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Geometry and identity theorems for bicomplex functions and
functions of a hyperbolic variable

M.E. Luna—Elizarraras , M.Panza, M.Shapiro, D.C. Struppa

Abstract. Let D be the two-dimensional real algebra generated by 1 and by a hyperbolic unit k& such that
k? = 1. This algebra is often referred to as the algebra of hyperbolic numbers. A function f : D — D is called
D—holomorphic in a domain © C D if it admits derivative in the sense that limhﬂow exists for
every point 30 in €2, and when A is only allowed to be an invertible hyperbolic number. In this paper we prove
that D—holomorphic functions satisfy an unexpected limited version of the identity theorem. We will offer two
distinct proofs that shed some light on the geometry of D. Since hyperbolic numbers are naturally embedded
in the four-dimensional algebra of bicomplex numbers, we use our approach to state and prove an identity
theorem for the bicomplex case as well.

1. Introduction

Back in the second half of the nineteenth century, the Irish mathematician W.R.Hamilton introduced what is now
called the skew field of quaternions, in a (successful) attempt to describe rotations in the space. His construction is
very well known, and consists in building the real algebra on four units, 1,4, j, k = ij, where 4, j, k are imaginary
units (i.e their square is equal to —1) which anticommute (i.e. ij = —ji,ik = —ki,jk = —kj). The lack of
commutativity was an obstacle that hindered Hamilton’s progress, until he was able to surrender the comfort of
a commutative setting, something he discussed at great length in his famous letters to his son [?].

Concurrently with Hamilton, a much less famous, and much less talented, English mathematician under
the name of James Cockle, developed a parallel theory (that he saw as inspired by Hamilton’s quaternions), and
applied it to new numbers that he called ‘tessarines’ (see, among others, [?], [?], [?]; on Cockle’s results, see also
[?]). The collection of works of Cockle will receive a more detailed treatment in a forthcoming work by Panza
and Struppa. At this point we will limit ourselves to mentioning that Cockle’s tessarines were born almost out
of luck, as they are the consequence of a series of ill-conceived ideas. Nevertheless, they are an object worth of
study, and that is in fact now the subject of significant research under the name of bicomplex numbers (see [?],
for example).

The idea is simple. The algebra of bicomplex numbers, or tessarines as Cockle called them, is the four
dimensional real algebra over the units 1,4, 7,k = ij, but this time while ¢ and j are (complex) imaginary units,
k is not, since i and j are asked to commute (ij = ji = k), and this makes k is what is now referred to as
a hyperbolic imaginary unit, namely, a non-real number such that k2 = 1. The resulting algebra is, in some
elementary sense, an easier object to study because it preserves the commutative nature of complex numbers,
but on the other hand, as we will see shortly, it offers a new set of problems because the commutativity leads to
the existence of zero divisors, a most inconvenient byproduct.

In [?], Cockle also implies that within the real algebra of tessarines, one can identify an interesting subalgebra
(he does not quite use such a precise language, but certainly understands the idea), if one considers the two-
dimensional real algebra over 1 and k. This algebra is modernly referred to as the real algebra of hyperbolic
numbers.

If one now moves to the twentieth century, one can see that many mathematicians (mostly from the Italian
algebra and analysis schools) developed a fairly sophisticated theory of holomorphicity for functions defined on
various algebras. They understood the subtleties that emerge from the specific properties of each algebra, and
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possibly the best work in this area, though somewhat forgotten, is the one of Sce, which has recently been
translated and commented upon in [?].

In particular, a theory was developed for functions that satisfy holomorphicity conditions on bicomplex
functions, as well as those that satisfy similar conditions for functions on the algebra of hyperbolic numbers. The
modern theory of those functions for the bicomplex case is described in a fairly complete way in [?], and the
beginning of the theory for the hyperbolic case is discussed in [?]. We should also point to reader to [?] where
additional work is done on the geometry of the hyperbolic plane.

In this article we consider a natural question that has different answers in the bicomplex and the hyperbolic
cases, namely, the question of whether an identity theorem may exist for functions that satisfy holomorphicity
conditions. The question was stimulated by a close reading of the original work of Cockle.

