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1. Introduction

The concept of class number first occurs in Gauss’s Disquisitiones Arithmeticae written in 1801.
In this work, we find the beginnings of modern number theory. Here, Gauss laid the foundations
of the theory of binary quadratic forms which is closely related to the theory of quadratic fields.
Motivated by the problem of representing natural numbers as the values of certain positive definite
binary quadratic forms, he isolated the notions of class number and genera. Later, Dirichlet related
the class number to special values L(1, χ) where χ is a quadratic (Dirichlet) character and L(s, χ) is
the Dirichlet series attached to the character χ.

After the development of algebraic number theory through the works of Kummer and Dedekind,
it became apparent that the failure of the unique factorization property in algebraic number fields
is measured by the ideal class group. With Fermat’s last theorem as the motivating muse, Kummer
developed his theory of ideal numbers in the context of cyclotomic fields. But it was Dedekind who
enunciated a larger theoretical framework that has now become part of the modern parlance. For
any algebraic number field K, he introduced the ring of integers OK and showed that every non-zero
ideal of this ring has finite index and can be factored uniquely as a product of prime ideals. He also
introduced what we now call the Dedekind zeta function ζK(s) which is defined for Re(s) > 1 by the
Dirichlet series ∑

a6=0

1

Nas
,

where Na := [OK : a]. Dedekind’s unique factorization theorem leads to the Euler product:

ζK(s) =
∏
p

(
1− 1

Nps

)−1

,

where the product is over all the non-zero prime ideals of OK . If K = Q, then ζQ(s) is the familiar
Riemann zeta function and the above is the classical Euler product.

We say two non-zero ideals a and b of OK are equivalent if there are elements α, β ∈ OK such
that (α)a = (β)b. This defines an equivalence relation on the set of all ideals of OK and one can even
define an abelian group structure on the set of equivalence classes giving rise to the ideal class group
CK . That this ideal class group is a finite group is a famous theorem of Minkowski and his celebrated
theory now called the geometry of numbers first arose in this context. The order of CK is called the
class number and denoted hK . Thus, hK = 1 if and only if the ring OK is a principal ideal domain
(PID).
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2. Class numbers of imaginary quadratic fields

In his foundational work of 1801, Gauss conjectured that if K runs through imaginary quadratic fields,
then the class number tends to infinity. In particular, he conjectured that there are only finitely many
imaginary quadratic fields with class number one. In fact, he even predicted the complete list of such
fields. They are Q(

√
−d) where

d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

This conjecture was finally proved independently by Alan Baker [Bak71] and Harold Stark [St66] in
1966. Baker developed his celebrated theory of linear forms in logarithms and applied his new theory
to resolve this problem. Baker’s method is applicable in a vast variety of Diophantine questions and
so he was awarded the Fields Medal for this theory in 1968. Stark’s method adapts an old method
of Heegner using modular functions, but ultimately, the final step is resolved using linear forms in
logarithms.

But Gauss’s class number problem and its final solution had a curious historical trajectory skir-
mishing around the generalized Riemann hypothesis! Although Dedekind introduced his celebrated
zeta function, he was unable to derive an analytic continuation and functional equation similar to the
Riemann zeta function. Using the newly created geometry of numbers, Weber was able to extend it
to the region Re(s) > 1 − 1/[K : Q], but the functional equation was elusive. It was Hecke who in
1918 used the theory of theta functions of several variables to show that ζK(s) extends analytically
to the entire complex plane with a simple pole at s = 1 and satisfies a suitable functional equation
similar to the one satisfied by ζ(s). One expects that all the non-trivial zeros of ζK(s) (that is, zeros
with real part positive) to lie on the line Re(s) = 1/2 and this is called the generalized Riemann
hypothesis (GRH). If K is a quadratic field, then we have the factorization

ζK(s) = ζ(s)L(s, χ)

where χ is the quadratic Dirichlet character (mod |dK |), where dK is the discriminant of K. One
expects L(s, χ) to satisfy the Riemann hypothesis. Hecke noted that if K = Q(

√
−d) is an imaginary

quadratic field with class number h(−d) and there is some constant c > 0 such that L(s, χ) has no
real zero with real part greater than 1− c/ log d, then for some positive constant c1, we have

h(d) >
c1

√
d

log d
.

