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1. Introduction

Schur [Sch27], reproving the results of his thesis [Sch1901], considered the permutation action of the
group algebra CSr over C of the symmetric group Sr on r ≥ 1 letters, and the diagonal action of
GL(n,C) = GL(V ), V = Cn, on V ⊗r. The two actions commute, and Schur proved that these two
actions have a double centralizing property in End(V ⊗r): the centralizer of one is the image of the
other. Representations of GL(V ) are thus determined from those of Sr, known from the work of
Young.

Schur’s work was continued by Weyl [Wey53], whose “strip theorem” showed for example that
when n ≥ r there is a canonical bijection between the set of irreducible representations of Sr, and the
set of irreducible polynomial representations of GL(n,C) in V ⊗r.

A derivative of the Schur-Weyl duality, which started then as the study of the commuting actions of
the symmetric group Sr and GL(n,C) on V ⊗r where V = Cn, can be given in terms of the commuting
actions of Sr and the Lie algebra gl(n,C) of GL(n,C). A quantum deformation of this duality was
developed by Drinfeld [Dri85] and Jimbo [Jim86], to the context of the finite Iwahori-Hecke algebra
Hr(q

2) and the quantum algebra Uq(gl(n)), on using universal R-matrices, that solve the Yang-Baxter
equation. Chari and Pressley [ChPr96] extended this duality in the Hecke-quantum case to the affine
case, relating the commuting actions of the affine Iwahori-Hecke algebra Ha

r (q2) and of the affine
quantum Lie algebra Uq,a(sl(n)).

In another direction, the study of commuting actions of the symmetric group Sr and the Lie algebra
gl(n,C) on (Cn)⊗r, was extended by Sergeev [Se85] and Berele and Segev [BeRe87] to the context
of the diagonal action of the superalgebra gl(m|n,C) and of Sr, with a signed action. A quantum
deformation of this work, as in Drinfeld and Jimbo, was given by Moon [Mo03] and Mitsuhashi
[Mi06], who related the signed action of the Iwahori-Hecke algebra Hr(q

2) with that of the quantum
Lie superalgebra Uσq (sl(m|n)). This chain of works is completed in [Fli20], dealing with the general
affine quantum super case, relating the commuting actions of the affine Iwahori-Hecke algebra Ha

r (q2)
and of the affine quantum Lie superalgebra Uσq,a(sl(m|n)) using the presentation of the former by
Bernstein (see [Fli11]) and of the later by Yamane [Yam99] in terms of generators and relations,
acting on the rth tensor power of the superspace V = Cm|n. Thus a functor is constructed and it is
shown to be an equivalence of categories of Ha

r (q2) and Uσq,a(sl(m|n))-modules when r < m+ n.
The work of Schur was extended, or perhaps purified, in yet another – modular – direction. Mo-

tivated by R. Brauer, C. Chevalley, Serre [Ser68] and Carter and Lusztig [CaLu74], Green [Gr07]
developed a modular – over Z – analogue of the original Schur duality, using polynomial representa-
tions of GL(n,C) homogeneous of degree r, on using the coalgebra structure of the algebra of finitary
functions on this group. The aim of the present work is to explore a super analogue of this, namely
develop – functorially in a superalgebra A – a modular theory of commuting actions of the group
algebra ASr and of the supergroup ΓA = GL(m|n,A), or rather a signed permutation action of ASr,
and the supercoalgebra AΓA of A-valued functions on ΓA. We emphasize that we work with the
supergroup GL(m|n), in contrast to most of the works after Schur and Weyl, that considered the Lie
algebra derivative gl(m|n) of the group GL(m|n). It seems to us such a modular theory is needed for
a geometric theory.

Thus we develop a modular version of a super analogue of Schur’s duality by means of supergroups,
rather than Lie superalgebras, in preparation for a geometric analogue.

2. Super world

In superalgebras, all objects are Z/2-graded, and when the order of two odd objects is reversed in a
product, a sign appears. This need not be a bad omen. We start by reviewing the basic definitions
following the conceptual approach of [DeMo99], which in turn follows lectures of J. Bernstein as well
as [Lei80] and [Man97]. Let F be an infinite field with 2 6= 0.
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2.A. Superspaces

A super vector space is a Z/2-graded F -vector space V = V0 ⊕ V1. An element v of V0, resp. V1, is
called homogeneous even, resp. odd, and we write p(v) = 0, resp. = 1; p is called the parity function,
defined only on homogeneous vectors. A morphism V → W between two super vector spaces is a
Z/2-degree preserving linear map from V to W . Thus V0 is mapped to W0, and V1 to W1. We then
obtain an abelian category of super F -vector spaces. The dimension of a finite dimensional such V
is denoted by m|n = (m,n), where m = dimF V0, n = dimF V1. The parity reversing functor Π is
defined by (ΠV )0 := V1, (ΠV )1 := V0.

The tensor product of super vector spaces V and W is the tensor product of the underlying vector
spaces, with the Z/2-grading (V ⊗W )k = ⊕i+j=kVi ⊗Wj ; here ⊗ is ⊗F . The tensor product functor
is additive and exact in each variable, and has a unit object: if 1 is the vector space F in even
degree, 1 ⊗ V and V ⊗ 1 are canonically isomorphic to V , by 1 ⊗ v, v ⊗ 1 7→ v. It is associative:
(u⊗ v)⊗w 7→ u⊗ (v ⊗w) is a canonical isomorphism from (U ⊗ V )⊗W to U ⊗ (V ⊗W ). The sign
appears in the definition of the commutativity isomorphism

cV,W : V ⊗W →W ⊗ V, v ⊗ w 7→ (−1)p(v)p(w)w ⊗ v.

Here and below we assume homogeneity when writing formulae.
Let (Vi; i ∈ I) be a finite family of r = |I| super vector spaces. An ordering of I is a bijection σ

from the ordered set [1, r] = {1, 2, . . . , r} to I. A tensor product of the Vi is obtained on choosing an
ordering σ of I and parenthesis on Tσ = Vσ(1)⊗ Vσ(2)⊗ · · · ⊗ Vσ(r). For two tensor products Tσ, Tτ of
the Vi, and a way of composing associativity and commutativity isomorphisms to get an isomorphism
from Tσ to Tτ , the same isomorphism is obtained. For vi homogeneous in Vi, it is given by

vσ(1) ⊗ · · · ⊗ vσ(r) 7→ (−1)Nvτ(1) ⊗ · · · ⊗ vτ(r),

N = #{(i, j) ∈ I × I; vi, vj odd, σ−1(i) < σ−1(j), τ−1(i) > τ−1(j)}.

2.B. Superalgebras

A super algebra over F is a super vector space A, together with a morphism A⊗A→ A, a⊗ b 7→ ab,
called product. By definition of a morphism of superspaces, p(ab) = p(a) + p(b), for homogeneous a, b
in A. The superalgebra A is associative if (ab)c = a(bc), a, b, c ∈ A. A unit is an even element 1 ∈ A0,
thus a morphism 1 → A, with 1x = x = x1. By a superalgebra (= super algebra) we shall mean
an associative one, with a unit. For such a superalgebra A, a left (resp. right) A-module is a super
vector space M , with a morphism, also called product : A⊗M →M (resp. M ⊗A→M), satisfying
the usual identities expressing that M is a module over A considered as a usual algebra. The sign
rule enters only in the definition of commutativity. The superalgebra A is called commutative if the
product of homogeneous elements satisfies ab = (−1)p(a)p(b)ba.

If A is commutative, a left A-module is also a right A-module, but the passage involves the sign
rule:

m · a := (−1)p(m)p(a)a ·m.

The tensor product of A-modules M ⊗A N (M is a right module, N is a left module) is again an
A-module. The tensor product functor is associative, commutative and has a unit: the A-module A.
The commutativity isomorphism is given by m⊗ n 7→ (−1)p(m)p(n)n⊗m.