His approach in [?] consists in distinguishing “unreal” quantities, depending on the imaginary unit ¢, from
“impossible” ones depending on another non-real unit k (we are using here the modern notation in order to avoid
confusion among the units), which commutes with 4, and such that k2 = 1. This immediately leads him to a

four-dimensional real algebra, generated by 1, 4, j := —ik, and k. This is the algebra of bicomplex numbers (in
modern terms) or of tessarines (in Cockle’s terms).
Cockle then proceeds ([?], p. 438) to claim that any “impossible quantity [...] altogether disappears” from
kx _ —kx

the sum e** + e~ ** and from the quotient , where x is any real number. To justify this conclusion he

2k
simply assumes that the function of a hyperbolic variable e*® develops as the real exponential, i.e., that

ekw _ i (k:;)n’

n=0

from which it immediately follows, by simple replacement, that

s 2n kx —kx 0 2n+1
kx —kx € e =€ T
— 2 ; - = _—_— ]..].
¢ T nz::() (2n)! 2k ; 2n+1)! (1.1)

Cockle’s process, here, is essentially the same used by Euler’s in [?] (vol. 1, chapter VIII), when he derives his
classical results about imaginary exponentials and trigonometric functions. In doing that, Euler implicitly assumes
that the real exponential function e* (x € R) plainly extends to the the new function € : R — C, having the
same power series development as e®, under the replacement of x with ix. He is silent about how this last function
is defined, but we might suppose he was considering it directly defined by this same development (that can be

oo 2h 0 2h+1
rewritten as Z(—l)h i ) +1 Z(—l)%“ﬁ, where the two real series are provably convergent). This
h=0 h=0 ’

(2h)!

would leave still open both the problem of defining a complex function (conveniently denoted by e*), extending e*
to the whole C, and the question whether this function is unique. We know today how to solve this problem—by
simply defining e* = e*T% = e%e® (x,y € R), and taking e as defined by its power series development, just
as Euler presumably did—and answer this question in the affirmative—by appealing to the identity theorem for
(complex) holomorphic functions, which Euler, however, could not have proved.

By (apparently) following Euler’s approach, Cockle utilizes equalities (??) and, is then led to the search
for a function f(xz 4 ky) (z,y € R) of a hyperbolic variable whose restriction to R is exactly e”. To obtain this
function, it is enough to consider the function e® (coshy + k sinh ), which clearly satisfies the requirements ([?]).
Note however that Cockle had no definition for holomorphicity of functions of hyperbolic variables, and therefore
his approach is simply algebraic, with no reference to any analytical properties.

It is therefore natural to ask whether this function is unique, once we impose some holomorphicity property
on it. It turns out that the answer is somewhat surprising, in fact quite counterintuitive, and for that reason
worthy of a complete discussion.

The plan of the paper is as follows: in Section 2, we give a quick summary on holomorphic functions of
bicomplex and hyperbolic variables. Nothing in this section is new, and the reader interested in further details
should look at [?] and [?]. Section 3 is the core of the paper. In it we prove an identity theorem for holomorphic
functions of a hyperbolic variable. As it will become apparent, this theorem is much weaker than its complex
counterpart, but it is still strong enough to ensure the unicity of a holomorphic hyperbolic continuation of the
exponential function. After giving the proof of the identity theorem, we explore a bit more the geometry of the
hyperbolic plane, and we offer some interesting generalizations of the identity theorem itself. The last section
of the paper offers some variants of the identity theorem in the bicomplex setting. Even though it is rather
obvious that a more general identity theorem holds for holomorphic functions of a bicomplex variable (almost
an immediate consequence of the identithy theorem for holomorphic functions in the complex plane), this last
section allows us to make some interesting geometrical considerations on the bicomplex plane.