In particular, the class number of imaginary quadratic fields tends to infinity and consequently, there
are only finitely many imaginary quadratic fields with class number one. The reader will note that
Hecke’s hypothesis is substantially weaker than GRH and is certainly implied by it. It is surprising
(and annoying to some) that we have been unable to show that this hypothesis always holds, an
assertion which is far far away from the claim made by GRH. This is the problem of the so-called
Siegel zero.

The years 1933 to 1935 saw a series of remarkable theorems related to this theme. Given Hecke’s
theorem, it was a surprise when Deuring proved in 1933 that the falsity of the classical Riemann
hypothesis implies that h(−d) ≥ 2 if d is sufficiently large. A year later, in 1934, Mordell proved
that the falsity of the classical Riemann hypothesis also implies that h(−d) tends to infinity. The
final step came later that year when Heilbronn proved that the falsity of GRH implies h(−d) tends
to infinity. Thus, combining this strange mélange of theorems with the result of Hecke, we obtained
an unconditional proof of Gauss’s conjecture. We refer the reader to Chapter 21 of [Dav80] for the
chronology of these puzzling sequence of discoveries.

Later in 1934, Heilbronn and Linfoot made their result partially effective in that they proved
there is at most one more field in Gauss’s list of imaginary quadratic fields with class number one.
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Perhaps the most significant of these developments is the 1935 theorem of Siegel that states that for
any ε > 0, there is a constant C(ε) > 0 such that

h(−d) > C(ε)d1/2−ε.

We should compare this with Dirichlet’s class number formula for imaginary quadratic fields

L(1, χ) =
2πh(−d)

w
√
|dK |

where w is the number of roots of unity in K, dK is the discriminant of K and χ is the Kronecker
symbol (dK/·), from which we can deduce

h(−d)�
√
d log d.

Combining this with Siegel’s theorem, we learn that h(−d) “grows like”
√
d. More precisely,

lim
d→∞

log h(−d)

log d
=

1

2
.

An important consequence of Siegel’s theorem is that for any given value t there are only finitely
many imaginary quadratic fields with class number t.

Siegel’s theorem is ineffective in the sense that we do not know C(ε) explicitly. This ineffectivity
does not facilitate an effective determination of all imaginary quadratic fields with a given class
number. Although Baker and Stark could apply their methods to determine all imaginary quadratic
fields with class number 2, their methods did not show us a way to tackle the general problem. In
this direction, Goldfeld [Gol76] took a major step in 1976 when he related this problem to L-series
attached to elliptic curves. Without going into too much detail, Goldfeld showed that if there is an
elliptic curve E over Q, whose associated L-series, LE(s) is entire and has a triple order zero at the
point s = 1/2, then for any ε > 0, there is an effectively computable constant c(ε) > 0 such that

h(−d) > c(ε)(log d)1−ε.

In 1986, Gross and Zagier [GrZa86] showed that such an elliptic curve exists and thus completed the
search for an effective theorem.

3. Class numbers of real quadratic fields

In his work on class numbers, Gauss also conjectured that there are infinitely many real quadratic
fields with class number one. This conjecture is still unresolved as of today. Let K = Q(

√
d), with

d > 1 and square-free, and εd be the fundamental unit of K. The class number formula gives us

h(d) log εd =
√
dKL(1, χ).

In this case, the difficulty arises because it is not possible to separate the factor log εd while finding
bounds for h(d). One may however consider real quadratic fields with a small fundamental unit.
More precisely, one can consider real quadratic fields such that εd � log d. In such cases, we get the
existence of only finitely many d > 0 such that h(d) = 1, a result which mirrors the situation for
imaginary quadratic fields.

It is not even known if there are infinitely many algebraic number fields with class number 1. There
are some intriguing conjectures in this context. Let Bp,n denote the n-th layer of the cyclotomic Zp-
extension of Q, that is, the unique real subfield of the cyclotomic field Q(ζpn+1) of degree pn over Q
for odd primes p, and Q

(
cos
(

2π
2n+2

))
for p = 2. Let hp,n be the class number of Bp,n. In [Web1886],

Weber showed that h2,n is odd for all n ≥ 1. Subsequently, Iwasawa [Iwa56] generalized Weber’s
result to show that for all n ≥ 1, the class number hp,n is not divisible by p. Then, in [FKM14],
Fukuda and Komatsu proved that h2,n is not divisible by any prime less than 109. This led to the
following conjecture, often called Weber’s class number problem:
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Conjecture 1. Foe every positive integer n, the class number h2,n is 1.

