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aUniversité Côte d’Azur, CNRS, Inria, I3S, France

Abstract

In this work, we investigate a recent conjecture by Baudon, Bensmail, Davot, Hocquard,
Przybyło, Senhaji, Sopena and Woźniak, which states that graphs, in general, can be edge-
labelled with red labels 1, 2 and blue labels 1, 2 so that every two adjacent vertices are
distinguished accordingly to either the sums of their incident red labels or the sums of
their incident blue labels. To date, this was verified for several classes of graphs. Also, it
is known how to design several labelling schemes that are very close to what is desired.

In this work, we adapt two important proofs of the field, leading to some progress
towards that conjecture. We first prove that graphs can be labelled with red labels 1, 2, 3
and blue labels 1, 2 so that every two adjacent vertices are distinguished as required. We
then verify the conjecture for graphs with chromatic number at most 4.

Keywords: Proper labellings; Coloured labels; Weak (2, 2)-Conjecture; 1-2-3 Conjecture.

1. Introduction

We deal with undirected simple graphs only. Given a graph G, a k-labelling ` : E(G)→
{1, . . . , k} usually refers to an assignment of labels from the set {1, . . . , k} to the edges of G.
Labellings of graphs form an attractive field of research of graph theory, due, notably, to
numerous real-life applications. There actually exist many types of such graphs labellings,
as reported, for instance, in the dynamic survey [9] maintained by Gallian.

In this work, we are more particularly interested in distinguishing labellings, which
are a type of graph labellings where ones aims at making some vertices distinguishable
accordingly to some aggregate induced by the edge labels. Even more specifically, we are
here interested in proper labellings, which are defined as follows. Given a labelling ` of
a graph G, one can compute, for every vertex v of G, the sum σ(v) of labels assigned to
the edges incident to v. We say that ` is proper if σ is a proper vertex-colouring of G, or,
in other words, if no two adjacent vertices u and v of G verify σ(u) = σ(v).

Proper labellings of graphs are objects of interest for various reasons, such as their
connection with proper vertex-colourings [3] and graph regularity [4]. In connection with
an approach first considered by Chartrand et al. [8], one important question related to
proper labellings, the 1-2-3 Conjecture, deals with the smallest k such that a given
graph admits proper k-labellings. Before being more precise, let us mention that the only
connected graph that does not admit proper labellings at all isK2. This can easily be shown
e.g. by induction. Thus, the question of investigating the smallest k for which proper k-
labellings do exist only makes sense for graphs that do not admit K2 as a connected
component. In this field, such graphs are said nice, and, for a nice graph G, the parameter
χΣ(G), which is the smallest k such that G admits proper k-labellings, is properly defined.

In 2004, Karoński, Łuczak and Thomason conjectured in [14] that χΣ(G) should be
rather small, for every nice graph G:
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1-2-3 Conjecture. For every nice graph G, we have χΣ(G) ≤ 3.

The 1-2-3 Conjecture has been attracting a lot of attention since its introduction,
as illustrated e.g. by the survey [17] of Seamone dedicated to this topic. We refer the
interested reader to that reference for more details. Regarding our investigations in this
paper, let us mention that there do exist graphs G with χΣ(G) = 3, such as complete
graphs, odd-length cycles, etc. To date, the conjecture was mainly shown for complete
graphs, 3-colourable graphs, and various classes of graphs of less importance. The best-
known result towards the 1-2-3 Conjecture is that χΣ(G) ≤ 5 holds for every nice graph G,
as proved by Kalkowski, Karoński and Pfender in [12]. The proof of this result is mostly
an adaptation of a nice algorithm originally designed by Kalkowski in [11] for proving a
result towards a total variant of the 1-2-3 Conjecture.

