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Let Ω C n be a bounded strongly m-pseudoconvex domain (1 ≤ m ≤ n) and µ a positive Borel measure with finite mass on Ω. Then we solve the Hölder continuous subsolution problem for the complex Hessian equation (dd c u) m ∧ β n-m = µ on Ω. Namely, we show that this equation admits a unique Hölder continuous solution on Ω with a given Hölder continuous boundary values if it admits a Hölder continuous subsolution on Ω. The main step in solving the problem is to establish a new capacity estimate showing that the m-Hessian measure of a Hölder continuous m-subharmonic function on Ω with zero boundary values is dominated by the m-Hessian capacity with respect to Ω with an (explicit) exponent τ > 1.

Introduction

Complex Hessian equations are important examples of fully nonlinear PDE's of second order on complex manifolds. They interpolate between (linear) complex Poisson equations (m = 1) and (non linear) complex Monge-Ampère equations (m = n). They appear in many geometric problems, including the J-flow [SW] and quaternionic geometry [AV]. They have attracted the attention of many researchers these last years as we will mention below.

1.1. Statement of the problem. Let Ω C n be a bounded domain and 1 ≤ m ≤ n a fixed integer. We consider the following general Dirichlet problem for the complex m-Hessian equation :

The Dirichlet problem: Let g ∈ C 0 (∂Ω) be a continuous function (the boundary data) and µ be a positive Borel measure on Ω (the right hand side). The problem is to find a necessary and sufficient condition on µ such that the following problem admits a solution :

(1.1)

   U ∈ SH m (Ω) ∩ C 0 (Ω) (dd c U ) m ∧ β n-m = µ on Ω ( †) U |∂Ω = g on ∂Ω ( † †)
The equation ( †) must be understood in the sense of currents on Ω as it will be explained in section 2. The equality ( † †) means that lim z→ζ U (z) = g(ζ) for any point ζ ∈ ∂Ω.

Recall that for a real function u ∈ C 2 (Ω) and each integer 1 ≤ k ≤ n, we denote by σ k (u) the continuous function defined at each point z ∈ Ω as the k-th symmetric polynomial of the eigenvalues λ(z) := (λ 1 (z), • • • λ n (z)) of the complex Hessian matrix

∂ 2 u ∂z j ∂ zk (z) of u i.e. σ k (u)(z) := 1≤j 1 <•••<j k ≤n λ j 1 (z) • • • λ j k (z), z ∈ Ω.
We say that a real function u ∈ C 2 (Ω) is m-subharmonic on Ω if for any 1 ≤ k ≤ m, we have σ k (u) ≥ 0 pointwise on Ω.

For m = 1, σ 1 (u) = (1/4)∆u and for m = n, σ n (u) = det ∂ 2 u ∂z j ∂ zk (z) . Therefore 1-subharmonic means subharmonic and n-subharmonic means plurisubharmonic.

As observed by Z. B locki ( [START_REF] Locki | Weak solutions to the complex Hessian equation[END_REF]), it is possible to define a general notion of m-subharmonic functions using the theory of m-positive currents (see section 2). Moreover it is possible to define the k-Hessian measure (dd c u) k ∧ β n-k when 1 ≤ k ≤ m for any (locally) bounded m-subharmonic function u on Ω (see section 2).

When µ = 0, the Dirichlet problem (1.1) can be solved using the Perron method as for the complex Monge-Ampère equation (see [START_REF] Locki | Weak solutions to the complex Hessian equation[END_REF], [START_REF] Charabati | Le problème de Dirichlet pour l'équation de Monge-Ampère complexe[END_REF]).

When g = 0 and µ is a positive Borel measure on Ω, the Dirichlet problem is much more difficult. A necessary condition for the existence of a solution to (1.1) is the existence of a subsolution.

Therefore a particular case of the Dirichlet problem (1.1) we are interested in can be formulated as follows.

The Hölder continuous subsolution problem : Let µ be a positive Borel measure on Ω. Assume that there exists a function ϕ ∈ SH m (Ω)∩ C α ( Ω) satisfying the following condition :

(1.2) µ ≤ (dd c ϕ) m ∧ β n-m , on Ω, and ϕ |∂Ω = 0.

1. Does the Dirichlet problem (1.1) admit a Hölder continuous solution U µ,g for any boundary data g which is Hölder continuous on ∂Ω?

2. In this case, is it possible to estimate precisely the Hölder exponent of the solution U µ,g in terms of the Hölder exponents of ϕ and g ? Our goal in this paper is to answer the first question on the existence of a Hölder continuous solution and give an explicit lower bound of the Hölder exponent of the solution in terms of the Hölder exponent of the subsolution when the measure µ has finite total mass.

Known results.

There have been many articles on the subject. We will only mention those that are relevant to our study and closely related to our work. The terminology used below will be defined in the next section.

Assume that Ω is a smooth strongly m-pseudoconvex domain. When the boundary data g is smooth and the right hand side µ = f λ 2n is a measure with a smooth positive density f > 0, S.Y. Li proved in [START_REF] Li | On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian[END_REF] that the problem has a unique smooth solution. Later, Z. B locki introduced the notion of weak solution and solved the Dirichlet problem for the homogenous Hessian equation in the unit ball in C n ( [START_REF] Locki | Weak solutions to the complex Hessian equation[END_REF]). When the density 0 ≤ f ∈ L p (Ω) with p > n/m, Dinew and Ko lodziej proved the existence of a continuous solution ( [START_REF] Dinew | A priori estimates for the complex Hessian equation[END_REF]). Assuming moreover that g is Hölder continuous on Ω, Ngoc Cuong Nguyen proved the Hölder continuity of the solution under an additional assumption on the density f ([N14]) and M. Charabati proved the Hölder continuity of the solution for general densities [START_REF] Charabati | Modulus of continuity of solutions to complex Hessian equations[END_REF]).