In [Co60], Cohn proved that h2,3 = 1. Since then many special cases have been verified to be
true [Bau69, vdLin82, Mil15, Mil14] but the conjecture still remains elusive in general. Miller has
conjectured that even a stronger statement should be true [Mil15] (see also [Coa12]):

Conjecture 2. For any prime p and positive integer n, the class number hp,n is 1.

Some progress in this direction was made by Buhler, Pomerance and Robertson [BPR04] who used
an extension of Cohen-Lenstra heuristics (see Section 4. for details) to estimate the probability that
hp,n > 1. Consequently, they were led to the following conjecture.

Conjecture 3. Let p be a prime and n be a positive integer. For all but finitely many pairs (p, n),
the class number of the real cyclotomic field of conductor pn+1 is equal to the class number of the real
cyclotomic field of conductor pn. That is,

h
(
Q
(
ζpn+1 + ζ−1

pn+1

))
= h

(
Q
(
ζpn + ζ−1

pn
))
.

Returning to quadratic fields, let p = m2 + 1 be a prime and consider Q(
√
p). In [ChFr76],

Chowla and Friedlander conjectured that m = 26 is the largest value for which h(p) = 1. In other
words, h(p) > 1 for p > 677. Mollin and Williams [MolWil88] proved this conjecture using the
Generalized Riemann Hypothesis (GRH). They numerically verified that h(p) > 1 for 677 < p < 1013

and used a result of Cornell and Washington[CorWa85] which guarantees, under the assumption of
GRH for the Dedekind zeta function of Q(

√
p), that h(p) > 1 for p > 1013. In [Bir03a], Biro provided

an unconditional proof that h(4m2 + 1) > 1 for m > 13. Let m be an odd, positive integer and
d = m2 + 4 be square-free. In [Bir03b], Biro also proved the so-called Yokoi conjecture, which states
that h(d) > 1 for m > 17.

In [BKL07], Byeon, Kim and Lee prove that h(
√
n2 − 4) > 1 for n > 21. Then, Byeon and Lee

[ByeLee08] proved that there are exactly four quadratic fields of the form Q(
√
m2 + 1) with class

number equal to 2.

4. Cohen-Lenstra Heuristics

In 1984, Cohen and Lenstra [CoLe84] made a number of conjectures about the structure of the class
group and divisibility properties of class numbers of real and imaginary quadratic fields based on
certain numerical computations. Let K be a quadratic field and C∗K be the odd part of the class
group CK , that is, the subgroup of ideal classes with odd orders. Given a finitely generated abelian
group A and a prime p, define the p-rank of A as Rkp(A) = dimFp(A/Ap). It is essentially the number
of invariant factors of the p-part of A. Following [FouKlu06], if f is a real-valued function on the set
of positive or negative discriminants dK , we say that f(dK) has average value a ∈ R if, as x → ∞,
we have ∑

0<±dK<x
f(dK) = (a+ o(1))

∑
0±dK<x

1.

In the case of imaginary quadratic fields, Cohen and Lenstra predict the following:

Conjecture 4. (Cohen-Lenstra) Let K be an imaginary quadratic field and p be an odd prime.
Then,

(i) The probability that p|hK is

1−
∞∏
j=1

(
1− 1

pj

)
.
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(ii) The probability that Rkp(C
∗
K) = r is

p−r
2
∞∏
j=1

(
1− 1

pj

) ∏
1≤k≤r

(
1− 1

pk

)−2

.

(iii) For a non-negative integer α, the average value of∏
0≤i<α

(
pRkp(C∗

K) − pi
)

is one. In particular, the average value of pRkp(C∗
K) is two and that of p2Rkp(C∗

K) is p+ 2.

Due to the celebrated work of Davenport and Heilbronn [DavHei71], Conjecture 4(iii) is known to be
true in the case α = 1 and p = 3. They proved the following theorem on the number of 3-torsion
elements in the class groups of quadratic fields with bounded discriminants.

Theorem 5. (Davenport and Heilbronn) Let dK denote the discriminant of a quadratic field K
and C3(K) be the 3-torsion subgroup of the ideal class group CK . Then∑

0<dK<x

#C3(K) =
4

3
·
∑

0<dK<x

1 + o(x);

∑
−x<dK<0

#C3(K) = 2 ·
∑

−x<dK<0

1 + o(x).