Speaking of variants of the 1-2-3 Conjecture, it is important to mention that a quite
investigated line of research in this field actually deals with slight modifications of the
original conjecture. In particular, in [1] the authors introduced a multiset version of the
1-2-3 Conjecture, in which the goal is to design labellings ` where adjacent vertices are
distinguished accordingly to their incident multisets of labels. Note that two vertices being
distinguished by their incident sums of labels are distinguished by their incident multisets
of labels. Mostly for that reason, it is legitimate to believe that the multiset version of the
1-2-3 Conjecture should be easier to prove than its sum counterpart. This is something
that was proven true recently, as Vučković provided a proof of that multiset version [18].

Among other variants of the 1-2-3 Conjecture, let us briefly mention that there exists
one in [4], related to so-called locally irregular decompositions, that deals with a
decompositional approach to the conjecture.

Our results in this work deal with another conjecture that is somewhat related to
the 1-2-3 Conjecture, that was introduced in [2] by Baudon, Bensmail, Davot, Hocquard,
Przybyło, Senhaji, Sopena andWoźniak. In that work, the authors introduced some general
labelling terminology and notions that cover several aspects of the field, resulting in a
general context encapsulating several related problems. The formal details, which can be
defined through “coloured labellings”, are as follows. Let G be a graph, and α, β ≥ 1 be two
integers. An (α, β)-labelling ` of G is an assignment ` : E(G) → {1, . . . , α} × {1, . . . , β}
where every edge uv is assigned a coloured label `(uv) = (x, y) with colour x and value y.
For every v ∈ V (G) and every i ∈ {1, . . . , α}, one can compute the i-sum σi(v) of v, being
the sum of the values of the labels with colour i assigned to the edges incident to v.

Note that, by (α, β)-labellings, vertices get incident to several coloured sums, and there
are thus many ways for considering that two adjacent vertices are distinguished by such a
labelling. In [2], the authors observed that by considering particular distinction conditions,
it is possible to make all the previous notions related to the 1-2-3 Conjecture fall into the
realm of (α, β)-labellings. By playing further with the possibilities, they also ran into new
problems of interest, including the main one investigated in this paper. This problem is the
weakest among all those considered in [2]. It deals with the following notion. For a graph
G and an (α, β)-labelling ` of G, we consider that ` is proper if, for every two adjacent
vertices u and v, there is an i ∈ {1, . . . , α} such that σi(u) 6= σi(v). In other words, two
vertices are considered distinguished if there is one colour for which the corresponding
coloured sums are different.

Note, in particular, that a proper (1, β)-labelling is nothing but a proper β-labelling.
Also, a proper (α, 1)-labelling is an α-labelling distinguishing adjacent vertices by their
incident multisets. Thus, an alternative way for stating the 1-2-3 Conjecture is that nice
graphs should admit proper (1, 3)-labellings. The proof of the multiset version of the
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1-2-3 Conjecture by Vučković implies that all nice graphs admit proper (3, 1)-labellings.
Furthermore, it has been known for long that there exist graphs with no proper (1, 2)-
labellings, and there exist graphs with no proper (2, 1)-labellings. A natural question,
then, is whether graphs, in general, admit proper (2, 2)-labellings. This resulted in the
following Weak (2, 2)-Conjecture [2]:

Weak (2, 2)-Conjecture. Nice graphs admit proper (2, 2)-labellings.

By arguments above, the Weak (2, 2)-Conjecture holds for every graph G admitting 2-
labellings distinguishing adjacent vertices by sums or multisets. In [2], the conjecture was
further verified for complete graphs and bipartite graphs. In [15], Przybyło also verified
the conjecture for graphs with large enough minimum degree. Additionally, the authors
of [2] proved that all nice graphs admit proper (2, 3)-labellings.

In this work, we provide further support towards the Weak (2, 2)-Conjecture. We start
in Section 2 by improving the last result mentioned above, by showing that every nice graph
admits proper labellings assigning red labels 1, 2, 3 and blue labels 1, 2. We continue in
Section 3 by showing that the Weak (2, 2)-Conjecture holds for nice graphs with chromatic
number at most 4. An important aspect lies in the proof schemes we develop, which are
non-trivial improvements and modifications of two of the most important tools in the field.