2. Holomorphic functions on the algebras of bicomplex and hyperbolic numbers
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The set BC of bicomplex numbers is defined by

BC := {2’1 + j2o ‘ 21, 29 € C}
where C = {z1 + iz2 | 21,22 € R} is the set of complex numbers with the imaginary unit ¢ and where ¢ and j # i
are commuting imaginary units, i.e., ij = ji, i2 = j2 = —1. The addition and multiplication are defined in a
clear way. We will write sometimes C(i) instead of C since the set C(j) := {z1 + jz2 | 1, 2 € R} can be equally
called the set of complex numbers; both C(i) and C(j) are isomorphic fields, and although coexisting inside BC,

they are different.
The set of hyperbolic numbers can be defined intrinsically (independently of BC) as

D:={z+kyl|z yeR}

where k is a hyperbolic imaginary unit, i.e., k> = 1, k # £1, commuting with both real numbers z and y. Again,
it is clear how to add and to multiply the hyperbolic numbers.

Working with BC, a hyperbolic unit k£ emerges as the product of the two complex imaginary units: k := 4j.
Thus the ring BC contains a ring, which is isomorphic to the ring of hyperbolic numbers defined by

D:={z+ijy |z, y€R}.
Let & denote the set of zero divisors in BC. A bicomplex number z; 4+ jzo is a zero divisor if and only if
22 4 22 = 0. There are two very special zero divisors: e := %(1 + k) and ef := %(1 — k); they have the properties:
eef =0,e?=e, (ef)2=el,e+ef =1, e — el = k. Finally,
6 =(C\{0})e U (C\{0})e".
For any bicomplex number Z = z; + jz, one can write:
Z = Bie + fae (2.1)

where 81 = 21 — iz9, B2 = 21 + i22. It is obvious that Z = 0 if and only if 1 = 2 = 0. Many operations with
bicomplex numbers can be performed term-wise using the idempotent representation.

It is worth noting that e and e’ are hyperbolic numbers inside BC which leads to the idempotent repre-
sentation for hyperbolic numbers as well; such representation has the same form as (??) but with 5, and s real
numbers; if 3 = x 4+ ky, then 1 =z 4y, fo =z — y.

Consider a bicomplex function F': Q C BC — BC. The derivative F'(Zy) of F at a point Zy €  is defined

as the limit, if it exists,
F/( ZO) . 11 ( ) ( 0) 11 ( 0 ) ( O)

Z 2, Z -7 T GoFH—0 H

Such a derivative maintains many properties of real and complex derivatives; in particular, the arithmetic oper-
ations look exactly the same. A function F' with derivative at Zj is called derivable at Z,. If F' has bicomplex
derivative at each point of 2, then we will say that F' is a bicomplex holomorphic, or BC-holomorphic, function.

The following bicomplex Cauchy—Riemann operators are introduced by means of the usual complex deriva-
tives in z and Z:

o _1(o 0N o 1
072 = 2\0m 0m)  0zT T 2
o 1o oy o 1
oz T2 071 J%g ’ YA
Let F € C*(9,BC), F is BC-holomorphic if and only if

oF oF oFr
77D = 5=(D) = 5 (2) =0 22)

hold on €. If these identities are satisfied, then

_OF
9z
Writing F' = Fy +j F5 the identities (??) imply that F; and F» are C—valued holomorphic functions of two complex
variables in the classical sense; what is more, they are not independent but they are tied by the Cauchy-Riemann
type conditions

F(2) ().

OF _0F,  0F _ 0B
62:1 a 8z2’ 622 a 821 '
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How do these formulas look if one uses the idempotent representation of bicomplex numbers? First of all,
we write in the idempotent form the bicomplex numbers involved:

Z = Pie+ pre';
F(Z)=G1(Z)e+ Ga(Z)el,

for suitable complex valued functions G; and G5. Introduce also the sets Q1 := {B; | fre + fael € Q}, Oy :=
{B2 | Bre + el € Q.

In general, the two functions G and Ga depend on both complex variables §; and 83, namely G1(Z) =
G1(Bre + parel), Go(Z) = Ga(Bre + fael). But the situation is radically different for BC-holomorphic functions.
A bicomplex function F' is BC-holomorphic if and only if the following conditions hold:

(I) G, is a holomorphic function of the variables (1, 82 that does not depend on Ss; thus Gy is a holomorphic
function of 1 € ;.
(IT) G4 is a holomorphic function of the variables 1, B2 that does not depend on Si; thus G5 is a holomorphic

function of By € Q.

This implies that

F(Z) = G1(B1)e + Ga(fa)e’
for Z € Q. But the right—hand side is well-defined on Q=+ Qqel, hence F extends to all of Q.