The opposite algebra A◦ of A is A with the product a ·◦ b = (−1)p(a)p(b)b · a. An element z of A is
central if its homogeneous components satisfy za = (−1)p(a)p(z)az for all a ∈ A. The tensor product
of superalgebras A, B is A⊗B, with the product

(a⊗ b)(c⊗ d) := (−1)p(b)p(c)ac⊗ bd.
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2.C. Action of Sr on V ⊗r

The action of the symmetric group Sr on the tensor product V ⊗r = V ⊗ · · · ⊗ V of a superspace V
of dimension m|n can be explicitly described as in [Se85] and [BeRe87], as follows. Let A be a free
associative commutative superalgebra, with a free family of generators {xi; i ∈ I}. Define a function
c : (Z/2)r × Sr → {±1} by

c(p(x), σ)x1 . . . xr = xσ(1) . . . xσ(r), where p(x) = (p(x1), . . . , p(xr))

is the parity vector of the elements xi, and σ ∈ Sr. We check that

c(p(x), στ)x1 . . . xr = xστ(1) . . . xστ(r) = yτ(1) . . . yτ(r)

= c(p(y), τ)y1 . . . yr = c(σ−1p(x), τ)xσ(1) . . . xσ(r)

= c(σ−1p(x), τ)c(p(x), σ)x1 . . . xr, where yj = xσ(j), p(y) = σ−1p(x),

so
c(p(x), στ) = c(p(x), σ) · σc(p(x), τ)

is a 1-cocycle, and in particular c(p(x), σ−1) = c(σp(x), σ).
Put p(v) = (p(v1), . . . , p(vr)) if v = v1 ⊗ · · · ⊗ vr. Define a (left) action π of Sr on V ⊗r (or right

action ∗) by

π(σ)(v1 ⊗ · · · ⊗ vr) = v1 ⊗ · · · ⊗ vr ∗ σ−1 = c(p(v), σ−1)vσ−1(1) ⊗ · · · ⊗ vσ−1(r),

σ ∈ Sr. We verify this is an action, since the definition of [Se85, p. 420, l. 2] is different:

π((στ)−1)v1 ⊗ · · · ⊗ vr = c(p(v), στ)vστ(1) ⊗ · · · ⊗ vστ(r);

π(τ−1)(π(σ−1)(v1 ⊗ · · · ⊗ vr)) = π(τ−1)(c(p(v), σ)vσ(1) ⊗ · · · ⊗ vσ(r))

= c(p(v), σ)π(τ−1)(u1 ⊗ · · · ⊗ ur) = c(p(v), σ)c(p(u), τ)uτ(1) ⊗ · · ·⊗τ(r)

= c(p(v), σ)c(σ−1p(v), τ)vστ(1) ⊗ · · · ⊗ vστ(r).

2.D. Free super module

A free module over a superalgebra is a module which is free as an ungraded module, with a homoge-
neous basis.

The standard free module Am|n, where A is a commutative superalgebra, is the module freely
generated by even elements e1, . . . , em and odd elements em+1, . . . , em+n. A morphism T : Am|n →
Ap|q can be represented by a matrix of size (p + q) × (m + n), with blocks of even and odd entries(
A′ B′

C′ D′

)
, A′ of size p×m, B′ of size p× n, C ′ of size q ×m, D′ of size q × n, the entries of A′ and D′

are even, those of B′ and C ′ are odd.
An element x of Am|n can be presented by a column vector (xi; 1 ≤ i ≤ m + n), if x =∑

1≤i≤m+n eixi. The entries of T are defined by T (ej) =
∑

i eiTij . With these conventions T (x)
is given by the matrix product Tx, and composition of morphisms is given by matrix product:

S(T (ej)) = S

(∑
i

eiTij

)
=
∑
i

(Sei)Tij =
∑
i

∑
k

ekSkiTij =
∑
i

ei

(∑
k

SikTkj

)
,

so the (i, j)-entry of ST is
∑

k SikTkj , as usual.



42 3. Representation theory42 3. Representation theory

2.E. Super determinant

If M is a free module of finite type over a commutative super algebra A, write GL(M) for the group
of automorphisms of the A-module M . Put GL(m|n,A) = GL(Am|n). The superdeterminant, often
called Berezinian, is a homomorphism Ber : GL(M) → GL(1|0, A) = A×0 , and with the choice of
the standard basis, sdet : GL(m|n,A) → A×0 , given as follows. Let T be an automorphism of Am|n,
represented by a matrix

(
A′ B′

C′ D′

)
. The entries of A′, D′ are even, those of B′, C ′ are odd. The quotient

B of A by the ideal 〈A1〉 generated by the odd elements of the superalgebra A = A0 ⊕A1 equals the
quotient of A0 by a nilpotent ideal J . After an extension of scalars to B (that is, applying ⊗B), the
matrix of T takes the form

(
A′mod J 0

0 D′mod J

)
. Hence A′, D′ are invertible modulo the nilpotent ideal

J . So A′, D′ are invertible themselves, and one defines

sdet(T ) = det(A′ −B′D′−1C ′) det(D′)−1,

a formula suggested by (
A′ B′

C′ D′

)
=
(
I B′D′−1

0 I

) (
A′−B′D′−1C′ 0

0 D′

) (
I 0

D′−1C′ I

)
and sdet

(
A′ 0
0 D′

)
= detA′ · det(D′)−1, which is compatible with the definition of the supertrace

str
(
A′ B′

C′ D′

)
= trA′− trD′, see [DeMo99]. The matrices A′, D′, B′D′−1C ′ have entries in the commu-

tative ring A0, so that their determinants are defined. That sdet is multiplicative is verified in detail
in [Lei80].

2.F. Super rings

To work over Z in the next section we introduce a commutative super ring to be a Z/2-graded ring
R = R0 ⊕ R1, associative and with a unit, satisfying xy = (−1)p(x)p(y)yx, thus x2 = 0 for any odd
homogeneous x. This can be used to make super algebraic geometry over Z. For example, if M
is a free Z/2-graded Z-module, the commutative algebra freely generated by M is flat over Z: it is
Sym∗(M0)⊕ ∧∗M1.

We shall discuss below the free rank m|n-module E = Em|n as a functor mapping a superalgebra A

to the free rank m|n A-module EA = E
m|n
A = Am|n, and then the monoid End(E) : A→ EndA(Am|n)

and the group GL(m|n). Both are defined as functors, and are representable. The monoid End(Em|n)
is represented by the affine scheme Am2+n2|2mn, with coordinates ai,j , which are even if 1 ≤ i, j ≤ m
or m < i, j ≤ m+n, odd otherwise. For GL(m|n) we need to invert det(A′), A′ = (ai,j ; 1 ≤ i, j ≤ m)
and det(D′), D′ = (ai,j ; m < i, j ≤ m+ n).

For Γ an affine group scheme over a superalgebra A, the group law Γ × Γ → Γ becomes the
coalgebra structure O(Γ)→ O(Γ)⊗O(Γ).

An action of Γ on a free A-module M is, for each superalgebra B over A, a morphism Γ(B) →
End(MB), functorial in B. The universal case is B = O(Γ), the affine algebra of Γ, for which we
have the identity point id ∈ Γ(B) = Hom(B,B), which gives an endomorphism of O(Γ)⊗M , namely
M → O(Γ) ⊗M , as the endomorphism is O(Γ)-linear. This is the comodule structure, describing
the action of a general element g of the monoid or group. It transforms a basis vector ep of M to∑

q eqcq,p(g), where the coefficients cq,p are in O(Γ).

3. Representation theory

We next check that basic definitions of representation theory extend to the super context, thus
generalizing the modular exposition of [Gr07], where the usual, non-super case is studied. In contrast
with the usual case, where it suffices to study the group of points of the algebraic group over a field,
in the super case it is necessary to study the group of points of the super group at superalgebras,
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since the homogeneous odd elements are nilpotent. Thus the super case is similar to that of the study
of non reduced schemes, which have nilpotents in their structure sheaf, not detected by their points
in a field only.

3.A. Representations

Let us then begin as usual with a semigroup (a set with an associative multiplication) Γ with an
identity 1Γ, and a field F . A representation τ of Γ on an F -vector space V is a map τ : Γ→ EndF V
satisfying τ(gg′) = τ(g)τ(g′), τ(1Γ) = 1V (g, g′ ∈ Γ; 1V is the identity morphism V → V ). Our group
of interest is Γ = GL(m|n), viewed as a scheme, or a functor, in the same way that an algebraic
group is viewed. However, it takes values at superalgebras A, which have nilpotents (e2 = 0 for a
homogeneous odd element e). To study algebraic groups, such as GL(n), it suffices to study their
points at an algebraically closed field, and Galois action. This does not suffice for the study of groups
of automorphisms of superspaces: we need to consider A-valued points for general commutative
superalgebras A over F , as in the study of non-reduced schemes one considers values in general
commutative algebras, that have nilpotents. Thus we need to consider a functorially compatible
family of maps τA : ΓA → EndA(MA), where MA is an A-module for a superalgebra A over F , and
ΓA = GL(m|n,A), satisfying τA(gg′) = τA(g)τA(g′), τA(1ΓA) = 1MA

(g, g′ ∈ ΓA). Extend τA linearly
to a map of F -superalgebras τA : AΓA → EndA(MA). Here AΓA is the semigroup algebra of ΓA over
A, its elements are the formal linear combinations

κ =
∑
g∈ΓA

κgg, κg ∈ A,

whose support suppκ = {g ∈ ΓA; κg 6= 0} is finite. Then AΓA acts on MA by κv = τA(κ)v, κ ∈ AΓA,
v ∈ MA. We get a left AΓA-module, denoted again by (MA, τA), or simply MA. An AΓA-map
between such AΓA-modules (MA, τA), (M ′A, τ

′
A) is by definition an A-linear map f : MA → M ′A

satisfying τ ′A(g)f = fτA(g) for all g in ΓA. An AΓA-isomorphism, or an equivalence, between two
representations τA, τ ′A, is a bijective AΓA-map.