On the other hand, S. Ko lodziej [START_REF] Ko Lodziej | The complex Monge-Ampère equation and Pluripotential Theory[END_REF] proved that the Dirichlet problem has a bounded plurisubharmonic solution if (and only if) it has a bounded subsolution with zero boundary values. This is known as the bounded subsolution theorem for plurisubharmonic functions. The same result was proved for the Hessian equation by Ngoc Cuong Nguyen in [N12].

The Hölder continuous subsolution problem stated above has attracted a lot of attention these last years and was formulated in [START_REF] Dinew | Open problems in pluripotential theory[END_REF] for the complex Monge-Ampère equation.

It has been solved for the complex Monge-Ampère by Ngoc Cuong Nguyen in [N18a, N20]. Recently S. Kolodziej and Ngoc Cuong Nguyen solved the Hölder subsolution problem for the Hessian equation under the restrictive assumption that the measure µ is compactly supported on Ω (see [START_REF] Ko Lodziej | A remark on the continuous subsolution problem for the complex Monge-Ampère equation[END_REF], [START_REF] Ko Lodziej | An inequality between complex hessian measures of Hölder continuous m-subharmonic functions and capacity[END_REF]).

1.3. Main new results. In this paper we will solve the Hölder continuous subsolution problem for Hessian equations when µ is any positive Borel measure with finite mass on Ω.

Our first main result gives a new comparison inequality which will be applied to positive Borel measures without restriction on their support.

Theorem A. Let Ω C n be a bounded strongly m-pseudoconvex domain. Let ϕ ∈ SH m (Ω) ∩ C α (Ω) with 0 < α ≤ 1 such that ϕ = 0 in ∂Ω.
Then for any 0 < r < m/(n -m), there exists a constant A > 0 such that for every compact K ⊂ Ω,

K (dd c ϕ) m ∧ β n-m ≤ A [Cap m (K, Ω)] 1+ + [Cap m (K, Ω)] 1+m , where := αr (2-α)m+α > 0.
The capacity Cap m (K, Ω) will be defined in the next section. The constant A in the theorem is explicit (see formula (5.13)).

Observe that the most relevant case in the application of this inequality will be when Cap m (K, Ω) ≤ 1. In this case the right exponent is τ = 1 + αr (2-α)m+α . Theorem A improves substantially a recent result of [START_REF] Ko Lodziej | An inequality between complex hessian measures of Hölder continuous m-subharmonic functions and capacity[END_REF] who proved an estimate of this kind when the compact set K ⊂ Ω is contained in a fixed open set Ω Ω, i.e. K stays away from the boundary of Ω.

When m = n a better estimate was obtained in [N18a] using the exponential integrability of plurisubharmonic functions which fails when m < n.

As a consequence of Theorem A, we will deduce the following result which solves the Hölder continuous subsolution problem.

Theorem B. Let Ω

C n be a bounded strongly m-pseudoconvex domain and µ a positive Borel measure on Ω with finite mass. Assume that there exists

ϕ ∈ E 0 m (Ω) ∩ C α (Ω) with 0 < α < 1 such that (1.3) µ ≤ (dd c ϕ) m ∧ β n-m
, weakly on Ω, and ϕ ≡ 0 on ∂Ω.

Then for any continuous function g ∈ C 2α (∂Ω), there exists a unique function

U = U g,µ ∈ SH m (Ω) ∩ C 0 ( Ω) such that (dd c U ) m ∧ β n-m = µ, and U = g on ∂Ω. Moreover U ∈ C α (Ω) for any 0 < α < α m 2 m-1 γ(m, n, α), where γ(m, n, α) := mα m(m + 1)α + 2(n -m) •
Recall that by definition when α = 1/2, g ∈ C 1 (∂Ω) means that g is Lipschitz and when 1/2 < α < 1 and 2α = 1 + θ with 0 < θ < 1, g ∈ C 2α (∂Ω) means that g ∈ C 1 (∂Ω) and and ∇g is Hölder continuous of exponent θ on ∂Ω.

Let us give a rough idea of the proofs of these results. Idea of the proof of Theorem A: The general idea of the proof is inspired by [START_REF] Ko Lodziej | An inequality between complex hessian measures of Hölder continuous m-subharmonic functions and capacity[END_REF]. However, since our measure is not compactly supported nor of finite mass, we need to control the behaviour of the m-Hessian measure of ϕ close to the boundary. This will be done in several steps in section 3 and section 4.

-The first step is to estimate the mass of the m-Hessian measure σ m (ϕ) of a Hölder continuous m-subharmonic function ϕ in terms of its regularization ϕ δ on any compact set in Ω δ . This requires to consider the msubharmonic envelope of ϕ δ on Ω and provide a precise control on its m-Hessian measure (see Theorem 3.2).

-The second step is to estimate the mass of σ m (ϕ) on a compact set close to the boundary in terms of its Hausdorff distance to the boundary (see Lemma 4.1).

Idea of the proof of Theorem B: The proof will be in two steps.