2. Proper labellings with red labels 1, 2, 3 and blue labels 1, 2

Since, throughout this work, we focus on (sometimes restrictions of) (2, β)-labellings,
to ease the reading we regard these labellings as assigning two types of labels, red ones and
blues ones. For a vertex v, we consequently denote by σr(v) its incident sum of red labels,
while we denote by σb(v) its incident sum of blue labels.

The next result is obtained by modifications and refinements of Kalkowski’s Algorithm,
which was introduced in [11] to deal with the total version of the 1-2-3 Conjecture. To date,
it stands as one of the best tools in the context for designing proper labellings with small
number of differents labels. In particular, straight modifications of it led to the best-known
result towards the 1-2-3 Conjecture to date [12]. More or less complicated improvements
can be found e.g. in [2, 5, 7, 10, 13, 16], and led to proving results of various importance.
Hence, one meaningful point behind our proof lies in the new mechanisms we enhance
Kalkowski’s Algorithm with.

Theorem 2.1. Nice graphs admit proper labellings with red labels 1, 2, 3 and blue labels 1, 2.

Proof. Let G be a nice graph. We may assume that G is connected. Our aim is to construct
a labelling ` of G assigning red labels 1, 2, 3 and blue labels 1, 2, so that σr(u) 6= σr(v) or
σb(u) 6= σb(v) holds for every two adjacent vertices u and v.

Let S ⊂ V (G) be any maximal independent set of G, and set R = V (G) \ S. By
maximality of S, note that every vertex of R has neighbours in S. For every v ∈ R, we
call its incident edges going to S the private edges of v.

In rough words, the construction of ` will follow two main steps. During a first step,
we will label the edges of G[R] and most edges of the cut (S,R) so that every two adjacent
vertices of G[R] are distinguished by either σr or σb. At the end of this first step, the only
edges that will not be labelled yet will be those incident to the isolated vertices in G[R].
In a second step, we will handle such edges, with making sure that no conflicts remain. By
that, we mean, in particular, labelling the remaining edges so that adjacent vertices in S
and R are distinguished by σr or σb.
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Step 1: Labelling the edges of G[R] and most edges of (S,R).
Let us denote byH the (connected) components of G[R] which have at least two vertices

(thus at least one edge). We deal with the components of H independently. Let us focus
on one such component H. Consider an arbitrary ordering v1, . . . , vn over the vertices of
H, where n ≥ 2. From the point of view of a vertex vi, an incident edge vivj is called
backward if j < i, while it is called forward otherwise, i.e., if j > i. The notions of backward
neighbours and forward neighbours of any vertex vi are defined in the obvious way. From
now on, we assume that the vi’s are ordered so that vn is the only vertex with no forward
neighbour. This is an assumption that can be made, as such an ordering v1, . . . , vn can
easily be obtained e.g. by reversing the ordering in which the vertices of H are encountered
during a Breadth-First Search algorithm performed from any root vertex as vn.

Let us start by assigning an initial label to all edges (in G) incident to vertices in H:

• to every edge vivj ∈ E(H), we assign red label 2;

• to every edge viu with vi ∈ V (H) and u ∈ S, we assign blue label 1.

Our goal now is to process the vi’s one after another, from first (v1) to last (vn), without
ever coming back, and apply local label modifications to get rid of all possible conflicts
between a considered vertex and its backward neighbours. More precisely, whenever con-
sidering a such vi, we will modify labels of private edges and backward edges of vi so that,
for every backward neighbour vj , either

1. σb(vi) and σb(vj) have different parities (and thus σb(vi) 6= σb(vj)), and/or

2. σr(vi) 6= σr(vj).

An important point to mention right away is that, by applying label modifications to
private edges and backward edges only, whenever first considering a new vertex vi we are
sure that all its backward edges are currently assigned red label 2. Furthermore, in the
upcoming process, the value of σb(vi) will never be altered again once vi has been treated.