Analogous definitions apply to right AΓA-modules. A right AΓA-module is a pair (MA, τA), where
τA : ΓA → EndA(MA) is an anti representation of ΓA on the A-module MA, thus τA(gg′) = τA(g′)τA(g)
for all g, g′ ∈ ΓA, and τA(1ΓA) = 1MA

.

3.B. Comultiplication

The set AΓ = AΓA of all maps ΓA → A, where A is a commutative superalgebra over F , is a commu-
tative F -super algebra, with algebra operations defined pointwise, that is, (ff ′)(g) := f(g)f ′(g) for
g ∈ ΓA. The identity element 1 of AΓ takes each g ∈ ΓA to the identity element 1A of A.

If s ∈ ΓA and f ∈ AΓA , then the left and right translates of f by s are defined to be the maps
Lsf , Rsf : ΓA → A, given by

Lsf : g 7→ f(sg), Rsf : g 7→ f(gs), g ∈ ΓA.

Each of the operators Ls, Rs maps AΓ to itself, and is an F -super algebra morphism AΓ → AΓ. In
particular Ls and Rs both lie in the A-module EndA(AΓ). Note that R : s 7→ Rs gives a representation
of ΓA on AΓ, while L : s 7→ Ls gives an anti representation. Thus AΓ can be made into a left AΓA-
module using R, and a right AΓA-module using L. Denote both by ◦, so that if s ∈ ΓA and f ∈ AΓ,
we write s ◦ f = Rsf , f ◦ s = Lsf . These actions commute: (s ◦ f) ◦ t = s ◦ (f ◦ t) for all s, t ∈ ΓA,
f ∈ AΓ.

There is a linear map AΓ ⊗A AΓ → AΓ×Γ, which takes f ⊗ f ′ (f , f ′ ∈ AΓ) to the function
ΓA × ΓA → A mapping (s, t) 7→ f(s)f ′(t) (s, t ∈ ΓA). This linear map is injective, we use it to
identify AΓ ⊗A AΓ with a submodule of AΓ×Γ.
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The semigroup structure on ΓA gives rise to the comultiplication and counit maps

∆ : AΓ → AΓ×Γ, ε : AΓ → A,

as follows. For f ∈ AΓ, put ∆f(s, t) = f(st) and ε(f) = f(1ΓA). Both ∆ and ε are F -super algebras
maps.

3.C. Finitary maps

We say that f ∈ AΓ in finitary, or is a representative function, if it satisfies the following three
equivalent conditions (cf. [Ho71, §2]):
F1. The left AΓA-submodule AΓA ◦ f generated by f is finite dimensional.
F2. The right AΓA-submodule f ◦AΓA generated by f is finite dimensional.
F3. ∆f ∈ AΓ ⊗AΓ, namely there exist finitely many pairs fh, f ′f ∈ AΓ with

∆f =
∑
h

ff ⊗ f ′h.

This equation is equivalent to the system of equations

f(st) =
∑
h

fh(s)f ′h(t) (s, t ∈ ΓA),

as well as to each of the systems

t ◦ f =
∑
h

fhf
′
h(t) (∀t ∈ ΓA); f ◦ s =

∑
h

fh(s)f ′h (∀s ∈ ΓA).

The set FA = F (AΓ) of all finitary functions f : ΓA → A is a subsuperalgebra of AΓ, and is also
closed under ∆ in the sense that ∆FA ⊂ FA ⊗FA, namely if f is finitary, the functions fh, f ′h can be
chosen themselves to be finitary. Thus the A-module FA, together with the maps ∆ : FA → FA⊗FA,
ε : FA → A, is an A-cosuperalgebra. The two structures, of super algebra and of cosuperalgebra, are
linked by the fact that ∆ and ε are both F -superalgebra maps.

3.D. Coefficient functions

Finitary functions on ΓA appear as coefficient functions of finite dimensional representations of ΓA.
Suppose τA is a representation of ΓA on a finite rank free A-module MA. If {vb; b ∈ B} is a free set
of generators of MA over A, we have equations

τA(g)vb = gvb =
∑
a∈B

vara,b(g) g ∈ ΓA, b ∈ B. (3.1)

Here ra,b(g) ∈ A. We name ra,b : ΓA → A (a, b ∈ B) the coefficient functions of τA, or of the
AΓA-module MA = (MA, τA). The A-span of these functions is a submodule of AΓ that we call the
coefficient module of τA, or of the AΓA-module MA. Denote this module by cf(MA) =

∑
a,bA · ra,b.

It is independent of the choice of the basis {vb}.
The matrix R = (ra,b) gives a matrix representation of ΓA, thus R(gg′) = R(g)R(g′) and R(1ΓA) =

(δa,b) for all g, g′ ∈ ΓA, and δa,b is 1 if a = b, 0 otherwise. These relations can be expressed in terms
of the coefficients ra,b, as

∆ra,b =
∑
c∈B

ra,c ⊗ rc,b, ε(ra,b) = δa,b, for all a, b ∈ B. (3.2)
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From the first equations, for ∆, it follows that all the coefficient functions ra,b are finitary. Hence
cf(MA) is a submodule of FA = FA(AΓ). These equations also show that CA = cf(MA) is a sub
cosuperalgebra of FA, namely that ∆CA ⊂ CA ⊗ CA.

Note that every finitary function f : ΓA → A lies in the coefficient space of some finite dimensional
AΓA-module MA: take MA = AΓA ◦ f . For this reason finitary functions are sometimes called
representative functions.

If S is an F -superalgebra, possibly of infinite dimension as an F -superspace, denote by mod(S) the
category of all finite dimensional left S-modules. Put mod′(S) for the category of all finite dimensional
right S-modules.

3.E. Polynomial representations

An algebraic representation theory of ΓA over A is defined as follows. Choose a subcosuperalgebra D
of FA(AΓ), thus D is an A-submodule of FA(AΓ) satisfying ∆D ⊂ D⊗D. A D-representation theory
of ΓA is defined to be the study of the full subcategory modD(AΓA) of mod(AΓA) whose objects are
all finite dimensional left AΓA-modules MA such that cf(MA) ⊂ D. By definition, the morphisms
f : MA → M ′A between two objects MA, M ′A of this category are just the AΓA-maps. We would
also say that an AΓA-module MA is D-rational if cf(MA) ⊂ D. Then modD(AΓA) is the category
of finite dimensional D-rational left AΓA-modules. Submodules, quotient modules, and finite direct
sums of D-rational modules are themselves D-rational. Similarly define the category mod′D(AΓA) of
finite dimensional right AΓA-modules which are D-rational.

The assumption ∆D ⊂ D ⊗D implies that if f ∈ D then the functions fh, f ′h can themselves be
chosen to belong to D. It follows that D is a left and right AΓA-submodule of AΓ. Any finite rank
left (or right) AΓA-submodule MA of D belongs to the category modD(AΓA) (or mod′D(AΓA)).

For example, take ΓA = GL(m|n,A), where A is a superalgebra over an algebraically closed field
F . Let D = A[ΓA] be the ring of A-valued regular functions on ΓA. Then modD(AΓA) is the category
of rational finite dimensional AΓA-modules.

The example of interest to us is of ΓA = GL(m|n,A), A being a superalgebra over an infinite
field F of characteristic 6= 2. Take D to be CA(m|n), the superalgebra of all polynomial functions
f : ΓA → A. The objects (MA, τA) in the category modD(AΓA), denoted later by MA(m|n), are
called polynomial AΓA-modules. The associated representations, including the matrix representations
R = (ra,b) obtained by using the F -bases {vb} of MA, are called polynomial representations of ΓA.