It follows that the average value of 3Rk3(C∗
K) is 2. In [BST13], Bhargava, Shankar and Tsimermann

provided a simple proof of Theorem 5 and a precise form of the second main term. Other than these
results, almost nothing is known about Conjecture 4 (except in the trivial case α = 0 and any p). In
the case of real quadratic fields, Cohen and Lenstra conjecture the following.

Conjecture 6. (Cohen-Lenstra) Let K be a real quadratic field and p be an odd prime. Then,

(i) The probability that p|hK is

1−
∞∏
j=2

(
1− 1

pj

)
.

(ii) The probability that Rkp(C
∗
K) = r is

p−r(r+1)
∞∏
j=1

(
1− 1

pj

) ∏
1≤k≤r

(
1− 1

pk

)−1 ∏
1≤k≤r+1

(
1− 1

pk

)−1

.

(iii) For a non-negative integer α, the average value of∏
0≤i<α

(
pRkp(C∗

K) − pi
)

is p−α. In particular, the average value of pRkp(C∗
K) is 1+p−1 and that of p2Rkp(C∗

K) is 2+p−1+p−2.

Again, by the work of Davenport and Heilbronn [DavHei71], Conjecture 6 (iii) is known to be true for
α = 1 and p = 3. In [Ger87], Gerth has extended the Cohen-Lenstra conjectures to include the case
p = 2 by considering the group C2

K := {a2 : a ∈ CK} and in [FouKlu07], Fouvry and Kluners have
proved the corresponding modifications of Conjecture 1(iii) and Conjecture 2(iii) in the case p = 2
and α ≥ 0,
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5. Divisibility of class numbers

5.A. Quantitative results

Cohen and Lenstra predict that the quadratic fields with class number divisible by n should have
positive density among all quadratic fields. To state quantitative results in this direction, for a
square-free positive integer d, we define

Nn(x) = # {d : n|h(−d), and |dK | ≤ x} .

Then, according to Cohen-Lenstra heuristics, we must have

Nn(x) ∼ cnx

for a positive constant cn. In particular, for an odd prime p they predict that

cp =


6
π2

(
1−

∏∞
j=2

(
1− 1

pj

))
, real quadratic fields

6
π2

(
1−

∏∞
j=1

(
1− 1

pj

))
, imaginary quadratic fields.

In [Mur97], Ram Murty proved, using the ABC conjecture, that for an integer g ≥ 3, at least
� x1/g−ε imaginary quadratic fields with absolute discriminant ≤ x have an element of order g in
their class group. That is, Ng(x) � x1/g−ε. In the real quadratic case, he found a lower bound of
Ng(x) � x1/(2g)−ε for such quadratic fields. Later in [Mur99], Murty gave stronger results without

using the ABC conjecture. He proved that Ng(x) � x
1
2

+ 1
g for g ≥ 3. For real quadratic fields, he

proved that Ng(x)� x
1
2g
−ε

for any ε, and g odd, where the implied constant may depend on ε.
For imaginary quadratic fields, Soundararajan [Sou00] improved Murty’s bounds to Ng(x) �

x
1
2

+ 2
g
−ε

when g ≡ 0 (mod 4) and Ng(x) � x
1
2

+ 3
g+2
−ε

when g ≡ 2 (mod 4). Note that his result
contains bounds for Nd(x) when d is odd since Ng(x) ≥ N2g(x). In these results, the exponent is still
asymptotic to 1

2 as g goes to infinity. Some substantially new idea is needed to break through the
“1

2” barrier in this problem.
In the case of real quadratic fields, Murty’s bounds were improved by Luca [Luc03] to Ng(x) �

x
1
g / log x for g even and by Yu [Yu02] to Ng(x) � x

1
g
−ε

for g odd. Inspite of these encouraging
results, we seem to be still far away from any resolution of the Cohen-Lenstra conjectures.

5.B. Certain infinite families of quadratic fields

We first consider the following family of quadratic fields. For an integer n > 1 let

Kx,y,n := Q
(√

x2 − yn
)
, x, y ∈ Z.

In [AnCh55] Ankeny and Chowla studied the family Kx,3,n and proved the following result.

Theorem 7. (Ankeny-Chowla) Let n be an even positive integer and let d := x2 − 3n < 0 be
a square-free integer with x even and 0 < x <

√
2 · 3n−1, then n divides the class number of the

imaginary quadratic field Q(
√
d).