In order to ensure distinction Condition 2 above, we will sometimes have to alter the
red label of a backward edge vivj , from 2 to either 1 or 3. A problem is that such a
modification alters σr(vj) as well, which might raise new conflicts. To make sure this does
not happen, whenever considering a vi with forward edges, we will define two allowed “safe”
values φ(vi) and φ(vi) + 1 as σr(vi), such that, as soon as they are defined, σr(vi) must,
at any further step of the process, lie in Φ(vi) = {φ(vi), φ(vi) + 1}. This way, whenever
dealing with a vi with a backward edge vivj (thus currently assigned red label 2, by earlier
arguments), we know that we can switch the label of vivj to either red label 1 or red label 3
with keeping σr(vj) in Φ(vj). That is, if currently σr(vj) = φ(vj), then we can assign red
label 3 to vivj (resulting in σr(vj) = φ(vj) + 1); while, if currently σr(vj) = φ(vj) + 1,
then we can assign red label 1 to vivj (resulting in σr(vj) = φ(vj)). When treating vi and
considering a backward edge vivj , we call the correct of these two label modifications the
valid modification for vivj .

Before proceeding to the concrete arguments for achieving such a label modification
process, it is important to emphasis that the two values of any Φ(vi) are consecutive ones
(φ(vi) and φ(vi)+1). Another technical point that will be important for both the first and
the second steps, is that we need each φ(vi) to be even with value at least 2.

Let us now detail the process. We consider the vi’s one after another, starting from v1.
Vertex v1 has b = 0 backward neighbours, f ≥ 1 forward neighbours (since n ≥ 2), and
p ≥ 1 private edges. Thus, at the moment, we have σr(v1) = 2f and σb(v1) = p. Here,
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we do not modify labels around v1, and just set φ(v1) = 2f (thus defining Φ(v1)). Thus,
at the moment, v1 is not in conflict with any backward neighbour, all forward edges of v1

remain assigned red label 2, we currently have σr(v1) ∈ Φ(v1), and φ(v1) = 2f ≥ 2 is even.
Let us now focus on the general case of a vertex vi with i > 1. We can assume that

vi has backward neighbours, as otherwise we could just apply the previous arguments
used to deal with v1. Thus vi has b ≥ 1 backward neighbours u1, . . . , ub, where each of
viu1, . . . , viub is currently assigned red label 2 by assumption. Furthermore, vi has f ≥ 0
forward neighbours and p ≥ 1 private edges. Thus, currently, σr(vi) = 2(b + f) and
σb(vi) = p. We consider two main cases, depending on the value of f .

• First assume that f ≥ 1. Recall that, for every backward neighbour uj of vi, the
pair Φ(uj) was defined, and we currently have σr(uj) ∈ Φ(uj). Furthermore, viuj is
currently assigned red label 2, and there is one valid label modification that can be
applied to viuj that preserves σr(uj) ∈ Φ(uj). This modification is either a decrement
or an increment. Let us assume that s ≥ 0 of the valid modifications to the viuj ’s
are decrements, while t ≥ 0 of them are increments. Then s+ t = b.

First off, note that either at most bb/2c of the uj ’s have σb(uj) being even, or at most
bb/2c of the uj ’s have σb(uj) being odd. In the first case, we, if necessary, change the
blue label of a private edge of vi from 1 to 2 so that σb(vi) gets even. In the second
case, if needed we change the blue label of a private edge so that σb(vi) gets odd.
This way, σb(vi) permits to distinguish vi from all but at most bb/2c of the uj ’s.
We now need to define Φ(vi) and apply valid modifications to the viuj ’s so that
σr(vi) distinguishes vi and the remaining at most bb/2c uj ’s. By performing valid
modifications backwards, note that we can make the red sum of vi take any value in

{σr(vi)− s, . . . , σr(vi)− 1, σr(vi), σr(vi) + 1, . . . , σr(vi) + t} ,

which is a set of s+ t+ 1 = b+ 1 distinct values.