Consider now the situation of functions of a hyperbolic variable. Set 3 = z + ky, f(3) = u(3) + kv(z) =

u(z,y) + kv(z,y). The limit
f50) = _Tim fGo+h) — f(30)

SpFh—0 h

is called “derivative of f at 3¢”.
The hyperbolic Cauchy—Riemann conditions here are:

ou Ov ou Ov

or oy oy ox

The Cauchy-Riemann operators are:

o _1(o 0\ o _1(0 0
03 2\ oz Ay )’ o3t 2\ o0z Ay

and they factorize, up to a constant coefficient, the one-dimensional wave operator on the class C?(Q) with Q a
domain in D.
Using the idempotent representation one gets, with some abuse of notation:

fG) = AG)e+ f2(3)e" = fi(z,y)e + fa(z,y)e’.

If we now write 3 = vie+ voel, with 11, vy € R, we have a characterization of D-holomorphicity as follows:
a C'—function of a hyperbolic variable 3 is D-holomorphic if and only if the following conditions hold:

I) f1is of class C'(2,R) and it does not depend on vy; thus fi is in C*(Q;, R).
) fo is of class C1(©,R) and it does not depend on vy; thus fa is in C1(Qa, R).

Hence
f(3) = fiv)e + fo(mn)el (2.3)
for 3 € Q. But the right-hand side of (??) is well defined on © = Qye + Qyel, hence f extends to all of Q. It is
important to notice that f; and f» are here only required to be of class C', and no analyticity is expected.

3. An identity theorem and some geometrical considerations

It is well known that holomorphic functions of a complex variable enjoy what is known as the identity theorem. In
other words, if f : Q C C — C is holomorphic (i.e., it admits complex derivative, or, equivalently, its components
satisfy the Cauchy-Riemann system), 2 is an open and connected set of the complex plane, and f vanishes on
a subset of 2 that has an accumulation point in €2, then it vanishes everywhere in (2. There are many ways to
see, or at least to intuit, why it should be so. To begin with, if a holomorphic function vanishes on a subset of )
having an accumulation point zg, then (by continuity) it will vanish at zg. Since f is holomorphic it is represented
(locally) by its Taylor series and from this it immediately follows that all its derivatives are zero at zp, implying
the identical vanishing of the function on a disk B(zg,r) C . Using the fact that Q is connected, this vanishing
extends onto the whole Q. A different way to look at this is by noticing that if u and v are, respectively, the real
and imaginary parts of f, i.e., f(x + iy) = u(z,y) + iv(x,y), then the Cauchy-Riemann conditions imply that u
and v are both harmonic. This makes the Cauchy-Riemann system elliptic, and the identity theorem follows.
4



One may therefore reasonably ask whether a similar identity theorem holds for BC—holomorphic functions
of a bicomplex variable and for D-holomorphic functions of a hyperbolic variable.

We can immediately dispose of the bicomplex case by using an argument that essentially replicates the one
we have sketched for the complex case, but we prefer to provide our theorem with a proof which is based on the
intrinsic properties of bicomplex holomorphic functins.

Theorem 3.1. BC-holomorphic functions of a bicomplex variable satisfy the identity theorem. Namely, if a function
f:Q C BC — BC s BC-holomorphic on a domain Q in BC, and if f vanishes identically on a subset Q0* of )
with an accumulation point Zo = fre + Bael such that fre and fael are accumulation points of the projections
e and et Q* respectively, then f vanishes identically on .

Proof. Tt follows from Section ?? that we can assume that €2 is a product type domain Q = Q,e+sef. Moreover, a
bicomplex holomorphic function F can be written as F(Z) = G1(B1)e + Ga(f2)el, with G and G5 holomorphic
functions of the complex variables 8; and 2. Since the identity theorem holds for holomorphic functions on
domains in the complex plane, the result follows immediately. O

The situation, however, is quite different in the hyperbolic case, since the proof we just gave breaks down
because, as we have seen in Section ??, the functions that appear in (??) are not necessarily analytic. Again,
there are several reasons why one might think that, but maybe the most cogent and immediate is the fact that
if the real and hyperbolic components u,v of a holomorphic function of a hyperbolic variable are of class C?
then they are both solutions of the wave equation. The equation being hyperbolic it is clear that no general
identity theorem can hold for its solutions. We will see, however, that the very special nature of the real algebra
of D-holomorphic functions allows at least a limited version of the identity theorem and one, in particular, that
ensures the uniqueness of the extension of any continuously differentiable function on R to all of D, including of
course the exponential function.

