Let A0(A) denote the subgroup of degree zero cycles modulo rational equivalence in CH0(A). We
consider as previous the Galois cohomology

H1(G,A0(A))

of the group A0(A).
We observe that there is a natural homomorphism of abelian groups from A0(A) to A. Then by

functoriality of group cohomology we have that this homomorphism descends to a homomorphism of
Galois cohomology groups of the corresponding Galois modules:

H1(G,A0(A))→ H1(G,A)
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The map from A0(A) to A is denoted by alb, the albanese map. We denote the map fromH1(G,A0(A))
to H1(G,A) as alb. We are interested in understanding the structure of the group H1(G,A0(A)).
Consider the natural map from SymnA to A0(A), which sends an unordered n-tuple {P1, · · · , Pn} of
K̄ points on A to the cycle class

n∑
i=1

[Pi − P0] ,

where P0 is a fixed K-point on A.
Now consider the fact that the group H1(G,A0(A)) is actually isomorphic to the colimit of Galois

cohomology of finite groups
H1(Gal(L/K), A0(AL))

Here L/K is a finite Galois extension and AL is the collection of L-points on A. Since G is a profinite
group, the range of any function η from G to A0(A) is finite. Consider Zl to be the collection of
all maps η from G to A0(A) such that η factors through SymlA × SymlA (this can be achieved by
decomposing a zero cycle into positive and negative parts). That is we identify the maps η, factoring
through SymlA × SymlA, with its image inside SymlA × SymlA. There exists a normal subgroup
of G of finite index, call it N , such that η is factoring through G/N . On the other hand suppose
that we have a collection of points on SymlA × SymlA. Then we can define a map from G/N to
SymlA × SymlA by assigning the cosets of N to this finite collection of points of SymlA × SymlA.
Such a map will be continuous from G/N to SymlA × SymlA equipped with discrete topology, as
G/N is finite. Since the quotient map from G To G/N is continuous we have that the map from
G to SymlA× SymlA is continuous. But these maps are non-canonical as its depends on the choice
of the points and their assignments to the left cosets of N . Now consider the relation that defines
Z1(G,A0(A)),

η(στ) = η(σ) + ση(τ) .

Since this relation happens on A0(A) we have that the cycles

η(στ)

is rationally equivalent to
η(σ) + ση(τ) .

This means that there exists a map from P1
K̄

to SymdA, and a positive zero cycle B such that

f(0) = η(στ) +B, f(∞) = η(σ) + ση(τ) +B .

By the theorem of Roitman [Roi71] the collection of all such η, such that

η(στ)

is rationally equivalent to
η(σ) + ση(τ)

is a countable union of Zariski closed subsets inside the symmetric power SymlA× SymlA such that
range of η is contained in SymlA× SymlA. So following [Roi71] we have:

Theorem 3.1. The collection of all η contained in Zl,l such that

η(στ)

is rationally equivalent to
η(σ) + ση(τ)

is a countable union of Zariski closed subsets inside SymlA× SymlA denoted by Z1
l .



K. Banerjee, K. Chakraborty & A. Hoque, Divisibility of Selmer groups and class groups 93K. Banerjee, K. Chakraborty & A. Hoque, Divisibility of Selmer groups and class groups 93

Proof. For details of the proof see [BaCh19, Theorem 2.1].

Similarly we can prove that the collection of η in Zl such that η(σ) is rationally equivalent to
σ.z − z (for a fixed zero cycle z) is a countable union of Zariski closed subsets in Z1

l . Call it B1
l .

Therefore we can conclude from the above theorem that:

Theorem 3.2. The group H1(G,A0(A)) admits a surjective map from the countable union ∪lZ1
l such

that ∪lB1
l is mapped to a point under this surjective map.

Now we further study the property of this map:

Z1
l → H1(G,A0(A))

Consider an element η in the set Z1
l . Then for every σ, τ we have

η(στ) = η(σ) + ση(τ) .

This equality happens in A0(A). So consider the tuples

(η, f,B) ∈ Zl ×Homv(P1,Symn+u,n+uA)× SymuB

such that the following equations are satisfied:

f(0) = η(στ) +B

f(∞) = η(σ) + ση(τ) +B.

So if we denote the above quasiprojective variety by V and consider the projection map from V to
Homv(P1,Symn+u,n+uA), then it is a P1-bundle. This is because it is the pull-back of the P1-bundle
given by

{(x, f)|x ∈ im(f)} ⊂ Symn+u,n+uA×Homv(P1,Symn+u,n+uA) .

So over Z1
l we have the universal variety U1

l,m consisting of tuples (η, f,B) such that the above
equations are satisfied and it has the structure of a rationally connected fibration over the Hom-
scheme. Therefore if we consider the finite map from A2l to SymlA× SymlA, the degree of this finite

map is (l!)2. The pullback of Z1
l under this map is a finite branched cover of Z1

l denoted by Z̃1
l .

Correspodningly we have the pull-back of the universal family U1
l over Z̃1

l denoted by Ũ1
l . This is a

family of branched covers of P1 over the Hom-scheme.