– Assume first that σr(vi)− s is even. On the one hand, if σr(vi) + t is even, then
note that all values in {σr(vi)− s, σr(vi)− s+ 2, . . . , σr(vi) + t} are candidates
as φ(vi) (recall that we want to define φ(vi) so that it is even with value at
least 2). On the other hand, if σr(vi) + t is odd, then note that all values in
{σr(vi)− s, σr(vi)− s+ 2, . . . , σr(vi) + t−1} are candidates. In both cases, since
the set of candidates includes at least bb/2c + 1 distinct values, at least one r
of them is different from the value φ(uj) of all of the at most bb/2c uj ’s that
might have the same blue sum as vi.

– Assume now that σr(vi)− s is odd. On the one hand, if σr(vi) + t is even, then
note that all values in {σr(vi)−s−1, σr(vi)−s+1, . . . , σr(vi)+t} are candidates
as φ(vi). In particular, note that the even value σr(vi)− s− 1 is eligible since it
has value at least 2 due to the fact that f ≥ 1. In other words, no combination of
valid label modifications backwards can make the red sum of vi become strictly
smaller than 3. On the other hand, if σr(vi) + t is odd, then note that all values
in {σr(vi)− s− 1, σr(vi)− s+ 1 . . . , σr(vi) + t− 1} are candidates, by the same
arguments. In both cases, since the set of candidates includes at least bb/2c+ 1
distinct values, at least one r of them is different from the value φ(uj) of all of
the at most bb/2c uj ’s that might have the same blue sum as vi.

In all cases, we set φ(vi) = r, define Φ(vi) accordingly, and apply valid label modifi-
cations backwards so that σr(vi) ∈ Φ(vi). As a consequence, vi cannot be in conflict
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with any of its backward neighbours, all forward edges of vi remain assigned red
label 2, and we have σr(vi) ∈ Φ(vi) with φ(vi) being of even value at least 2.

• Now assume that f = 0. Recall that only vn has this property, by the choice of the
ordering v1, . . . , vn. Also, because vn is the last vertex of H to be processed, we here
do not have to follow all the rules related to the sets Φ, and, instead, we just need to
apply label modifications around vn so that no conflict with its backward neighbours
remains, and none of the backward neighbours get involved in new conflicts.

Just as in the previous case, we first modify, if needed, the blue label (from 1 to 2)
of a private edge of vn so that σb(vn) gets its parity meeting that of at most bb/2c of
the uj ’s. Note that if b = 1, then we are already done with getting rid of all conflicts
between vn and the uj ’s. So assume b ≥ 2. We now need to modify σr(vn) to make
sure it is different from the value of σr(uj) of these at most bb/2c other uj ’s. To
make sure these uj ’s do not get involved in new conflicts, we will only perform valid
modifications to the backward edges of vn. Again, s ≥ 0 of the valid modifications
backwards are decrements while t ≥ 0 of them are increments; thus s+ t = b.

Start by performing the s valid modifications that are decrements. This way, all
backward edges of vn get assigned red label 1 or 2, and, for every backward neighbour
uj , we have σr(uj) = φ(uj) which is an even value. If σr(vn) is currently odd, then
we are done. So assume σr(vn) is even, and that some of the uj ’s have the same value
as σr(vn) by σr (as otherwise we would be done as well). Actually, if there exists uj
such that we currently have σr(uj) 6= σr(vn), then we are done when resetting the red
label of vnuj to 2 (as σr(vn) gets odd, and only σr(uj) is odd but with different value
φ(uj) + 1). So we may lastly assume that we actually currently have σr(uj) = σr(vn)
for every j ∈ {1, . . . , b}. Here, we are done when when resetting the red label of both
vnu1 and vnu2 to 2, as σr(u1) and σr(u2) get odd, while we get σr(uj) = σr(vn) − 2
for every j ∈ {3, . . . , b} and σr(vn) is even.

In all cases, it is important to note that σr(vn) ≥ 2. This is clear when b ≥ 2, since
all backward edges remain assigned red labels. When b = 1, this is because the label
of vnu1 is not modified, and the edge remains assigned red label 2.