We have in fact the following theorem:

Theorem 3.2. Let f : D — D be a D-holomorphic function of a hyperbolic variable x+ky. If f vanishes identically
on the real axis y = 0, then f vanishes identically on all of D.

Proof. We recall that if f is a D-holomorphic function on D, then we can rewrite it as
fl@+ky) = fne +vel) = fi(v)e + fa(ra)el
where f; and f, are certain C' functions of the variables v; and v» which means that for any = and y in R there
holds:
fa+ky) = filz +yle+ fo(x —y)e'.
If we now assume that f vanishes identically when y = 0, we obtain

0= f(z) = fi(x)e + fa(x)el.

This immediately entails that fi(z) = fa(z) = 0 for all values of x, which entails, in turn, that

fla+ky) = filz+ye+ fo(z —y)el =0,

since both f1 and fo are identically zero as functions of a single variable. This proves the theorem. O
An immediate consequence of this result is the following:

Corollary 3.3. Let f and g be two functions from D to D that are hyperbolic entire, i.e., they are D-holomorphic
in the whole D. If they coincide on the real axis, they will coincide everywhere in D.

The proof of Theorem ?? immediately suggests, however, that the real axis is not the only line for which an
identity theorem holds. In fact, the same exact proof shows that if a D-holomorphic function f of a hyperbolic
variable vanishes identically on a line y = ma +b (m # £1) or on a line z = ¢, then it vanishes identically on all

of D. More generally one has the following result, whose proof is immediate consequence of the proof of Theorem
27

Theorem 3.4. Let f : D — D be a D-holomorphic function of a hyperbolic variable x+ky. If f vanishes identically
on a curve y = g(x) such that x+ g(x) and x — g(x) assume all real values except, possibly, a discrete set of them,
or on a curve x = g(y) such that y + g(y) and g(y) — y assume all real values, then f vanishes identically on D.

One may wonder whether it is possible to extend this result to functions that vanish on a half-line, for
example, of positive real numbers, or what happens more generally when the function f vanishes on a portion of
a curve, or even on some generic subset of . To answer this question we offer a different proof of Theorem ?7?,
through an interesting geometric argument that offers a different way to look into the question, and admits an
easy generalization.
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FIGURE 1. The linesy —yo = —x + 20 and y — yo = = — 0.

Theorem 3.5. Let f : D — D be a D-holomorphic function of a hyperbolic variable x + ky. Let fi and fo
be the functions of the variables vy = x +y and vo = x —y such that f(z + ky) = fi(vi)e + fa(rn)el =
fi(z+y)e+ fo(z—y)et. If f vanishes at a point xo-+kyo, then fi vanishes identically on the line y—yo = —(z—0)
and fo vanishes identically on the line y — yo = x — xg. See Figure 7.

Proof. Tt is immediate to see that if f(xo + kyo) = 0 then fi(xo + yo) = fa(xo — yo) = 0. But then if (z,y) is on
the line y — yo = —(x — x) it is clear that © + y = 2o + yo and therefore f; vanishes identically on that line.
Similarly for f. O

As a consequence of this theorem, if f satisfies the hypothesis of Theorem ??, then f(z) =0 for all z € R.
Take z¢p € R arbitrary, then fi(z +y) = 0 for all (x,y) on the line y = —(x — z¢) and fo(x —y) = 0 for all
(x,y) on the line y = x — 2¢. Having moved now x( along the whole R one has that R? = D is covered with the
straight lines y = —z 4+ x¢ and y = x — xo, hence f vanishes on the whole .