3.A. The group cohomology of the group of degree zero cycles on A

Let A0(A) denote the group of degree zero cycles or the zero cycles algebraically equivalent to zero
on A. Then there is a natural homomorphism from An to A0(A) Given by∑

i

Pi 7→
∑
i

[Pi − n0]

here 0 is the neutral element of the abelian variety A. Then the map from An to A0(A) induces by
functoriality a natural homomorphism from H1(G,An) to H1(G,A0(A)). Consider the natural map
from An to An+1 given by

(P1, · · · , Pn) 7→ (P1, · · · , Pn, 0)

Then this map gives rise to the homomorphism from H1(G,An) to H1(G,An+1) and the homomor-
phism

θn : H1(G,An)→ H1(G,A0(A))
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factors through the above map
H1(G,An) 7→ H1(G,An+1) .

Hence we have a natural homomorphism from the colimit of the groups

H1(G,An)

to
H1(G,A0(A))

denoted by θ. So we have
θ : lim−→H1(G,An)→ H1(G,A0(A)) .

Now for each n we have the group law from An to A given by

(a1, · · · , an) 7→
∑
i

ai

This map gives rise to a natural map from H1(G,An) to H1(G,A). Note that this map factors
through the homomorphism

H1(G,An)→ H1(G,An+1)

Therefore we have a homomorphism from

lim−→H1(G,An)→ H1(G,A) .

Since the map H1(G,An) to H1(G,A0(A)) factors through the map

H1(G,A)→ H1(G,A0(A))

we have that the map
lim−→H1(G,An)→ H1(G,A0(A))

factors through the map
H1(G,A)→ H1(G,A0(A)) .

Now the group on the left is the the Weil-Chatelet group of the respective A, which consists of the
equivalence classes of principal homogeneous spaces over A. This group is denoted by WC(A). Under
the identification

H1(G,A) ∼= WC(A)

we have that
θ : WC(A)→ H1(G,A0(A)) .

It is natural to consider when this map is injective and surjective.
Now due to the famous result on torsions by Rŏitman [Roi80] in A0(A), we know that this group

of torsions is isomorphic to the group of torsions in A. So we expect a similar result when we consider
the group cohomology H1(G,A) and H1(G,A0(A)).

Theorem 3.3. The kernel of the map H1(G,A)[n]→ H1(G,A0(A))[n] is isomorphic to the group

A0(A)(K)/nA0(A)(K) .

Proof. For a proof see [BaCh19, Theorem 2.4].
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3.B. Tate-Shafarevich and Selmer group of A0(A) and their properties

Consider the exact sequence

0→ A0(A)(K)/nA0(A)(K)→ H1(G,A0(A)[n])→ H1(G,A0(A))[n]→ 0 .

Now we consider a place v of K and consider the complection of K at v, denote this completion
by Kv. Then consider the algebraic closure K̄v of Kv and embed K̄ into K̄v. This embedding gives
us an injection of the Galois group Gal(K̄v/Kv) into Gal(K̄/K). Considering the Galois cohomology,
we have a homomorphism from

H1(Gal(K̄/K), A0(A(K̄))→ H1(Gal(K̄v/Kv), A0(A(K̄v))) .

We write the groups Gal(K̄/K),Gal(Kv/Kv) as G,Gv for simplicity. Then we have the following
commutative diagrams:

A0(A)(K)/nA0(A)(K)

��

// H1(G,A0(A)[n])

��
A0(A)(Kv))/nA0(A)(Kv)) // H1(Gv, A0(Av)[n])

H1(G,A0(A)[n])

��

// H1(G,A0(A))[n]

��
H1(Gv, A0(Av)[n]) // H1(Gv, A0(Av))[n]

Consider the map

H1(G,A0(A)[n])→
∏
v

H1(Gv, A0(Av)).

Note: The kernel of this map will be called the Selmer group associated to the map z 7→ nz, denoted
by Sn(A0(A)/K). And, the kernel of the map H1(G,A0(A))→

∏
vH

1(Gv, A0(Av)) will be called the
Tate-Shafarevich group, denoted by TS(A0(A)/K).

Now consider the commutative diagram:

H1(G,A[n])

��

//
∏

vH
1(Gv, Av)[n]

��
H1(G,A0(A)[n]) //

∏
vH

1(Gv, A0(Av))[n]

Now by Rŏitman’s theorem as in [Roi80], the groups A[n] and A0(A)[n] are isomorphic, as Galois
modules (after a possible finite extension of the given number field). This fact is explained in details
in the next section 4. Therefore the group cohomologies are isomorphic. So the left vertical arrow in
the above diagram is an isomorphism. Suppose that we have an element in Sn(A/K), then by the
commutativity of the above diagram we have that the image of the element under the left vertical
homomorphism is in Sn(A0(A)/K). Now we recall the following theorem proved in [BaCh19, Theorem
3.3].
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Theorem 3.4. The group Sn(A0(A)/K) is finite and hence

A0(A)(K)/nA0(A)(K)

is finite.