Another category, later denoted by MA(m|n, r), is obtained by taking D = CA(m|n, r), the
superspace of polynomial functions on ΓA with values in A, homogeneous of degree r in the (m+n)2

coefficients of a general element g in ΓA = GL(m|n,A).
The super ring CA(m|n) can also be regarded as the affine super ring of the algebraic super

semigroup M(m|n,A) of all (m + n) × (m + n) matrices
(
A′ B′

C′ D′

)
, singular or not, with entries in

A, even entries in A′, D′, odd entries in B′, C ′, so we can regard polynomial representations of
GL(m|n,A) as rational representations of M(m|n,A), and conversely.

3.F. Comodules

Suppose now again that Γ is a semigroup with identity 1Γ, and D is a sub super coalgebra of the A
module FA(AΓ) of all finitary functions Γ→ A, where A is a superalgebra over F . Then D itself is a
super coalgebra, relative to the maps ∆ : D → D⊗D and ε : D → A. We may consider the category
com(D) of all right D-comodules. An object of com(D) is a finite rank A-module, together with a
structure map γ : MA →MA ⊗A D which is left A-linear, and satisfies the identities

(γ ◦ ID)γ = (IMA
⊗∆)γ, (IMA

⊗ ε)γ = IMA
.

The category modD(AΓA) is equivalent to com(D) as follows. If MA ∈ modD(AΓA) is free, take
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a basis {vb} of MA over A, and consider the equations

τ(g)vb = gvb =
∑
a∈B

vara,b(g), g ∈ ΓA, b ∈ B.

Then define γ : MA →MA ⊗D to be the A-linear map given by the equations

γ(vb) =
∑
a∈B

va ⊗ ra,b, b ∈ B. (3.3)

Now γ is independent of the basis {vb}. Using ∆ra,b =
∑

c∈B ra,c ⊗ rc,b, ε(ra,b) = δa,b (a, b ∈ B) one
checks that γ satisfies the comodule identities given a few lines above.

Conversely, given a D-comodule (MA, γ), use (3.3) to define the ra,b in D. The comodule identities
show that (3.2) holds, so we may use (3.1) to define the left AΓA-module MA = (MA, τ). Then
cf(MA) ⊂ D. So every D-rational left AΓA-module can be regarded as a right D-comodule, and
conversely. The definition of a morphism f : MA →M ′A in com(D) is such that these morphisms are
the same as AΓA-maps in modD(AΓA).

3.G. Modular theory

The formal transition from AΓA-modules to D-comodules permits the possibility of developing a
modular theory.

The D-comodule interpretation permits viewing every right D-comodule as a left module for the
A-algebra D∗ = HomA(D,A). The super algebra structure in D∗ is the dual of the super coalgebra
structure on D, i.e., if ξ, η ∈ D∗, define their product (convolution) ξη to be the map of D to A which
takes f ∈ D to

(ξη)(f) =
∑
h

ξ(fh)η(f ′h). (3.4)

The identity element of D∗ is ε : D → A. If MA = (MA, γ) lies in com(D), make MA into a D∗-module
by the rule

ξv = (IMA
⊗ ξ)(γ(v)), ξ ∈ D∗, v ∈MA.

Working with a basis {vb} of the free A-module MA, the rule becomes

ξvb =
∑
a∈B

vaξ(ra,b), b ∈ B. (3.5)

There are then three kinds of matrix representations associated with the original free AΓA-module
MA = (MA, τ), relative to the basis {vb}:
(i) the representation g 7→ (ra,b(g)) of ΓA;
(ii) the matrix R = (ra,b) whose coefficients are functions on ΓA, satisfying

∆ra,b =
∑
c

ra,c ⊗ rc,b, ε(ra,b) = δa,b;

it can be viewed as a representation of the super coalgebra D;
(iii) the representation ξ 7→ (ξ(ra,b)) of the super algebra D∗, given by the equations (3.E.).

To recover (i) from (iii), for each g ∈ ΓA let eg : D → A be evaluation at g, thus eg(f) = f(g),
for all f ∈ D. Then eg ∈ D∗ and the map e : ΓA → D∗ satisfies egeg′ = egg′ , e1ΓA

= ε, for g, g′ ∈ ΓA.
So e can be extended to an A-module map e : AΓA → D∗, and composing (iii) with e we recover (i):
ΓA 3 g 7→ eg 7→ (eg(ra,b)) = (ra,b(g)).
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3.H. Definitions for modularity

To develop a modular representation theory, we introduce the following definitions, closely following
the standard – non-super – case as in [Gr07]. The idea is to give a uniform theory, for all fields and
superalgebras,, beginning from the base ring Z. Thus to the same extent that GL(n, F ), n fixed, F
varying over some class F of commutative rings, is defined over Z, and this makes possible a “modular
theory” for the polynomial representations of these groups, we assert that GL(m|n,A), m|n fixed,
A a superalgebra over F , F varying over some class F of commutative rings, is defined over Z. The
definition we propose is as follows.

Denote by F the class of all infinite fields with 2 6= 0. Suppose given is a family {AF , ΓAF , DAF },
where for each F ∈ F, AF is an F -superalgebra, ΓAF is a semi supergroup, and DAF is an AF -sub

super coalgebra of FAF (A
ΓAF
F ). Suppose also the following conditions are satisfied.

Z0.1 The Q-superalgebra AQ contains a Z-form AZ, thus AZ is a superalgebra, and a lattice in AQ,
which means that AZ =

∑
ν Zaν for some Q-basis {aν} of AQ.

Z0.2 For each F ∈ F there is an F -superalgebra isomorphism αF : AZ ⊗ F → AF (here ⊗ means ⊗Z,
and AZ ⊗ F is made into an F -superalgebra by extension of scalars).
Z1. The Q-superalgebra DAQ = (DAQ ,∆Q, εQ) contains a Z-form DAZ , i.e.,
(a) DAZ is a lattice in DAQ , thus DAZ =

∑
ν Zdν for some Q-basis {dν} of DAQ , and

(b) ∆Q(DAZ) ⊂ DAZ ⊗DAZ and εQ(DAZ) ⊂ Z.
Z2. For each F ∈ F there is an F -supercoalgebra isomorphism βF : DAZ ⊗ F → DAF , ⊗ means here
⊗Z, and DAZ ⊗ F is made into an F -supercoalgebra by extension of scalars.

The example in which we are interested here is that of ΓA = GL(m|n,A), where A = AF =
AZ ⊗Z F , and AZ is a superalgebra over Z. For DAF we take either CA(m|n) or CA(m|n, r) for some
r ≥ 0. Then the family {ΓAF , DAF } is defined over Z.

Essential for a modular representation theory of any family {AF , ΓAF , DAF } which is defined over
Z is the process of modular reduction. Put MAF for the category modDAF (AFΓAF ), for any F ∈ F.
An object in MAQ is a finite rank free AQ-module on which ΓAQ acts. If {vb,Q; b ∈ B} is a Q-basis of
the free AQ-module MAQ , then we have equations as in (3.1)

gvb,Q =
∑
a∈B

va,Qr
Q
a,b(g), g ∈ ΓAQ , b ∈ B. (3.6)

The functions rQa,b lie in DAQ and satisfy equations as in (3.2).
A subset MAZ of MAQ is called a Z-form, or an admissible lattice, of MAQ , if

(a) MAZ is a lattice in MAQ , namely MAZ =
∑

b∈B Zvb,Q for some Q-basis {vb,Q} of MAQ , and

(b) all the coefficient functions rQa,b in this basis lie in DAZ .
Another way of expressing condition (b) is to convert MAQ to a DAQ-super comodule by means of

the map γQ : MAQ →MAQ ⊗DAQ , using equations as in (3.3). Then (b) is equivalent to
(b′) γQ(MAZ) ⊂MAZ ⊗DAZ .

Given F ∈ F we can make the AF -module MAF = MAZ ⊗ F (here ⊗ means ⊗Z) into an object
of MAF as follows. Using the F -super coalgebra isomorphism βF : DAZ ⊗ F → DAF of Z2, define

rFa,b = βF (rQa,b ⊗ 1F ) ∈ MAF . These rFa,b satisfy equations of the form (3.2). So we may define action
of ΓAF on MAF by

gvb,F =
∑
a∈B

va,F r
F
a,b(g), g ∈ ΓAF , b ∈ B.

Here vb,F = vb,Q ⊗ 1F for b ∈ B. The process of converting MAQ , via the Z-form MAZ , into MAF ,
is called modular reduction. In the non-super case, a general theorem ([Ser68, Lemme 2, p. 43],
[Gr76, (2.2d), p. 159]) asserts that each MQ ∈ MQ has at least one Z-form MQ; different Z-forms
MZ, M ′Z, . . . of the same MQ may give non-isomorphic MF = MZ ⊗ F , M ′F = M ′Z ⊗ F , . . . in MF ,
but another general theorem asserts that all these modules MF , M ′F , . . . have the same composition
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factor multiplicities. One defines then composition numbers. It would be interesting to check that
these assertions extend to the super case.