In [GrRoh78], Gross and Rohrlich proved that the class number of the imaginary quadratic field
Q
(√

1− 4an
)

is divisible by n for any odd integer n ≥ 3 and any integer a ≥ 2. In the case of real
quadratic fields, a similar result was obtained by Ichimura [Ich03], who showed that the class number

of Q
(√

a2n + 4
)

is divisible by any integer n ≥ 2 and any odd integer a ≥ 3. Cohn [Cohn01] proved

that for n > 2 and n 6= 6, the class number of K1,2,n is divisible by (n− 2) if 2n − 1 is not a square.
In [Ki09], Kishi proved that, for x = 2k, k ≥ 1, Theorem 7 is true for all n such that 22k < 3n. Kishi
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[Ki10] also proved that if n ≥ 3 is odd then the class number of K2,3,n is divisible by 3. Subsequently,
there have been further generalisations of these results by Ito [Ito11] as well as Chakraborty, Hoque,
Kishi and Pandey [CHKP18]. An important ingredient in these proofs is a result by Bugeuad and
Shorey [BugSh01] on the number of solutions in positive integers of the generalized Ramanujan-Nagell
equation.

6. Non-divisibility of class numbers of quadratic fields

6.A. Imaginary quadratic fields

It follows from Gauss’ genus theory that there are infinitely many imaginary quadratic fields with class
number not divisible by 2. In [Har74], Hartung showed that given an odd prime p, there are infinitely
many imaginary quadratic fields K for which p - hK . To state further results in this direction, we
require the following terminology. Let p be a fixed prime and let Zp be the p-adic integer ring.
Let K be a finite algebraic number field with class number hK . Further, we denote by λp(K) and
µp(K) respectively, the Iwasawa λ- and µ−invariants associated to the basic Zp extension over K
(see [Mur02] for more details). In [Hor87], Horie used a modification of Hartung’s approach to prove
that given a prime p, there are infinitely many imaginary quadratic fields K for which p - hK and in
which p is not split. It then follows from Iwasawa’s criterion [Iwa56] that there exist infinitely many
imaginary quadratic fields K with λK = µK . The proof is based on the Eichler-Selberg trace formula
as well as the p-adic Galois representation associated to the Jacobian of the modular curve X0(p).

Let p be a prime number and let P1, P−1 and P0 be finite mutually disjoint subsets of the set of
primes numbers such that 2 /∈ P1∪P−1. In [Hor90], Horie proved that for sufficient large p, there exist

infinitely many imaginary quadratic fields K such that p - hK and
(
dK
m

)
= j for m ∈ Pj , j = {0, 1, 2}.

Here
( ·
·
)

is the usual Legendre symbol. Next, let ε = −1, 0 or 1. In [HorOni88], Horie and Onishi
proved that, given a prime p ≥ 5, there exist infinitely many imaginary quadratic fields K such that

p - hK and
(
dK
p

)
= ε.

In [KoOno99], Kohnen and Ono proved that for a prime p > 3 and ε > 0, the following lower
bound exists for the number of quadratic fields whose class number is not divisible by p and whose
absolute discriminant is less than x.

# {−x < −d < 0 fundamental : p - h(−d)} ≥
(

2(p− 2)√
3(p− 1)

− ε
) √

x

log x
.

6.B. Real quadratic fields

By the work of Davenport and Heilbronn [DavHei71], it is know that for ε > 0, we have

#{0 < d < x : 3 - h(d)}
#{0 < d < x}

≥ 5

6
− ε.

The non-divisibility of class number of real quadratic fields K is closely related to the Greenberg
conjecture which says that for every prime p and totally real number field K, we must have λp(K) =
0 = µp(K). From the work of Ferrero and Washington, it is know that for K = Q(

√
d) we have

µp(K) = 0. However, the conjecture that λp(Q(
√
d)) = 0 has not been resolved yet. In this direction,

Ono [Ono99] and Byeon [Bye01] have shown that for each prime p, there exist infinitely many real
quadratic fields Q(

√
d) such that λp(Q(

√
d)) = 0.

Our short survey should convince the reader that this topic is a fertile area of research with many
open questions. It is a confluence of several branches of number theory that will inspire further
investigation for generations to come.

Acknowledgement. We thank the referee for helpful comments on an earlier version of this paper.
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