-The first step relies on a standard method which goes back to [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF] (see also [START_REF] Guedj | A. Hölder continuous solutions to Monge-Ampère equations[END_REF]) in the case of the complex Monge-Ampère equation. This method consists in proving a semi-stability inequality estimating sup Ω (v -u) + in terms of (v -u) + L 1 (Ω,µ) , where u is the bounded m-subharmonic solution to the Dirichlet problem (1.1) and v is any bounded m-subharmonic function with the same boundary values as u, under the assumption that the measure µ is dominated by the m-Hessian capacity with an exponent τ > 1 (see Definition 2.18).

-The second step uses an idea which goes back to [START_REF] Demailly | Hölder Continuous Solutions to Monge-Ampère Equations[END_REF] in the setting of compact Kähler manifolds (see also [START_REF] Guedj | Degenerate complex Monge-Ampère equations[END_REF]). It has been also used in the local setting in [N18a] and [START_REF] Ko Lodziej | An inequality between complex hessian measures of Hölder continuous m-subharmonic functions and capacity[END_REF]. It consists in estimating the L 1 (µ)-norm of v -u in terms of the L 1 (λ 2n )-norm of (v -u) where u is the bounded solution to the Dirichlet problem and v is a bounded m-subharmonic function on Ω close to the regularization u δ of u. This step requires that the measure µ is well dominated by the m-Hessian capacity, which is precisely the content of our Theorem A. Then using the Poisson-Jensen formula as in [START_REF] Guedj | A. Hölder continuous solutions to Monge-Ampère equations[END_REF], we see that the L 1 -norm of (u δ -u) is O(δ 2 ) (see Lemma 2.3) and Lemma 2.5 allows us to finish the proof.

Preliminary results

In this section, we recall the basic properties of m-subharmonic functions and some results we will use throughout the paper.

2.1. Hessian potentials. For a hermitian n × n matrix a = (a j, k) with complex coefficients, we denote by λ 1 , • • • λ n the eigenvalues of the matrix a. For any 1 ≤ k ≤ n we define the k-th trace of a by the formula

s k (a) := 1≤j 1 <•••<j k ≤n λ j 1 • • • λ j k , which is the k-th elementary symetric polynomial of the eigenvalues (λ 1 , • • • , λ n ) of a.
Let C n (1,1) be the space of real (1, 1)-forms on C n with constant coefficients, and define the cone of m-postive (1, 1)-forms on C n by (2.1)

Θ m := {θ ∈ C n (1,1) ; θ ∧ β n-1 ≥ 0, • • • , θ m ∧ β n-m ≥ 0}. Definition 2.1. 1) A smooth (1, 1)-form θ on Ω is said to be m-postive on Ω if for any z ∈ Ω, θ(z) ∈ Θ m .
2) A function u : Ω → R ∪ {-∞} is said to be m-subharmonic on Ω if it is subharmonic on Ω (not identically -∞ on any component) and for any collection of smooth m-positive (1, 1)-forms θ 1 , ..., θ m-1 on Ω, the following inequality

dd c u ∧ θ 1 ∧ ...θ m-1 ∧ β n-m ≥ 0,
holds in the sense of currents on Ω.

We denote by SH m (Ω) the positive convex cone of m-subharmonic functions on Ω.

We give below the most basic properties of m-subharmonic functions that will be used in the sequel.

Proposition 2.2. 1. If u ∈ C 2 (Ω), then u is m-subharmonic on Ω if and only if (dd c u) k ∧ β n-k ≥ 0 pointwise on Ω for k = 1, • • • , m. 2. PSH(Ω) = SH n (Ω) SH n-1 (Ω) ... SH 1 (Ω) = SH(Ω). 3. SH m (Ω) ⊂ L 1 loc (Ω) is a positive convex cone. 4. If u is m-subharmonic on Ω and f : I → R is a convex,
increasing function on some interval containing the image of u, then f • u is m-subharmonic on Ω. 5. The limit of a decreasing sequence of functions in SH m (Ω) is msubharmonic on Ω when it is not identically -∞ on any component. 6. Let u ∈ SH m (Ω) and v ∈ SH m (Ω ), where

Ω ⊂ Ω. If u ≥ v on ∂Ω , then the function z → w(z) := max(u(z), v(z)) if z ∈ Ω u(z) if z ∈ Ω \ Ω is m-subharmonic on Ω.
Another ingredient which will be important is the regularization process. Let χ be a fixed smooth positive radial function with compact support in the unit ball B ⊂ C n and

C n χ(ζ)dλ 2n (ζ) = 1. For any 0 < δ < δ 0 := diam(Ω), we set χ δ (ζ) = 1 δ 2n χ( ζ δ ) and Ω δ = {z ∈ Ω; dist(z, ∂Ω) > δ}.
Let u ∈ SH m (Ω) ⊂ L 1 loc (Ω) and define its standard δ-regularization by the formula

(2.2) u δ (z) := Ω u(z -ζ)χ δ (ζ)dλ 2n (ζ), z ∈ Ω δ .
Then it is easy to see that u δ is m-subharmonic and smooth on Ω δ and decreases to u on Ω as δ decreases to 0.

The following lemma was proved in [START_REF] Guedj | A. Hölder continuous solutions to Monge-Ampère equations[END_REF].

Lemma 2.3. Let u ∈ SH m (Ω) ∩ L 1 (Ω)
. Then for 0 < δ < δ 0 , its δ-regularization extends to C n by the formula

(2.3) u δ (z) := Ω u(ζ)χ δ (z -ζ)dλ 2n (ζ), z ∈ C n ,
and have the following properties 1) u δ is a smooth function on C n which is m-subharmonic on Ω δ ; 2) (u δ ) decreases to u on Ω as δ decreases to 0 and

Ω δ (u δ (z) -u(z))dλ 2n (z) ≤ a n δ 2 Ω δ dd c u ∧ β n-1
where a n > 0 is a uniform constant independant of u and δ.