4. Super Schur algebra

4.A. Coefficient functions

Let F be an infinite field with 2 6= 0, A a superalgebra over F , thus it is Z/2-graded, = A0⊕A1, with
parity function p: p(a) = 0 if a ∈ A0, p(a) = 1 if a ∈ A1, on the homogeneous elements. Write E
for the functor A 7→ EA = Am|n, so EA is the free A-module spanned by e1, . . . , em, em+1, . . . , em+n,
with p(ei) = 0 if 1 ≤ i ≤ m, = 1 if m < i ≤ m+ n. Then

EA =

{(
a1∗
∗
∗

am+n

)}
= EA,0 ⊕ EA,1,

where

EA,0 =

{∑
i

aiei; ai ∈ A0 (1 ≤ i ≤ m), ai ∈ A1 (m < i ≤ m+ n)

}
,

EA,1 =

{∑
i

aiei; ai ∈ A1 (1 ≤ i ≤ m), ai ∈ A0 (m < i ≤ m+ n)

}
.

Put GL(m|n) = AutE for the functor whose set of A-points is the group ΓA = GL(m|n,A) =
AutAA

m|n. These are automorphisms of degree 0, of graded A-modules, presented in the standard
basis e1, . . . by a matrix

(
A′ B′

C′ D′

)
, where the entries of A′, D′ are homogeneous of parity 0, thus even,

thus in A0, and those of B′, C ′ are odd. Such g =
(
A′ B′

C′ D′

)
maps EA,0 and EA,1 to themselves. Thus

g maps to itself the A0-module

Am0 ×An1 =

{∑
i

aiei; ai ∈ A0 (1 ≤ i ≤ m), ai ∈ A1 (m < i ≤ m+ n)

}
.

Write AΓ = AΓA for the A-superalgebra of maps ΓA = GL(m|n,A)→ A. For each 1 ≤ µ, ν ≤ m+
n, denote the coefficient function, which maps g ∈ ΓA to its (µ, ν)-coefficient gµ,ν , by cµ,ν . It lies in AΓ.
Denote by CA = CA(m|n) the super F -subalgebra of AΓ generated by the cµ,ν (1 ≤ ν, µ ≤ m+n). The
elements of CA will be called the polynomial functions on ΓA. The cµ,ν are algebraically independent,
as F is infinite. This is actually the only use we make of the assumption that F is infinite. It suffices
to work with big enough fields. So C = CA is the superalgebra of all polynomials over F in the
(m+ n)2 indeterminates cµ,ν . The parity of cµ,ν is 0 if it is a coefficient of A′, D′, and it is 1 if it is a
coefficient of B′, C ′. The coefficients with parity p = 1 anti-commute:

cµ1,ν1cµ2,ν2 = (−1)p(cµ1,ν1 )p(cµ2,ν2 )cµ2,ν2cµ1,ν1 .

The degree r coefficient superspace, denoted CA(m|n, r), is the sub superspace of CA = CA(m|n)
consisting of all polynomials over A in the coefficient functions cµ,ν , homogeneous – as polynomials
– of degree r. It has degree

(
(m+n)2+r−1

r

)
over A: the number of monomials xm1

1 . . . xmkk of degree r
can be computed on writing • · · · • | • · · · • | . . . | • · · · •, where we put m1 bullets, then a separator, the
first box is filled with x1’s, the 2nd with x2’s, etc. There are k−1 separators and r+k−1 bullets and
separators, thus

(
r+k−1
k−1

)
= ( k+r−1

r ) monomials, and we have k = (m + n)2 variables. In particular
CA(m|n, 0) = A · 1CA , where 1CA is the constant function, which maps g ∈ ΓA to 1A for each g in ΓA.
The F -superalgebra CA has the standard grading CA = CA(m|n) = ⊕r≥0CA(m|n, r).

The symmetric group Sr acts on the set I(m|n, r) = {i = (i1, . . . , ir); 1 ≤ ij ≤ m + n} on the
right: iσ = (iσ(1), . . . , iσ(r)). It acts on the set I(m|n, r)× I(m|n, r) by (i, j)σ = (iσ, jσ). Write i ∼ j
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if j = iσ for some σ ∈ Sr, i.e., i and j are in the same Sr-orbit. Also write (i, j) ∼ (k, l) if k = iσ,
l = jσ, for some σ ∈ Sr.

The superspace CA(m|n, r) is spanned as an A-space by the monomials

ci,j = ci1,j1ci2,j2 . . . cir,jr ,

for all i, j ∈ I(m|n, r). The pair (i, j) is not uniquely determined by the monomials ci,j . We have
ci,j = ±ck,l if and only if (i, j) ∼ (k, l). The A-superspace CA(m|n, r) has as an A-basis the set of
distinct monomials ci,j , up to a sign, and these are in bijective correspondence with the Sr-orbits of
I(m|n, r)× I(m|n, r). The number of these orbits is

(
(m+n)2+r−1

r

)
.

4.B. Comultiplication

The comultiplication

∆ : AΓ → AΓ×Γ, ∆f(a, b) = f(ab), and counit ε : AΓ → A, ε(f) = f(1),

act on the coefficient functions cµ,ν (1 ≤ µ, ν ≤ m+ n) as follows:

∆cµ,ν =
∑

1≤λ≤m+n

cµ,λ ⊗ cλ,ν , ε(cµ,nu) = δµ,ν .

Indeed,

∆ci,j(g, h) = ci,j(gh) =
∑
k

ci,k(g)ck,j(h) =
∑
k

(ci,k ⊗ ck,j)(g, h), and ε(ci,j) = ci,j(I) = δi,j .

Both ∆ and ε are multiplicative. Hence for any multi indices p, q ∈ I(m|n, r) (of length r ≥ 1) we
have

∆(cp,q) =
∑

s∈I(m|n,r)

cp,s ⊗ cs,q, ε(cp,q) = δp,q.

These formulae show that CA(m|n) is a super sub-co-algebra, hence also a super sub-bi-algebra, of
FA(AΓ), and that each CA(m|n, r) is a super sub-co-algebra of CA(m|n); for r = 0 this follows from
∆1C = 1C ⊗ 1C , C = CA(m|n).

Write MA(m|n), MA(m|n, r), for the categories modCA(m|n)(AΓA), modCA(m|n,r)(AΓA). Thus
MA(m|n) is the category of finite dimensional left AΓA-modules which afford polynomial representa-
tions of ΓA = GL(m|n,A), and MA(m|n, r) is the subcategory consisting of those affording represen-
tations of ΓA in which all the coefficients are polynomials homogeneous in the coefficient functions
cµ,ν of degree r.

4.C. Complete super reducibility

It is known that there is no complete reducibility for representations of Lie superalgebras, in contrast
with the standard, non-super case, where there is complete reducibility. But we shall consider only a
category of representations closed under tensor products, and will see as a result of our super Schur
duality that complete reducibility holds in our case.

As an example where indecomposable representation occurs in the super case, consider the Lie su-
peralgebra gl(n|n). Its adjoint representation has length 3. The maximal submodule (of codimension
1) consists of matrices with zero supertrace. This module is indecomposable. Its socle is the trivial
submodule spanned by the Id matrix. This gives an indecomposable representation of gl(n|n) and of
sl(n|n); psl(n|n) is simple for n > 1.

The only series where all finite-dimensional modules are completely reducible is osp(1|2n). For
other series there is complete reducibility for some central characters (they are called typical). The
trivial central character (corresponding to the trivial module) is always atypical.
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4.D. Super Schur algebra

Let r ≥ 0 be fixed, define SA(m|n, r) to be the space dual to the superspace CA(m|n, r):

SA(m|n, r) = CA(m|n, r)∗ = HomA(CA(m|n, r), A).

Recall that a basis of the superspace CA(m|n, r) over A is given by the monomials

{ci,j = ci1,j1 . . . cir,jr ; i = (i1, . . . , ir), j = (j1, . . . , jr) ∈ I(m|n, r)},

where the cit,jt ∈ AΓA . As a free A-module, SA(m|n, r) has the basis {ξi,j ; i, j ∈ I(m|n, r)} dual to
{ci,j}. Thus we have

ξi,j(ci,j) = 1; ξi,j(cp,q) = 0 if (i, j) � (p, q), p, q ∈ I(m|n, r).