Clearly, Theorems ?? and ?? are immediate kimgsqpdiices of Theorem ?? | since the totality of points in
which two lines y — yo = o — z and y — yo = & — x¢, intersect, where xg,yo vary on all the (real) coordinates
of the points belonging to a curve as those mentioned in this last theorem, coincide with the whole D. What
is more relevant, however, is that both this theorem and its proof merely concern, essentially, a single point of
R?, and the latter reduces, in fact, to nothing but a simple argument pertaining to analytic geometry on R2.
An immediate consequence of it, following from an obvious argument in real two-dimensional geometry, is, then,
that if a D-holomorphic function f(x + ky) vanishes in two whatsoever distinct points xg + kyo and 1 + ky, it
also vanishes on both the intersection point of the lines y —yo = zog — « and y — y; = x — 1 and the intersection
point of the lines y — y; = 1 — x and y — yo = x — xo. More in general, from this theorem it follows that, if
a D-holomorphic function f(x + ky) vanishes on any subset {z + k:y}(x’y) cq of D, where Q is whatever subset
of R2, then it also vanishes on the subset {z + ky}(w,y)eﬂ* of D, where Q* is the subset of R? depending on €,
which we can call “hyperbolic holomorphicity hull of 27, defined as follows:

Definition 3.6. Let Q be a subset of the plane. For each point P = (x,y) in Q, consider the two lines apy and
ap_ passing through that point and having slopes 1 and —1. We define the hyperbolic holomorphicity hull Q* of
Q to be the set of points {apy Nag-}proea-

Figures ?? and ?? are illustrations of this Definition.

FIGURE 2. The set Q* = {u:wu € abBc} is the hyperbolic holomorphicity hull of the arc of curve
Q = AEB. For any point u in Q*, there are two points P,Q on Q such that the lines ap,— and ag,+
intersect in u.

FIGURE 3. The set Q* = {u: u € abed} is the hyperbolic holomorphicity hull of the connected set Q.
For any point u in Q*, there are two points P, @ dlsuzhpdkit the lines apy and ag,— intersect in u.

We got, then, the following corollary, which constitutes a lemma for a quite general identity theorem for
D-holomorphic functions:

Corollary 3.7. If a D—holomorphic function f vanishes on a set ) in the plane, it then vanishes identically on
the hyperbolic holomorphicity hull of €).

We therefore obtain, immediately, the following general result:

Corollary 3.8. Let f and g be two D—holomorphic functions from D to D. If they coincide on a subset {x + kzy}(w,y)eQ

of D, where Q is a subset of R?, they will also coincide on {x + ky}(Ly)eQ*, where Q* is the hyperbolic holomor-
phicity hull of €.
D-hull.pdf
We conclude this section with a remark that is prompted by these apparently simple results. At first sight,
when studying D-holomorphic functions of a hyperbolic variable, one is led to an oversimplification when it
appears that any such function f is indeed nothing but a pair of real valued functions f; and f5, with no apparent
links between them (a similar remark can and has been made for holomorphic functions in the bicomplex setting).

Thus it appears that such functions cannot have any special properties, since the functions f; and f; do not have
6



4.1.

any particular property. However, since the two functions f; and f5 are defined on two variables connected to each
other, D-holomorphicity acts as a separation of variables process. In other words a function is D-holomorphic if
and only if it can undergo a separation of variables process that allows it to be written as a pair of one variable
functions f; and fo. This process is performed via the change of cartesian basis to the idempotent basis, and is
strongly related to the hyperbolic numbers structure in the usual Euclidean real space R2. This is, indeed, the
key property of solutions of the wave equation, which is the differential equation that gives special meaning to
the study of D-holomorphic functions.

4. Some variants of the Identity Theorem in BC

Although by Theorem ?? we know that the Identity Theorem holds for bicomplex holomorphic functions, the
proof of Theorem ?? offers an inspiration for a different proof of the Identity Theorem for BC-holomorphic
functions, based on some simple geometric facts. For this reason we start this section recalling the notion of
complex straight lines in BC, [?].

4.1. Complex straight lines in BC

Recall first that any bicomplex number Z = 21 + jzo can be identified with a pair of complex numbers (21, 23).
This means that, whenever necessary, BC can be seen as C(i)2.
By definition, a complex straight line (or simply a complex line) is the set of solutions of the equation

a1z1 + agzo = b, (4.1)

where a1, as, b € C(i) are complex coefficients. Since this equation is equivalent to a system of two real linear
equations with four real variables, if the rank of the system is 2, the equation defines a 2-dimensional plane in
R

Some examples of complex lines are the following.