Let us introduce the notion of strongly m-pseudoconvexity that will be used in the sequel.

Definition 2.4. We say that the open set Ω is strongly m-pseudoconvex if Ω admits a defining function ρ which is smooth strictly m-subharmonic in a neighbourhood of Ω and |∇ρ| > 0 on ∂Ω = {ρ = 0}. In this case we can choose ρ so that

(2.4) (dd c ρ) k ∧ β n-k ≥ β n for 1 ≤ k ≤ m, pointwise on Ω.
The following lemma is analoguous to a lemma proved in [GKZ08] using mean values rather than convolution.

Lemma 2.5. Let Ω C n be a bounded domain and u ∈ SH(Ω) ∩ L ∞ ( Ω). Assume that u is Hölder continuous near ∂Ω with exponent α ∈]0, 1[. Then the following properties are equivalent:

(i) ∃c 1 > 0, u δ := u χ δ ≤ u + c 1 δ α in Ω δ , (ii) ∃c 2 > 0, sup B(z,δ) u ≤ u + c 2 δ α in Ω δ .
A similar lemma has been recently proved in the compact hermtian manifold setting in [START_REF] Lu | Stability and H loder continuity of solutions to complex Monge-Ampère equations on compact hermitian manifolds[END_REF]. A slight modification of the proof of [START_REF] Guedj | A. Hölder continuous solutions to Monge-Ampère equations[END_REF] with an observation from [START_REF] Lu | Stability and H loder continuity of solutions to complex Monge-Ampère equations on compact hermitian manifolds[END_REF] works also in our context as it is explained in [START_REF] Zeriahi | Remarks on the modulus of continuity of subharmonic functions[END_REF].

Remark 2.6. Recall that u is Hölder continuous near ∂Ω with exponent α ∈]0, 1] if there exists δ 1 > 0 small enough and a constant κ > 0 such that for any ζ ∈ ∂Ω and any 0

< δ < δ 1 , sup z∈Ω(ζ,δ) |u(z) -u(ζ)| ≤ κδ α , where Ω(ζ, δ) := Ω ∩ B(ζ, δ).
Assume that there exists two functions v, w defined and Hölder continuous with exponent α on a neighbourhood U of ∂Ω in Ω such that v ≤ u ≤ w on U and v = u = w on ∂Ω. Then u is Hölder continuous with exponent α near ∂Ω.

Complex Hessian operators.

Following [START_REF] Locki | Weak solutions to the complex Hessian equation[END_REF], we can define the Hessian operators acting on (locally) bounded m-subharmonic functions as follows. Given

u 1 , • • • , u k ∈ SH m (Ω) ∩ L ∞ (Ω) (1 ≤ k ≤ m), one can define inductively the following positive (m -k, m -k)-current on Ω dd c u 1 ∧ • • • ∧ dd c u k ∧ β n-m := dd c (u 1 dd c u 2 ∧ • • • ∧ dd c u k ∧ β n-m ).
In particular, if u ∈ SH m (Ω)∩L ∞ loc (Ω), the positive current (dd c u) m ∧ β n-m can be identifed to a positive Borel measure on Ω, the so called m-Hessian measure of u denoted by:

σ m (u) := (dd c u) m ∧ β n-m . Observe that when m = 1, σ 1 (u) = dd c u ∧ β n-1 is the Riesz measure of u (up to a positive constant), while σ n (u) = (dd c u) n is the complex Monge-Ampère measure of u.
It is then possible to extend Bedford-Taylor theory to this context. In particular, Chern-Levine Nirenberg inequalities hold and the Hessian operators are continuous under local uniform convergence and pointwise a.e. monotone convergence on Ω of sequences of functions in ]). We define E 0 m (Ω) to be the positive convex cone of negative functions φ ∈ SH - m (Ω) ∩ L ∞ (Ω) with zero boundary values such that

SH(Ω) ∩ L ∞ loc (Ω) (see [Bl05], [ Lu12 
Ω (dd c φ) m ∧ β n-m < +∞.
These are the "test functions" in m-Hessian Potential Theory integration by parts formula is valid for these functions. More generally it follows from [START_REF] Lu | Équations Hessiennes Complexes[END_REF][START_REF] Lu | A variational approach to complex Hessian equations in C n[END_REF] that the following property hlods:

if φ ∈ E 0 m (Ω) and u, v ∈ SH m (Ω) ∩ L ∞ (Ω) with u ≤ 0, then for 0 ≤ k ≤ m -1, (2.5) Ω (-φ)dd c u∧(dd c v) k ∧β n-k-1 ≤ Ω (-u)dd c φ∧(dd c v) k ∧β n-k-1 .
An important tool in the corresponding Potential Theory is the Comparison Principle.

Proposition 2.7. Assume that u, v ∈ SH m (Ω) ∩ L ∞ (Ω) and for any ζ ∈ ∂Ω, lim inf z→ζ (u(z) -v(z)) ≥ 0. Then {u<v} (dd c v) m ∧ β n-m ≤ {u<v} (dd c u) m ∧ β n-m . Consequently, if (dd c u) m ∧ β n-m ≤ (dd c v) m ∧ β n-m weakly on Ω, then u ≥ v on Ω.
It follows from the comparison principle that if the Dirichlet problem (1.1) admits a solution, then it is unique.