Since
cσi,σj = c(p(ci,j), σ)ci,j , 1 = ξσi,σj(cσi,σj) = ξσi,σj(c(p(ci,j), σ)ci,j),

we deduce that ξσi,σj(ci,j) = c(p(ci,j), σ) and

ξi,j(cσ−1i,σ−1j) = ξi,j(c(p(ci,j), σ
−1)ci,j) = c(σp(ci,j), σ)

or ξi,j(cσi,σj) = c(p(ci,j), σ). The sign rule ξi,j(cσi,σj) = c(p(ci,j), σ) and ξi,j(cp,q) = 0 if (i, j) �
(p, q) defines {ξi,j} uniquely, thus dimA SA(m|n, r) = dimACA(m|n, r) =

(
(m+n)2+r−1

r

)
, where dimA

indicates the rank of a free module over A.

4.E. Product structure

As CA(m|n, r) is a super coalgebra, its dual SA(m|n, r) is an associative super algebra over A. The
product ξη of two elements ξ, η of SA(m|n, r) is defined as follows.

If c ∈ CA(m|n, r) and ∆(c) =
∑

t ct ⊗ c′t (finite sum; ct, c
′
t ∈ CA(m|n, r)), then

(ξη)(c) = c(ξη) = ∆c(ξ, η) =
∑
t

(ct ⊗ c′t)(ξ, η) =
∑
t

ct(ξ)c
′
t(η) =

∑
t

ξ(ct)η(c′t).

The unit element of SA(m|n, r) is denoted by ε. It is given by ε(c) = c(1ΓA) for all c ∈ CA(m|n, r).
Applying the last displayed equation to c = cp,q of CA(m|n, r) we get

(ξη)(cp,q) =
∑

s∈I(m|n,r)

ξ(cp,s)η(cs,q).

For ξ = ξi,j , η = ξk,l, basis elements of SA(m|n, r), we deduce
Multiplication Rule for SA(m|n, r).

ξi,jξk,l =
∑
p,q

z(i, j, k, l, p, q)ξp,q,

where
z(i, j, k, l, p, q) =

∑
s

c(p(cp,s), σ)c(p(cs,q), τ);

the sum ranges over all s ∈ I(m|n, r) such that there exist σ, τ ∈ Sr with (i, j) = (σp, σs), (k, l) =
(τs, τq).

Noteworthy special cases are: For all i, j, k, l ∈ I(m|n, r) we have
(i) ξi,jξk,l = 0 unless j ∼ k;
(ii) ξi,iξi,l = ξi,l = ξi,lξl,l.
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(i) holds since ξi,jξk,l 6= 0 implies that there is s with j = σs and k = τs for some σ, τ ∈ Sr, so
j ∼ k.

For (ii), ξi,iξi,l =
∑

p,q

∑
s c(p(cp,s), σ)c(p(cs,q), τ)ξp,q; the sum over s is so that (i, i) = (σp, σs) for

some σ, thus s = p ∼ i, so we take p = i; and (i, l) = (τs, τq) for some τ , which – since s is now i –
we take τ = 1, so q = l. The signs c are 1 for σ = 1 = τ . Hence
(iii) ξ2

i,i = ξi,i; ξi,iξj,j = 0 if i � j.
If (j, j) = (σi, σi) then ξj,j(ci,i) = ξσi,σi(ci,i) = c(p(ci,i), σ) is 1 (since p(ci,i) = (0, . . . , 0)), hence

(iv) ξj,j = ξi,i if i � j.
The distinct ξi,i form a set of mutually orthogonal idempotents. Their sum is the unit element ε

of SA(m|n, r):

ε =
∑
i

ξi,i,

sum over a set of representatives of the Sr-orbits of I(m|n, r). Indeed, ε(cp,q) = δp,q, and ξi,i(cp,q) 6= 0
implies (p, q) = (σi, σi) and ξi,i(cσi,σi) = 1, where the Sr-orbit of i in I(m|n, r) is uniquely determined
by (p, q).

To construct a modular theory for GL(m|n) it is important to know that for a fixed triple m,
n, r, the family of superalgebras SA(m|n, r) is defined over Z in the following sense. Let us use the
superscript A to denote the basis elements ξAi,j of SA(m|n, r). It is clear from the multiplication rule

that the Z-submodule of SA(m|n, r), that is spanned by the ξ
AQ
i,j (i, j ∈ I(m|n, r)), is multiplicatively

closed, so it is a Z-order in SAQ(m|n, r). Further, for any field F there is an isomorphism of F -

superalgebras SZ(m|n, r)⊗Z AF ' SAF (m|n, r), AF = AZ ⊗Z F , that takes ξ
AQ
i,j ⊗ 1F 7→ ξAFi,j .

4.F. Evaluation map

For each g in ΓA define eg in SA(m|n, r) by eg(c) = c(g) for all c ∈ CA(m|n, r). For all g, g′ in ΓA we
have egeg′ = egg′ , since

egg′(c) = c(gg′) = ∆c(g, g′) =
∑
t

ct(g)c′t(g
′) =

∑
t

eg(ct)eg′(c
′
t) = egeg′(c),

the last equality follows from the first displayed formula in 4.E. Also e1 = ε by definition of ε (and
e1). Extend the map g 7→ eg linearly to get an evaluation map e = eA : AΓA → SA(m|n, r), which is
a morphism of F -superalgebras.

Any function f ∈ AΓA has a unique extension to an A-linear map f : AΓA → A. With this
convention, the image under e of an element κ =

∑
g∈ΓA

κgg ∈ AΓA (κg ∈ A), is evaluation at κ,
namely

e(κ) : c 7→ c(κ), c ∈ CA(m|n, r).

Proposition 4.1. (i) The map e = eA : AΓA → SA(m|n, r) is surjective.
(ii) Put Y = ker(e). Let f be an element of AΓ. Then f ∈ CA(m|n, r) iff f(Y ) = 0.

Proof. (i) Suppose Im(e) is a proper subset of SA(m|n, r) = CA(m|n, r)∗. Then there exists some
c ∈ CA(m|n, r), c 6= 0, with c(g) = eg(c) = 0 for all g ∈ ΓA, but such c is 0 (and 6= 0).
(ii) If f ∈ CA(m|n, r) and κ ∈ Y , then e(κ) = 0 (e(κ) : c 7→ c(κ), thus c(κ) = 0 for all c in
CA(m|n, r)). Hence f(κ) = 0, so f(Y ) = 0.

Conversely, let f ∈ AΓ satisfy f(Y ) = 0. By (i) there is an exact sequence

0→ Y → AΓA
e−→ SA(m|n, r)→ 0.

Hence there is y ∈ SA(m|n, r)∗ with y(e(κ)) = f(κ) for all κ ∈ AΓA. By the natural isomorphism
SA(m|n, r)∗ ' CA(m|n, r), there exists c ∈ CA(m|n, r) with y(ξ) = ξ(c) for all ξ ∈ SA(m|n, r). Put
ξ = e(κ). Then f(κ) = y(e(κ)) = (e(κ))(c) = c(κ) for all κ ∈ AΓA. Hence f = c lies in CA(m|n, r).
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Proposition 4.2. Let MA ∈ mod(AΓA). Then MA ∈MA(m|n, r) iff YMA = 0.

Proof. Let {vb} be a basis of the free A-module MA. Let {ra,b} be the invariant matrix defined
by the action of AΓA on this basis (see (3.1)). Then YMA = 0 iff ra,b(Y ) = 0 for all a, b ∈ B.
By the last proposition this is equivalent to saying that ra,b ∈ CA(m|n, r) for all a, b, namely that
cf(MA) ⊂ CA(m|n, r). But this means that MA lies in MA(m|n, r).

These two propositions show that the categories MA(m|n, r) and mod(SA(m|n, r)) are equivalent,
and in a very elementary way: an object MA in either category may be transformed into an object
of the other, using the rule

κv = e(κ)v, all κ ∈ AΓA, v ∈MA, (4.7)

to relate the action on MA of the two algebras AΓA and SA(m|n, r) (= e(AΓA)). Both actions
determine the same algebra of linear transformations on MA. Hence the concepts of submodule,
module homomorphism, etc., coincide in the two categories. If the action of ΓA on a free basis {vb}
of MA is given by equations (3.5), then the action of SA(m|n, r) is given by

ξvb =
∑
a∈B

vaξ(ra,b), all ξ ∈ SA(m|n, r), b ∈ B.

Indeed, apply the last displayed formula with κ = g, v = vb. By linearity that formula holds for all
κ ∈ AΓA and v ∈MA.