Once the whole process ends, note that every two adjacent vertices vi and vj of H get
distinguished, either because σb(vi) and σb(vj) have distinct parities, or because σr(vi) and
σr(vj) are different (in most cases, due to how Φ(vi) and Φ(vj) were chosen). Also, it is
important to recall that we have σr(vi) ≥ 2 for every i ∈ {1, . . . , n}. For i 6= n, this is
because we have always chosen φ(vi) so that it is even with value at least 2. For i = n,
this is by arguments above.

In what follows, we assume that the previous process was performed for every H ∈ H.

Step 2: Labelling the remaining edges.
Note that, so far, every vertex in S has its edges being either assigned a blue label

(edges going to H) or not labelled (otherwise). All edges that are not labelled yet join a
vertex of S and a vertex of I, where I = G[R\V (H)]. By definition ofH, all components of
I have order 1, i.e., are isolated vertices. Note that, no matter how we label the remaining
edges, no conflict can involve two adjacent vertices u and v with u ∈ S and v ∈ V (H), as
long as we maintain σr(u) ≤ 1 (as v verifies σr(v) ≥ 2, as explained earlier).

Let us denote by U the subgraph of G induced by the edges incident to the vertices in
V (I). Note that U contains exactly the edges that remain to be labelled. Also U might
contain several components, no two of which can have adjacent vertices as otherwise they
would form a bigger component. Hence, we can treat the components of U independently.
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Assume first that U ∈ U is just an edge uv with u ∈ S and v ∈ R. This implies that
v has degree 1 in G. Because G is nice, u must have other incident edges, all of which
go to vertices in V (H) that are thus assigned blue labels. We are here done with U by
assigning e.g. red label 1 to its unique edge. No conflict involving u or v arises, since
σb(v) = 0 < 1 ≤ σb(u), and σr(u) = 1 while all its neighbours v′ in V (H) verify σr(v

′) ≥ 2.
Let us now consider the general case of a component U ∈ U with at least two edges.

If no vertex of V (U) ∩ R has degree at least 2, then U is a star with center u in S and
at least two leaves v1, . . . , vk in R, in which case we are done by assigning blue label 1 to
all edges of U . Indeed, we get σb(u) ≥ 2 while σb(vi) = 1 for every i ∈ {1, . . . , k}, and u
remains distinguished from its neighbours in V (H) because σr(u) = 0.

Assume now that U has a vertex v∗ ∈ V (U)∩R with degree at least 2. We assign blue
label 2 to all edges of U , and apply the following process:

• For every vertex u ∈ V (U)∩ S such that σb(u) is currently odd, we choose a path P
from u to v∗ in U , and, as going from u to v∗ along P , we relabel with blue label 1
every traversed edge with blue label 2, and vice versa.

• For every vertex v ∈ V (U) ∩ R \ {v∗}, we choose a path P from v to v∗ in U , and,
as going from v to v∗ along P , we relabel with blue label 1 every traversed edge with
blue label 2, and vice versa.

As a result, note that all vertices u in V (U) ∩ S have σb(u) even, while all vertices v
in v ∈ V (U) ∩ R \ {v∗} have σb(v) odd. If also σb(v∗) is odd, then no conflict involving
adjacent vertices of U remains, and we are done (in particular, note that, also, every vertex
u in V (U) ∩ S verifies σr(u) = 0, and thus cannot be in conflict with any neighbour in
V (H)). Thus assume that σb(v∗) is even. In that case, we consider two distinct neighbours
u1, u2 of v∗ in U (thus u1, u2 ∈ V (U) ∩ S), and assign red label 1 to both v∗u1 and v∗u2.
As a result, we get σr(v

∗) = 2 while none of its neighbours verifies this. We also get
σr(u1) = σr(u2) = 1, while none of their neighbours (in particular those in V (H)) verifies
this. Thus, again, no vertex of U remains involved in a conflict.

Once all U ∈ U have been dealt with, the resulting labelling ` is as desired.