Let us recall the following estimates due to Cegrell ([Ceg04]) for the complex Monge-Ampère operators and extended by Charabati to complex Hessian operators ( [START_REF] Charabati | Modulus of continuity of solutions to complex Hessian equations[END_REF]).

Lemma 2.8. Let u, v, w ∈ E 0 m (Ω). Then for any 1 ≤ k ≤ m -1 Ω dd c u ∧ (dd c v) k ∧ (dd c w) m-k-1 ∧ β n-m ≤ I m (u) 1 m I m (v) k m I m (w) m-k-1 m , where I m (u) := Ω (dd c u) m ∧ β n-m . In particular, if Ω is strongly m-pseudoconvex, then Ω dd c u ∧ (dd c w) k ∧ β n-k-1 ≤ c m,n (I m (u)) 1 m (I m (w)) k m ,
and

Ω dd c u ∧ β n-1 ≤ c m,n (I m (u)) 1 m ,
where c m,n > 0 is a uniform constant.

The following consequence will be useful in the sequel. This result is usually stated for plurisubharmonic functions on a bounded domain with boundary values 0. Let us give a more general version using Cegrell inequalities.

Corollary 2.9. Let Ω C n be a bounded strongly m-pseudoconvex

domain. Assume that u, v ∈ SH m (Ω) ∩ L ∞ (Ω) satisfy u ≤ v on Ω and for any ζ ∈ ∂Ω, lim z→ζ (u(z) -v(z)) = 0. Then Ω (dd c v) m ∧ β n-m ≤ Ω (dd c u) m ∧ β n-m .
Proof. The proof is standard but let us repeat it here for the convenience of the reader. We can assume that I m (u) := Ω (dd c u) m ∧β n-m < +∞.

Let ρ : Ω -→] -∞, 0[ be a defining m-subharmonic function on a neighbourhood of Ω. In particular Ω (dd c ρ) m ∧ β n-m < +∞. For fixed ε > 0, the function u ε := u + ερ is a bounded m-subharmonic function such that u ε = v on ∂Ω and {u ε < v} = Ω.

Applying Proposition 2.7, we obtain

Ω (dd c v) m ∧ β n-m ≤ Ω (dd c u ε ) m ∧ β n-m .
Observe that

(dd c u ε ) m ∧β n-m = (dd c u) m ∧β n-m + m j=1 C j m ε j (dd c u) m-j ∧(dd c ρ) j ∧β n-m .
By Lemma 2.8, there exists a constant C > 0 depending on I m (u) and I m (ρ) such that for any 1 ≤ j ≤ m, we have

Ω (dd c u) m-j ∧ (dd c ρ) j ∧ β n-m ≤ C.
Therefore for any 0 < ε < 1,

Ω (dd c v) m ∧ β n-m ≤ Ω (dd c u) m ∧ β n-m + C2 m ε.
Letting ε → 0, we obtain the required inequality.

2.3. The bounded subsolution theorem. Let Ω C n be a bounded strongly m-pseudoconvex domain.

Assume there

exists v ∈ SH m (Ω) ∩ L ∞ (Ω) such that (2.6) µ ≤ (dd c v) m ∧ β n-m
on Ω and v| ∂Ω ≡ 0.

Ngoc Cuong Nguyen proved that under this condition, the Dirichlet problem (1.1) admits a unique bounded m-subharmonic solution (see [N12]).

Theorem 2.10. ([N12]). Let Ω C n be a bounded strongly m-pseudoconvex domain and µ a positive Borel measure on Ω satisfying the condition (2.6). Then for any g ∈ C 0 (∂Ω), there exists a unique

U = U g,µ ∈ SH m (Ω) ∩ L ∞ (Ω) such that (dd c U ) m ∧ β n-m = µ on Ω and U | ∂Ω ≡ g.
2.4. The viscosity comparison principle. In order to prove Theorem A, we will need to prove an important result (Theorem 3.2). The proof of this result uses the viscosity comparison principle which was established for complex Hessian equations by H.C. Lu ([Lu13]) in the spirit of the earlier work by P. Eyssidieux, V. Guedj and the second author on complex Monge-Ampère equations ( [START_REF] Eyssidieux | Viscosity solutions to degenerate complex Monge-Ampère equations[END_REF]).

To state this comparison principle we need some definitions.

Let Ω C n be a bounded domain and F : Ω × R -→ R a continuous function non-decreasing in the last variable.

Definition 2.11. Let u : Ω → R ∪ {-∞} be a function and q be a C 2 function in a neighborhood of z 0 ∈ Ω. We say that q touches u from above (resp. below) at z 0 if q(z 0 ) = u(z 0 ) and q(z) ≥ u(z) (resp. q(z) ≤ u(z)) for every z in a neighborhood of z 0 . Definition 2.12. An upper semicontinuous function u : Ω → R is a viscosity subsolution to the equation

(2.7) (dd c u) m ∧ β n-m = F (z, u)β n ,
if for any z 0 ∈ Ω and any C 2 function q which touches u from above at z 0 then σ m (q) ≥ F (•, q(z 0 ))β n , at z = z 0 . We will also say that σ m (u) ≥ F (•, u)β n in the viscosity sense at z 0 and q is an upper test function for u at z 0 . Definition 2.13. A lower semicontinuous function v : Ω → R is a viscosity supersolution to (2.7) if for any z 0 ∈ X and any C 2 function q which touches v from below at z 0 then

[(dd c q) m ∧ β n-m ] + ≤ F (z, q)β n , at z = z 0 .
Here [α m ∧ β n-m ] + is defined to be itself if α is m-positive and 0 otherwise. We will also say that σ m (v) + ≤ F (•, v)β n in the viscosity sense at z 0 and q is a lower test function for v at z 0 .