4.G. Modular theory

We next describe the characteristic modular reduction, or decomposition, process.
Let CZ(m|n) and CZ(m|n, r) be the Z-modules of CAQ(m|n) and CAQ(m|n, r), consisting of those

polynomials in the cµ,ν whose coefficients all lie in Z. These are Z-forms of CAQ(m|n) and CAQ(m|n, r).
Indeed, CZ(m|n, r) is the Z-span of the AQ-basis {cAQ

i,j } of CAQ(m|n, r), and we have ∆CZ(m|n, r) ⊂
CZ(m|n, r)⊗CZ(m|n, r) and ε(CZ(m|n, r)) ⊂ Z (see the 3rd displayed formula in 4.B.). For any infinite
field F , and F -superalgebra AF , there is an F -super coalgebra isomorphism CZ(m|n, r) ⊗Z AF '
CAF (m|n, r), which takes c

AQ
i,j ⊗ 1F 7→ cAFi,j for all i, j ∈ I(m|n, r). The Z-order SZ(m|n, r) of the end

of subsection 4.E. is the set of all ξ ∈ SAQ(m|n, r) with ξ(CZ(m|n, r)) ⊂ Z
Let MAQ be an object in MAQ(m|n, r). It can be regarded as a module under SAQ(m|n, r). By a

Z-form of MAQ we mean a subset MZ which

(i) is the Z-span of some AQ-basis {vAQ
b ; b ∈ B} of MAQ , and

(ii) is closed under the action of SZ(m|n, r).
Let RQ = (ra,b) be the invariant matrix defined by {vb} (3.1). Then condition (ii) just says that

all the ra,b lie in CZ(m|n, r). Another formulation of (ii) is that if (MQ, τ) is the CZ(m|n, r)-comodule
determined by MQ, then τ(MZ) ⊂MZ ⊗Z CZ(m|n, r).

Let F be an infinite field with 2 6= 0. It is clear that the AF -module MAF = MZ ⊗Z AF can
be regarded as a left module for SAF (m|n, r) ' SZ(m|n, r) ⊗Z AF , hence as an AFΓAF -module in
MAF (m|n, r). The transition from MAQ to MAF can be expressed in terms of invariant matrices. The
invariant matrix RAF defined by the AF -basis {vb⊗ 1AF } of MAF is (ra,b⊗ 1AF ), where (ra,b) = RAQ

is the invariant matrix defined by the basis {vb} of MAQ . In the case where F has finite characteristic
p 6= 2, this amounts to reducing mod p the coefficients of RAQ .
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5. Super Schur duality

5.A. The super module E⊗rA

Fix an infinite field with 2 6= 0, m, n > 0, and put ΓA = GL(m|n,A) for a super algebra A over F .
Let EA = Am|n = Ae1⊕ · · · ⊕Aem⊕Aem+1⊕ · · · ⊕Aem+n be the free rank m|n A-module, with free
basis {eν ; 1 ≤ ν ≤ m + n} having parities p(eν) = 0 (1 ≤ ν ≤ m), p(eν) = 1 (m < ν ≤ m + n). In
this standard basis, ΓA acts naturally:

geν =
∑

1≤µ≤m+n

eµgµ,ν =
∑

1≤µ≤m+n

eµcµ,ν(g).

The corresponding invariant matrix is C = (cµ,ν). So we see that the AΓA-module EA is an object of
CA(m|n, 1).

For r ≥ 1, ΓA acts on the r-fold tensor product E⊗rA = EA ⊗ · · · ⊗ EA (here ⊗ = ⊗A) diagonally.
The free A-module E⊗rA has A-basis

{ei = ei1 ⊗ · · · ⊗ eir ; i ∈ I(m|n, r)} .

Relative to this the action of ΓA is given by

gej = gej1 ⊗ · · · ⊗ gejr =
∑
i

ei1gi1,j1 ⊗ · · · ⊗
∑
ir

eirgir,jr =
∑
i

eici,j(g)ι(g; i, j);

on the right i = (i1, . . . , ir) ∈ I(m|n, r) and ci,j(g) = ci1,j1(g) . . . cir,jr(g) = gi1,j1 . . . gir,jr , for all
g ∈ ΓA, j = (j1, . . . , jr) ∈ I(m|n, r). Further, ι(g; i, j) ∈ {±1} is obtained according to the sign rule:

gej1 ⊗ gej2 =
∑
i1

ei1gi1,j1 ⊗
∑
i2

ei2gi2,j2 =
∑
i1,i2

ei1 ⊗ gi1,j1ei2gi2,j2

=
∑
i1,i2

ei1 ⊗ ei2(−1)p(gi1,j1 )p(i2)gi1,j1gi2,j2 .

Note that p(eitgit,jt) = p(ejt), namely p(git,jt) = p(eit) + p(ejt) for all t (1 ≤ t ≤ r). Thus ι(g; i, j) =
(−1)∗ where ∗ equals

p(gi1,j1)p(i2) + (p(gi1,j1) + p(gi2,j2))p(i3) + (p(gi1,j1) + p(gi2,j2) + p(gi3,j3))p(i4) + . . .

= p(gi1,j1)(p(i2) + p(i3) + · · ·+ p(ir)) + · · ·+ p(git,jt)(p(it+1) + · · ·+ p(ir)) + . . . ,

thus
ι(g; i, j) =

∏
1≤t<r

(−1)(p(eit )+p(ejt ))P (it), P (it) = p(it+1) + · · ·+ p(ir).

In particular ι(g; i, j) is independent of g and will be denoted ι(i, j).
The corresponding invariant matrix is (ci,jι(i, j)), ci,j(g) = gi,j , ι(i, j) ∈ {±1} is independent of

g ∈ ΓA. This matrix is equal to some r-fold product C ×′ C ×′ · · · ×′ C, taking into account the
signs ι(i, j) that appear here. Hence E⊗rA ∈ MA(m|n, r), its coefficients are polynomials in the cit,jt
of degree r. Further, E⊗rA can be regarded as an SA(m|n, r)-module by the rule (see (4.7))

ξej =
∑
i

eiξ(ci,j)ι(i, j), ξ ∈ SA(m|n, r), i, j ∈ I(m|n, r).

Recall that the group Sr acts on E⊗rA by ej ∗ σ = c(p(ej), σ)eσj , σ ∈ Sr, thus

v1 ⊗ · · · ⊗ vr ∗ σ = c(p(v), σ)vσ(1) ⊗ · · · ⊗ vσ(r), p(v) = (p(v1), . . . , p(vr)).
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This action commutes with the diagonal action of g ∈ ΓA (and thus of A0ΓA)

g(v1 ⊗ · · · ⊗ vr) = gv1 ⊗ · · · ⊗ gvr,

as
(g(v1 ⊗ · · · ⊗ vr)) ∗ σ = (gv1 ⊗ · · · ⊗ gvr) ∗ σ = c(p(gv), σ)gvσ(1) ⊗ · · · ⊗ gvσ(r)

and

g(v1 ⊗ · · · ⊗ vr ∗ σ) = c(p(v), σ)g(vσ(1) ⊗ · · · ⊗ vσ(r)) = c(p(v), σ)gvσ(1) ⊗ · · · ⊗ gvσ(r),

but c(p(gv), σ) = c(p(v), σ) for all v ∈ E⊗rA and σ ∈ Sr as p(gv) = p(g)(1, . . . , 1) + p(v), and p(g) = 0.

5.B. Super Schur duality

Since the action of ΓA and Sr on E⊗rA commute, it follows that the action of SA(m|n, r) and Sr on
E⊗rA commute: (ξx) ∗ σ = ξ(x ∗ σ). We then define a homomorphism ψ : SA(m|n, r) → EndA(E⊗rA )
by the action of SA(m|n, r) on the module E⊗rA :

ψ(ξ)ej =
∑
i

eiξ(ci,j)ι(i, j).

In matrix form, with i = (i1, . . . , ir), j = (j1, . . . , jr), 1 ≤ it, jt ≤ m+ n:

ψ(ξ) = (ξ(ci,j)ι(i, j)) ∈M((m+ n)r × (m+ n)r, A).

Theorem 5.1. (Super Schur Duality) We have kerψ = 0, Imψ = EndASr(E
⊗r
A ), namely ψ defines

an isomorphism ψ : SA(m|n, r) ∼−→ EndASr(E
⊗r
A ), EA = Am|n.