3. The Weak (2, 2)-Conjecture for 4-colourable graphs

Recall that a graph G is k-colourable if it admits a proper k-vertex-colouring, meaning
a partition (V1, . . . , Vk) of its vertex set V (G) where each Vi is independent, i.e., no two of
its vertices are joined by an edge. The chromatic number χ(G) of G is the smallest k such
that G is k-colourable, and we say that G is χ(G)-chromatic.

The next proof is an adaptation of the proof scheme developed by Vučković in [18] to
prove the multiset version of the 1-2-3 Conjecture. Just as Kalkowski’s Algorithm, this tool
showed up to be important in this field for deducing results. For instance, Vučković’s ideas
were modified in [6] to get progress towards a product version of the 1-2-3 Conjecture.

Theorem 3.1. The Weak (2, 2)-Conjecture holds for nice 4-colourable graphs.

Proof. Let G be a nice 4-colourable graph. We can assume that G is connected. Our goal is
to produce a proper labelling ` of G with red labels 1, 2 and blue labels 1, 2. As mentioned
in the introductory section, the Weak (2, 2)-Conjecture was verified for bipartite graphs
in [2]. Hence, we can assume that χ(G) ∈ {3, 4}. In what follows, we focus on the most
intricate case, which is when χ(G) = 4. At the end of the proof, we will explain how to
adapt the argument for the case χ(G) = 3.
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Let (V1, V2, V3, V4) be a proper 4-vertex-colouring of G. For a vertex v ∈ Vi with
i > 1, an incident edge vu going to some u ∈ Vj with j < i is called an upward edge.
Conversely, for v ∈ Vi with i < 4, an incident edge vu going to some u ∈ Vj with j > i
is called a downward edge. Free to move vertices from parts to parts, we can assume that
(V1, V2, V3, V4) has the property that for every v ∈ Vi, vertex v has upward edges to each
of V1, . . . , Vi−1. Indeed, if there is a j < i such that v has no upward edge to Vj , then note
that, when moving v to Vj , we obtain another proper 4-vertex-colouring of G. By repeating
this process as long as necessary, we necessarily end up with a proper 4-vertex-colouring
with the desired property, since vertices are only moved to parts with lower index. Also,
none of the parts can become empty, since G is 4-chromatic.

We design ` through two main steps. During a first step, we will consider the vertices
of V4, V3 one after another, and label their upward edges so that particular values by σr

and σb are obtained, guaranteeing that no two adjacent of these vertices are in conflict.
During a second step, we will label the remaining edges, those in the cut (V1, V2), so that
no conflict remains.

Step 1: Labelling the upward edges of V4, V3.
We aim at producing the following values by σr and σb for the vertices in V4 and V3:

• v ∈ V3: σr(v) even at least 2, σb(v) at least 2.

• v ∈ V4: σr(v) odd at least 1, σb(v) odd at least 3.

It should be clear that no conflict involving two adjacent vertices in V4 and V3 can hold
as soon as theses properties are met (due to values of distinct parity by σr). To achieve this,
we consider the vertices in V4, V3 following this ordering, and, for each vertex considered
that way, we label all its upward edges so that the desired properties are met. Note that,
in the course of this process, whenever considering a vertex v ∈ V3, it can then be assumed
that all downward edges of v have already been labelled.

• We start with vertices v ∈ V4. We assign blue label 1 to an upward edge to V3, and
blue label 2 to all other upward edges to V3 and V2. This way, we get that σb(v) is
odd with value at least 3. We then consider all remaining upward edges, which all
go to V1, and assign red labels to them so that σr(v) ≥ 1 is odd.

• Next, we consider vertices v ∈ V3. At this point, the downward edges of v are all
assigned blue labels. We assign blue label 2 to all upward edges to V2, so that σb(v)
has value at least 2. We then consider all remaining upward edges of v, which all go
to V1, and assign red label 2 to them so that σr(v) ≥ 2 is even.

Remark that, this far, all downward edges of the vertices in V2 are assigned blue label 2,
while all downward edges to V3, V4 of the vertices in V1 are assigned red labels. Also, note
that, this far, no vertex v verifies σb(v) = 1.