Remark 2.14. Theorem 2.17 ( [START_REF] Lu | Viscosity solutions to complex Hessian equations[END_REF]). Let u : Ω -→ R be a bounded viscosity subsolution and v : Ω -→ R be a viscosity supersolution of the equation

If v ∈ C 2 (Ω) then σ m (v) ≥ F (z, v)β n (resp. [σ m (v)] + ≤ F (z, v)β n ) holds
σ m (u) = F (•, u)β n , on Ω. If u ≤ v on ∂Ω then u ≤ v on Ω.
For more details on this theory we refer to [START_REF] Lu | Viscosity solutions to complex Hessian equations[END_REF] and [START_REF] Eyssidieux | Viscosity solutions to degenerate complex Monge-Ampère equations[END_REF] in the complex case and to [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for the real case.

2.5. Weak stability estimates. An important tool in dealing with our problems is the notion of capacity. This was introduced by Bedford and Taylor in their pionneer work for the complex Monge-Ampère operator (see [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF]). Let us recall the coresponding notion of capacity we will use here (see [START_REF] Lu | Équations Hessiennes Complexes[END_REF], [START_REF] Sadullaev | Capacities and Hessians in the class of msubharmonic functions[END_REF]). Let Ω

C n be a strongly mpseudoconvex domain. The m-Hessian capacity is defined as follows. For any compact set K ⊂ Ω,

Cap m (K, Ω) := sup{ K (dd c u) m ∧ β n-m ; u ∈ SH m (Ω), -1 ≤ u ≤ 0}.
We can extend this capacity as an outer capacity on Ω. Given a set S ⊂ Ω, we define the inner capacity of S by the formula Cap m (S, Ω) := sup{Cap m (K, Ω); K compact K ⊂ S}.

The outer capacity of S is defined by the formula

Cap * m (S, Ω) := inf{Cap m (U, Ω); U is open U ⊃ S}, It is possible to show that Cap * m (•, Ω
) is a Choquet capacity and then any Borel set B ⊂ Ω is capacitable and for any compact set K ⊂ Ω, (2.9)

Cap m (K, Ω) = Ω (dd c u * K ) m ∧ β n-m ,
where u K is the relative equilibrium potential of (K, Ω) defined by the formula : andu * K is its upper semi-continuous regularization on Ω (see [START_REF] Lu | Équations Hessiennes Complexes[END_REF]).

u K := sup{u ∈ SH m (Ω) ; u ≤ -1 K on Ω},
It is well knwon that u * K is m-subharmonic on Ω, -1 ≤ u * K ≤ 0, u * K = -1 quasi-everywhere (with respect to Cap m ) on Ω and u * K → 0 as z → ∂Ω (see [START_REF] Lu | Équations Hessiennes Complexes[END_REF]).

We will use the following definition.

Definition 2.18. Let µ be a positive Borel measure on Ω and let A, τ > 0 be positive numbers. We say that µ is dominated by the m-Hessian capacity with parameters (A, τ ) if for any compact subset

K ⊂ Ω with Cap m (K, Ω) ≤ 1, (2.10) µ(K) ≤ ACap m (K, Ω) τ .
Observe that by capacitability, this inequality is then satisfied for any Borel set K ⊂ Ω.

Let us mention that S. Ko lodziej was the first to relate the domination of the measure µ by the Monge-Ampère capacity to the regularity of the solution to complex Monge-Ampère equations (see [START_REF] Ko Lodziej | Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator[END_REF]).

Using his idea, Eyssidieux, Guedj and the second author were able to establish in [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF] a weak stability L 1 -L ∞ estimate for bounded solutions to the Dirichlet problem for the complex Monge-Ampère equation. This result is the main tool in deriving estimates on the modulus of continuity of solutions to the complex Monge-Ampère and Hessian equations.

The following examples are due to Dinew and Ko lodziej (see [START_REF] Dinew | A priori estimates for the complex Hessian equation[END_REF]).

Example 2.19. 1. Dinew and Kolodziej proved in [START_REF] Dinew | A priori estimates for the complex Hessian equation[END_REF] that the volume measure λ 2n is dominated by capacity. Namely for any 1 < r < m n-m , there exists a constant N (r) > 0 such that for any compact subset K ⊂ Ω, (2.11)

λ 2n (K) ≤ N (r)Cap m (K, Ω) 1+r .
Observe that this estimate is sharp in terms of the exponent when m < n. This can be seen by taking Ω = B the unit ball and K := Bs ⊂ B the closed ball of radius s ∈]0, 1[, since Cap m ( Bs , B) ≈ s 2(n-m) as s → 0 (see [START_REF] Lu | Équations Hessiennes Complexes[END_REF]). When m = n we know that the domination is much more precise (see [START_REF] Ahg | Partial Energy and Integrability Exponents[END_REF]). 2. Let 0 ≤ f ∈ L p (Ω) with p > n/m. Then n(p-1) p(n-m) > 1. By Hölder inequality and inequality (2.11) we obtain: for any 1 < τ < n(p-1) p(n-m) there exists a constant M (τ ) > 0 such that for any compact set K ⊂ Ω, (2.12)

K f dλ 2n ≤ M (τ ) f p Cap m (K, Ω) τ .
Theorem A will provide us with many new examples.