Proof. Each θ ∈ EndAE
⊗r
A is represented by a matrix, say (Ti,j), in M((m + n)r × (m + n)r, A), in

the basis {ei} of the free A-module E⊗rA , namely we have

θej =
∑
i

eiTi,j , Ti,j ∈ A, i, j ∈ I(m|n, r).

We have

c(p(ej), σ)θ(eσj) = θ(ej ∗ σ) = (θej) ∗ σ =

(∑
i

eiTi,j

)
∗ σ

= c(p(ej), σ)
∑
i

eσiTi,j ,

where the 2nd = follows from g(ej ∗ σ) = (gej) ∗ σ for all g ∈ ΓA, and for the last = note that
p(eiTi,j) = p(ej), or p(Ti,j) = p(ei) + p(ej). Replacing j by σ−1j, i by σ−1i, we deduce that

θ(ej) =
∑
i

eiTσ−1i,σ−1j .

Hence Tσi,σj = Ti,j for all σ ∈ Sr, i, j ∈ I(m|n, r). This means that EndASr(E
⊗r
A ) has a free A-basis

in one-to-one correspondence with the set Ω of all Sr-orbits in I × I, I = I(m|n, r). If ω is such
an Sr-orbit on I × I, the corresponding basis element θω is that θ ∈ EndA(E⊗rA ) whose matrix has
Ti,j = 1 if (i, j) ∈ ω and Ti,j = 0 if (i, j) /∈ ω.

Now recall that for (p, q) ∈ I × I we have ξp,q ∈ SA(m|n, r) defined by ξp,q(ci,j) = c(p(cp,q), σ) if
(i, j) = (σp, σq), and ξp,q(ci,j) = 0 if not. Then

ψ(ξp,q)ej =
∑
i

eiξp,q(ci,j)ι(i, j).
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The nonzero terms in the sum over i must satisfy (i, j) = (σp, σq) for some σ ∈ Sr. So take j = σq,
i = σp, to get

ψ(ξp,q)eσq = eσpξp,q(cσp,σq)ι(σp, σq) = eσp · c(p(cp,q), σ) · ι(σp, σq).

Thus T = (Ti,j) representing ψ(ξp,q) satisfies Ti,j = ξp,q(ci,j)ι(i, j) = Tσi,σj , that is,

c(p(cp,q), σ)ι(σp, σq) = ι(p, q)

is independent of σ ∈ Sr (ι(p, q) on the right is the value of the left side at σ = 1). We conclude

ψ(ι(p, q)ξp,q)eσq = eσp for all σ ∈ Sr.

Hence for all (p, q) ∈ I × I, the basis element ι(p, q)ξp,q of SA(m|n, r) is represented on E⊗rA by
ψ(ι(p, q)ξp,q) = θω, where ω is the Sr-orbit containing (p, q). Hence ψ defines an isomorphism
SA(m|n, r) ∼−→ EndASr(E

⊗r
A ).

In the course of the proof we proved

Corollary 5.2. For all p, q in I(m|n, r) and σ ∈ Sr we have c(p(cp,q), σ) = ι(σp, σq)/ι(p, q).

Example 5.1. Let us check directly the relation in the corollary in a simple case. Take m = n = 1,
r = 2, i = (i1, i2), i1, i2 ∈ {1, 2}. Then cp,q = cp1,q1cp2,q2, p(cp,q) = (p(cp1,q1), p(cp2,q2)) is defined by
xσ(1)xσ(2) = c((p(x1), p(x2)), σ)x1x2. Take (p1, q1) = (1, 2) = (p2, q2), so that p(cp1,q1) = 1 = p(cp2,q2),
and c(p(cp,q), σ) = −1 for σ = (12) ∈ S2. Then (σ(p1), σ(q1)) = (2, 1), and σ(p2) = 2. So

ι(σp, σq) = (−1)∗, ∗ = (p(eσp1) + p(eσq1))p(eσp2) = (p(e2) + p(e1))p(e2) = (1 + 0)1 = 1;

ι(p, q) = (−1)∗∗, ∗∗ = (p(ep1) + p(eq1))p(ep2) = 0 as p(ep2) = 0.

Hence c(p(cp,q), σ) and ι(σp, σq)/ι(p, q) both are equal to −1.

5.C. Semisimplicity

The proof of the super Schur duality shows that SA(m|n, r) has a faithful matrix representation by
the algebra of all (m + n)r × (m + n)r matrices (Ti,j) satisfying the condition Tσi,σj = Ti,j for all i,
j ∈ I(m|n, r), σ ∈ Sr. The basis elements ι(p, q)ξp,q is represented by the matrix having Ti,j = 1
if (i, j) = (σp, σq) for some σ ∈ Sr, and Ti,j = 0 if not. Note that ι(i, i) = 1 as p(gi,i) = 0 for
all i ∈ I(m|n, r). The idempotents ξi,i are represented by diagonal matrices, and the orthogonal
decomposition ε =

∑
i ξi,i can be deduced from that.

Corollary 5.3. If charF is zero or p > r, then SA(m|n, r) is semisimple. Hence each MA ∈
MA(m|n, r) is completely reducible.

Proof. Since charF does not divide |Sr| = r !, the group algebra ASr is semisimple. Hence every
ASr-module, in particular E⊗rA , is completely reducible. The endomorphism algebra of a completely
reducible module is semisimple. So by the theorem, SA(m|n, r) is semisimple. The equivalence of the
categories MA(m|n, r) and modSA(m|n, r) completes the proof.

The family of modules (E⊗rA ), with fixed r and varying F and A, is defined over Z, in the sense
of the following definition, which is a version of the definition of a GL(n)-module, where GL(n) is
regarded as an affine group scheme over Z.

Definition 5.1. Suppose that for each infinite field F with 2 6= 0 and an F -superalgebra A we have
an AΓA-module MA ∈ MA(m|n, r). We say that the family {MA} is defined over Z if there is a
Z-form MZ of MA, and for each F and A isomorphisms AQ ⊗ F ' AF and δA : MZ ⊗A

∼−→MA in
the category MA(m|n, r). More precisely we say the family {MA} is Z-defined by MZ and δA.
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Example 5.2. Take MA = E⊗rA . The module MZ =
∑

i∈I(m|n,r) Z · ei is a Z-form of MAQ; write eµ,A

for the basis elements of EA = Am|n, and ei,A = ei1,A ⊗ · · · ⊗ eir,A for the basis elements of E⊗rA . For
each A the A-map δA : MZ⊗A→MA taking ei⊗ 1A 7→ ei,A for all i ∈ I(m|n, r), is an isomorphism
in MA(m|n, r), so {E⊗rA } is defined over Z.

Definition 5.2. Suppose {MA}, {NA} are families of A-modules in MA(m|n, r), both defined over
Z, by MZ and {δA}, and NZ and {ηA}. Suppose we have for each A a morphism θA : MA → NA in
MA(m|n, r), and AQ ⊗ F ' AF . We say the family {θA} is defined over Z if θQ maps MZ to NZ,
and for each A the following diagram commutes:

MZ⊗A
θQ⊗1A−−−−−−→ NZ⊗A

δA↓ ηA↓

MA

θA−−−−−→ NA

Example 5.3. Define the rth symmetric power Dr,A = Dr(EA) of EA to be the rth homogeneous
subspace of the polynomial ring A[e1, . . . , em+n]. The elements e1 = e1,A, . . . , em+n = em+n,A are
supercommuting indeterminates, according to the rule ebea = (−1)p(ea)p(eb)eaeb, p(ei) = 0 (1 ≤ i ≤ m),
p(ei) = 1 (m < i ≤ m+n). There is a surjective A-map θA : E⊗rA → Dr(EA), taking ei = ei1⊗· · ·⊗eir
to the monomial e(i) = ei1 . . . eir , for all i ∈ I(m|n, r). Now Dr,A has a unique structure as an AΓA-
module, such that θA becomes an AΓA-map. In fact the action on Dr,A of a given g ∈ ΓA is the
restriction to Dr,A of the unique A-superalgebra automorphism of A[e1, . . . , em+n] which maps eµ 7→
geµ for all µ (1 ≤ µ ≤ m+ n). The family {Dr,A} is defined over Z. Indeed the Z-form Dr,Z in Dr,Q
is the set of all homogeneous polynomials of degree r in the variables e1 = e1,Q, . . . , em+n = em+n,Q,
which have coefficients in Z. The isomorphism ηA : Dr,Z ⊗ A → Dr,A takes e(i),Q ⊗ 1A 7→ e(i),A, for
all i ∈ I(m|n, r). The family {θA} of morphisms is defined over Z in the sense of the definitions.
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[Sch1901] I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen. Dissertation, Berlin, 1901.

In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973.
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