4. Divisibility problem of class groups and Selmer groups

Considering the group of n-torsion elements in the Picard variety of the hyperelliptic surface S, say
Pic0(S), we have a bijection of this group with the n-torsion subgroup of Alb(S), the albanese variety
of S. This isomrophism is defined over a finite extension of the ground field. On the other hand
by the Rŏitman’s theorem in [Roi80], the n-torsions in A0(S) corresponds to n-torsions’ in Alb(S).
Suppose that after a finite extension of the ground field, say K, we have a K-rational point on S. Call
it P0. Let g be an element in the absolute Galois group of K. Then we have a functorial morphism:

g∗ : SymnS → SymnS

given by
P1 + · · ·+ Pn 7→ g(P1) + · · ·+ g(Pn)

where P1 + · · ·+Pn denote the unordered n-tuple consisting of closed points P1, · · · , Pn in S. Consider
the natural map

SymnS → A0(S)

given by
P1 + · · ·+ Pn 7→ [P1 + · · ·+ Pn − nP0]

The right hand side above denote the cycles class corresponding to the cycle

n∑
i=1

Pi − nP0 .

Note that the above map gives rise to the formula:

g∗([P1 + · · ·+ Pn − nP0]) = [g∗(P1) + · · ·+ g∗(Pn)− ng∗(P0)]

for g an element in the Galois group. Therefore we have

g∗ : A0(S)→ A0(S)

composing this map with the albanese map we have

A0(S)→ A0(S)→ Alb(S) .

If we compose the map S → A0(S), with the above map then we have P0 mapping to zero in Alb(S).
Hence we have a unique morphism of abelian varieties (denote it again by g∗):

Alb(S)→ Alb(S)

such that we have
albS ◦ g∗ = g∗ ◦ albS

Here albS is the albanese map. This gives that the map

A0(S)→ Alb(S)
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is a map of Galois modules (ensured by the universal property of the albanese variety), provided that
S has a K-rational point. Let for an abelian group A, the n-torsions are denoted by A[n]. So we have
the isomorphisms of Galois modules

Pic0(S)[n]→ Alb(S)[n]→ A0(S)[n]

where the fist one comes from Autoduality of Picard and Albanese varieties and the second one is
the isomorphism coming from Rŏitman’s theorem described above. Then we have an isomorphism
between

H1(G,Pic0(S)[n])

and
H1(G,A0(S)[n]) .

Therefore considering the Tate-Shafarevich groups we have an isomorphism

TS(A0(S)[n]/K) ∼= TS(Pic0(S)[n]/K)

where TS denote the Tate-Shafarevich group of n-torsions of the corresponding group. Now suppose
that we start from an element of order n on A0(S), this will correspond to an element of order n
in the Selmer group in Pic0(S). Now consider a fibration of this surface over P1

Q̄. Then for a closed

point b ∈ P1
Q̄, we have the restriction homomorphism

Pic0(S)→ Pic0(Sb)

So considering both Pic0(S),Pic0(Sb) as Galois modules we have a map of Galois cohomology

H1(G,Pic0(S))→ H1(G,Pic0(Sb))

Thus we have the following commutative diagram:

Pic0(S)(K)/nPic0(S)(K)

��

// H1(G,Pic0(S)[n])

��
Pic0(Sb)(K)/nPic0(Sb)(K) // H1(G,Pic0(Sb)[n])

Also we have an analogue of the above diagram at the level of local fields that is Kv, where v is a
place of K. Therefore functorially we have the homomorphism from

TS(Pic0(S)/K)→ TS(Pic0(Sb)/K)

and
Sn(Pic0(S)/K)→ Sn(Pic0(Sb)/K).

Composing this map with the map

Sn(A0(S)/K)→ Sn(Pic0(S)/K)

we have established a homomorphism from Sn(A0(S)/K) to Sn(Pic0(Sb)/K) and corresponding ho-
momorphism

TS(A0(S)/K)→ TS(Pic0(Sb)/K) .
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By a diagram chase we have the following diagrams

A0(S)(K)/nA0(S)(K)

��

// Sn(A0(S)/K)

��
Pic0(Sb)(K)/nPic0(Sb)(K) // Sn(Pic0(Sb))

Sn(A0(S)/K)

��

// TSn(A0(S)/K)

��
Sn(Pic0(Sb)) // TSn(Pic0(Sb)/K)

Therefore the elements of order n in the Selmer or the Tate-Shafarevich group of A0(S) corresponds
to an element of order n in the Selmer or the Tate-Shfarevich group respectively of Pic0(Sb). So
the n-divisibility of the Selmer or the Tate-Shafarevich group of A0(S) corresponds to n-divisibility
of the Selmer or the Tate-Shafarevich group of Pic0(Sb). Now spreading out Sb over Spec(Z) and
considering an affine piece of the spread we have the Spec(Ob), where Ob is the ring of integers of a
number field. The above construction then corresponds to the following:

Theorem 4.1. The n-divisibility of the Tate-Shafarevich or the Selmer group of the group A0(SU ) of
an affine piece SU of the surface S corresponds to the respective n-divisibility of the Tate-Shafarevich
or the Selmer group of corresponding class group of Ob.
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