The condition (2.10) plays an important role in the following stability result which will be a crucial point in the proof of our theorems (see [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF][START_REF] Guedj | A. Hölder continuous solutions to Monge-Ampère equations[END_REF][START_REF] Charabati | Modulus of continuity of solutions to complex Hessian equations[END_REF]).

Proposition 2.20. Let µ be a positive Borel measure on Ω dominated by the m-Hessian capacity with parameters (A, τ ) such that τ > 1.

Then for any u, v ∈ SH m (Ω) ∩ L ∞ (Ω) such that (dd c u) m ∧ β n-m ≤ µ on Ω and lim inf ∂Ω (u -v) ≥ 0, we have

(2.13) sup Ω (v -u) + ≤ 2 (v -u) + 1/(m+1) 1,µ + C (v -u) + γ 1,µ ,
where (v -u) + 1,µ := Ω (v -u) + dµ and

(2.14)

C := 1 + 2 τ A 1 m 1 -2 1-τ , γ = γ(τ, m) := τ -1 τ (m + 1) -m •
Observe that the most relevant case in applications is when (vu) + 1,µ is small. So the right exponent is γ < 1/(m + 1).

Proof. The proof uses an idea which goes back to Ko lodziej ( [START_REF] Ko Lodziej | Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator[END_REF]) with some simplifications due to Guedj, Eyssidieux and the second author (see [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF][START_REF] Guedj | A. Hölder continuous solutions to Monge-Ampère equations[END_REF]). It relies on the following estimates : for any t > 0, s > 0 (2.15)

t m Cap m ({u < v -s -t}, Ω) ≤ {u<v-s} (dd c u) m ∧ β n-m .
Indeed let t > 0, s > 0 fixed and w ∈ SH m (Ω) be given such that -1 ≤ w ≤ 0. Then

{u -v < -s -t} ⊂ {u -v < tw -s} ⊂ {u -v < -s} Ω. It follows that t m {u-v<-s-t} (dd c w) m ∧ β n-m ≤ {u<v-s-t} (dd c (v + tw)) m ∧ β n-m ≤ {u<v+tw-s} (dd c (v + tw)) m ∧ β n-m .
On the other hand the comparison principle yields {u<v+tw-s}

(dd c (v + tw)) m ∧ β n-m ≤ {u<v+tw-s} (dd c u) m ∧ β n-m ≤ {u<v-s} (dd c u) m ∧ β n-m .
The last two inequalities imply (2.15).

Applying inequality (2.15) with the parameter (s/2, s/2) instead of (t, s) and taking into acount that u is a supersolution, we obtain

Cap m ({u < v -s}, Ω) ≤ 2 m s -m {u<v-s/2} (dd c u) m ∧ β n-m ≤ 2 m+1 s -m-1 Ω (v -u) + dµ. (2.16) Set s 0 := 2 (v -u) + 1/(m+1) 1,µ
. Then for any s ≥ s 0 , (2.17) Cap m ({u < v -s}, Ω) ≤ 1.

Fix ε > 0 and s ≥ 0. Then applying inequality (2.15) with s 0 + s + ε instead of s and taking into account the fact that (dd c u) m ∧ β n-m ≤ µ weakly on Ω, we get

(2.18) t m Cap m ({u < v -s 0 -ε -s -t}, Ω) ≤ {u<v-s 0 -ε-s} dµ. Set f (s) = f ε (s) := Cap m ({u -v < -s -s 0 -ε}, Ω) 1 m
. By (2.17), we have f (s) ≤ 1. Hence since µ is dominated by capacity, it follows that for any t > 0 and s > 0,

tf (s + t) ≤ A 1 m f (t) 1+a
, where a := τ -1 > 0.

It follows from [EGZ09, Lemma 2.4]) that f (s) = 0 for any s ≥ S ∞ where

S ∞ := 2A 1 m 1 -2 -a [f (0)] a , Thus v -u ≤ s 0 +ε+S ∞ quasi
everywhere on Ω and then the inequality holds everywhere on Ω i.e.

max(v -u) + ≤ s 0 + ε + 2A 1 m 1 -2 -a Cap m ({v -u > ε}, Ω) a
Applying (2.15) with t = ε and s = 0 we obtain

Cap m ({v -u > ε}, Ω) ≤ 2ε -m-1 (v -u) + 1,µ .
As a consequence of the previous estimate, we obtain sup

Ω (v -u) ≤ 2 (v -u) + 1/(m+1) 1,µ + ε + C ε -a(m+1) (v -u) + a 1,µ ,
where

C := 2 a+1 A 1 m 1-2 -a . Set ε := (v -u) + γ 1,µ , with γ := a 1+a(m+1) = τ -1 (τ -1)(m+1)+1 . Then sup Ω (v -u) + ≤ 2 (v -u) + 1/(m+1) 1,µ + C (v -u) + γ 1,µ ,
where

C := C + 1 = 1 + 2 a+1 A 1 m 1-2 -a = 1 + 2 τ A 1 m 1-2 1-τ .

Subharmonic envelopes and obstacle problems

Here we prove some results that will be used in the proof of the Theorem A. Since they are of independent interest, we will state them in the most general form and give complete proofs.