Step 2: Labelling the edges of (V1, V2).
It remains to label the edges in (V1, V2). We do so by considering every vertex v ∈ V2,

and labelling its upward edges (to V1) with red labels so that σr(v) gets odd. Note that
this results in all vertices v ∈ V1 having σb(v) = 0. A vertex v ∈ V2 can be of two types:
either σb(v) = 0 and σr(v) ≥ 1 is odd, or σb(v) ≥ 2 is even and σr(v) ≥ 1 is odd. The
first case corresponds to when v has no downward edges to V3, V4, while the second case is
when it has. In the second case, note also that, at the moment, v cannot be in conflict with
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any of its neighbours, due to the constraints we have maintained: v cannot be in conflict
with its neighbours in V4 because σb(v) is even, v cannot be in conflict with its neighbours
in V3 because σr(v) is odd, and v cannot be in conflict with its neighbours in V1 because
σb(v) > 0. So, the only possible conflicts are when v has upward edges only.

Let us consider the subgraph H of G induced by the upward edges (being all assigned
red labels) of the vertices v ∈ V2 with σb(v) = 0. Note that H is a bipartite graph with
(possibly) several (connected) components containing all vertices in conflict. A component
of H containing conflicting vertices is said to be a conflicting component. Note that no
two components of H have adjacent vertices, as otherwise they would, altogether, form a
bigger component. From this, we can treat the conflicting components of H independently.

Observe that no conflicting component H ∈ H can contain just an edge uv with u ∈ V1

and v ∈ V2. Indeed, by definition of H, this would mean that σb(v) = 0, thus that v has
no downward edges, and that vu is the only upward edge of v. In other words, dG(v) = 1.
Since G is nice, we have dG(u) ≥ 2, and, because all downward edges of u are assigned red
labels, that σr(u) > `(uv) = 1 = σr(v). Thus H is not conflicting, a contradiction.

So every conflicting component H ∈ H has at least two edges. If no vertex of V (H)∩V2

has degree at least 2, then H is a star with center u in V1 all of whose incident edges are
assigned red label 1, in which case as well u cannot have the same value by σr as its
neighbours in H, which are all of degree 1 in G (and thus have value 1 by σr). This is
again a contradiction to the fact that H is conflicting.

Thus, every conflicting component H ∈ H has at least two edges and a vertex v∗ ∈
V (H) ∩ V2 with degree at least 2. In that case, we relabel the edges of H accordingly to
the following procedure:

1. For every vertex v ∈ V (H)∩ V1 with σr(v) even, we choose a path P from v to v∗ in
H, and, as going from v to v∗ along P , we relabel with red label 1 every traversed
edge with red label 2, and vice versa.

2. For every vertex v ∈ V (H) ∩ V2 \ {v∗} with σr(v) odd, we choose a path P from v
to v∗ in H, and, as going from v to v∗ along P , we relabel with red label 1 every
traversed edge with red label 2, and vice versa.

As a result, all vertices v in V (H) ∩ V1 get σr(v) ≥ 1 odd, while all vertices v in
V (H) ∩ V2 \ {v∗} get σr(v) ≥ 1 even. If also σr(v

∗) is even, then no conflict remains
and we are done. Otherwise, we choose any two neighbours u1, u2 of v∗ in H, and assign
blue label 1 to both v∗u1 and v∗u2. As a result, σb(v∗) = 2 while none of its neighbours
verifies this property (recall, in particular, that v∗ has no downward edges). Also, we have
σb(u1) = σb(u2) = 1 while, as mentioned earlier, none of their neighbours verifies this.
Finally, all other adjacent vertices of H remain distinguished due to their values by σr

being of different parities. Thus, no conflict involving vertices of H remains or arises.
Once all conflicting components H ∈ H have been treated this way, ` is as desired.

Let us conclude by mentioning that the exact same arguments work from a proper 3-
vertex-colouring (V1, V2, V3), by omitting all details dealing with V4 above. In other words,
the similar proof also holds for 3-chromatic graphs.
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