Taking in (??) a1 =0, ag = 1 and b = 0, we get the equation

zg =0,
and the respective complex line is the set of complex numbers C(i) C BC.
Taking now a; =0, az = 0, b = 0, then (??) becomes
z1=0
and the complex line in this case is the set jC(i) C BC.

The complex line that passes through a given bicomplex number Z° = 20 + 529 and through the origin is
the set

Lzo={XZ° | X e C(i)}.
Let us represent this complex line as the set of solutions of (7?). Take z; + jz2 € Lzo, then there exists A € C(i)
such that z; + jzo = AZ% = A2 + jAz8 which leads to the system

21 = A2},
z9 = A28,
z z
If 2§ = 0, it is clear that Lo = C(4), thus, assuming that 2§ # 0 one has that \ = —(2) and hence z; = %z?, or,
Z2 22

equivalently:
2921 — 22 = 0.
Reciprocally, given a homogeneous equation a;z; 4+ azz2 = 0 with a; # 0, the set of its solutions is Lzo with
Z0 = —ag + ja;.
Using this notation it is clear that the (real) 2-dimensional planes BCe and BC,+ are in fact complex lines:
BCe = Le and BCqt = Lgi. Their equations are, respectively:

z1 + 120 =0, (42)

zZ1 — iZQ =0. (43)

Note that the coefficients that appear in equation (??) corresponds to the zero—divisor —2ie, but it is clear that
Le = L_sje. Similarly (??) corresponds to the zero-divisor 2ie’ and one has that Lo = L_gje.

A complex line that does not pass through the origin can be written as Lo + W°. This means that this

line passes through W and it is parallel to Lzo. Writing Z° = 20 + j29 and W° = w{ + jw9, it is immediate to
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4.2.

prove that Z = z; + jz belongs to the complex line Lo + W if and only if the pair (21, z2) is a solution of the
equation
2921 — 229 = 29w? — 20w). (4.4)
The C(j) complex lines can be defined in a similar way.
The reader may note that not any (real) two—dimensional plane in R* is a C(i) or a C(j) complex line. It is
in fact immediate to prove that a (real) two-dimensional plane P in R* that passes through the origin is a C(i)
complex line if and only if it is closed under the multiplication by 1.

4.2. Identity Theorem for BC—holomorphic functions

We are now ready to provide an alternative proof of a special case of the identity theorem for BC-holomorphic
functions.

Theorem 4.1. If F is an entire BC—holomorphic function such that F(z) =0 for all z € C(i), then F(Z) =0 for
all Z € BC.

Proof. Given Z € BC, write Z = 21 + jzo and F = G1e + Goe'. Since F is BC-holomorphic it satisfies
F(Z) = Gl(Zl - iZQ)e + GQ(Zl + iZQ)eT.
Take zg € C(4) arbitrary. Since F(z) = 0 then G1(z9) = 0 and G2(zp) = 0. Consider the complex line L = Le+ 2z
parallel to BC, passing through zg. From (??) we know that its equation is z1+ize = zg. Thus, to every Z = z1+j22
that belongs to L one has
GQ(Zl + iZg) = GQ(Z()) =0,
i.e., G2 vanishes in the whole complex line L. Similarly, consider the complex line Lqt + 2o given by z1 —izy = 2.
Since G1(zp) = 0, then G vanishes on the whole complex line Lgi 4 z9. We conclude that the function F vanishes
on the union of the lines
(Le + 20) U (Let + 20) -
It is clear that the whole BC can be filled with the collection of complex lines:
{Le+2z|2€C(i)} and {Le+z2]|2z€C(i)},
hence, moving zp along the whole C(i) we conclude that F' vanishes in the whole BC. |
A generalization of the above theorem is

Theorem 4.2. If F is a bicomplex entire function that vanishes on a complex line Lzo + WO, with Z° not a
zero—divisor, then it vanishes identically on all BC.

The request on Z° to be not a zero-divisor finds its analogue in the hyperbolic case when it was required
that the slope m of the line y = max + b satisfies m # +1.
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