Subharmonic envelopes. Let Ω

C n and h : Ω -→ R is a non positive bounded Borel function and define the corresponding projection:

(3.1) h = P m,Ω (h) := (sup{v ∈ SH m (Ω); v ≤ h in Ω}) * .
Observe that we do not need to take the upper semi-continuous regularization if h is upper semi-continuous on Ω. On the other hand, we can easily see that P m,Ω (h) := sup{v ∈ SH m (Ω); v ≤ h quasi everywhere on Ω}, where v ≤ h quasi everywhere on Ω means that the exceptional set where v > h has zero c m -capacity. This is a classical construction in Potential Theory and has been considered in Complex Analysis first by H. Bremermann in [START_REF] Bremermann | On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of ilov boundaries[END_REF], J.B. Walsh in [START_REF] Walsh | Envelopes of plurisubharmonic functions[END_REF] and also by J. Siciak in [START_REF] Siciak | Extremal plurisubharmonic functions in C n[END_REF]. Later it has been studied by Bedford and Taylor when solving the Dirichlet problem for the the complex Monge-Ampère equation ([BT76], [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF]. In the setting of compact Kähler manifolds it has bee considered R. Berman and J.-P. Demailly in [START_REF] Berman | Regularity of plurisubharmonic upper envelopes in big cohomology classes[END_REF] and later in [START_REF] Berman | From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit[END_REF]. It has been also considered recently in [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF] in connexion with the supersolution problem for complex Monge-Ampère equations, where a precise estimate of its complex Monge-Ampère measure was given.

We will extend these last results to Hessian equations.

Lemma 3.1. Let Ω C n be a bounded strongly m-pseudoconvex domain and h a bounded lower semi-continuous function on Ω. Then the function h := P m,Ω (h) satisfies the following properties:

(i) h ∈ SH m (Ω) ∩ L ∞ (Ω), and h ≤ h a.e. on Ω;

(ii) if h is continuous on Ω, then h is continuous on Ω with a modulus of continuity κ h ≤ κ h and

(3.2) lim Ω z→ζ h(z) = h(ζ), ζ ∈ ∂Ω, (iii) Ω ( h -h)(dd c h) m ∧ β n-m = 0.
Proof. Observe that minΩ h ≤ h ≤ maxΩ h on Ω. 1. Property (i) follows from the general theory (see [START_REF] Lu | Équations Hessiennes Complexes[END_REF]). 2. Property (ii) can be proved using the perturbation method due to J.B. Walsh (see [START_REF] Walsh | Envelopes of plurisubharmonic functions[END_REF]). Let us recall the argument for completeness.

We first prove that h satisfies (3.2) meaning that it has boundary values equal to h and then it extends as a function on Ω which is continuous on ∂Ω. Indeed fix ε > 0 and let h be a C 2 approximating function on Ω such that h -ε ≤ h ≤ h on Ω. Let ρ be the strongly m-subharmonic defining function for Ω. Then there exists a constant A > 0 such that u := Aρ + h is m-subharmonic on Ω and u ≤ h ≤ h on Ω. Then by definition of the envelope, we have u ≤ h ≤ h on Ω. Therefore for any ζ ∈ ∂Ω,

h(ζ) -ε ≤ h (ζ) = lim Ω z→ζ u(z) ≤ lim inf Ω z→ζ h(z) ≤ lim sup Ω z→ζ h(z) ≤ h(ζ).
Since ε > 0 is arbitrary, we obtain the identity (3.2). We can then extend h to Ω by setting h(ζ) = h(ζ) for ζ ∈ ∂Ω. To prove the continuity of h on Ω, we use the perturbation argument of J.B. Walsh. Fix δ > 0 small enough, a ∈ C n and set Ω a := -a + Ω.

Observe that the (uniform) continuity of h = h on the boundary implies that for 0

< δ << 1, if |a| ≤ δ and z ∈ Ω ∩ ∂Ω a , we have h(z + a) = h(z + a) ≤ h(z) + κ h (δ).
Moreover since h is (uniformly) continuous on Ω, for any

z ∈ Ω ∩ Ω a |h(z + a) -h(z)| ≤ κ h (δ). Therefore the function defined by v(z) := max{ h(z), h(z + a) -κ h (δ)} if z ∈ Ω ∩ Ω a h(z) if z ∈ Ω \ Ω a
is m-subharmonic on Ω and satisfies v ≤ h on Ω. Therefore v ≤ h on Ω and then h(z + a) -κ h (δ) ≤ h(z) for any z ∈ Ω ∩ Ω a with |a| ≤ δ.

3. Property (iii) follows by a standard balayage argument in Potential Theory which goes back to Bedford and Taylor for the complex Monge-Ampère equation ([BT76], [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF], see also [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF]).

An obstacle problem.

Theorem 3.2. Let h ∈ C 2 ( Ω). Then h := P m,Ω h ∈ SH m (Ω) ∩ C 0 ( Ω) and its m-Hessian measure satisfies the following inequality :

(3.3) (dd c h) m ∧ β n-m ≤ 1 { h=h} σ + m (h), in the sense of currents on Ω.
Here for a function h ∈ C 2 ( Ω), we set

σ + m (h) := 1 G σ m (h), pointwise on Ω, where G is the set of points z ∈ Ω such that dd c h(z) ∈ Θ m i.e. the (1, 1)-form dd c h(z) is m-positive (see Definition 2.1).
Proof. To prove (3.3), we proceed as in [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF], using an idea which goes back to R. Berman [START_REF] Berman | From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit[END_REF].

Thanks to the property (ii) of Lemma 3.1, it is enough to prove that

(3.4) (dd c h) m ∧ β n-m ≤ σ + m (h), in the sense of currents on Ω.
We procced in two steps: 1) Assume first that Ω is smooth strongly m-pseudoconvex and h ∈ C 2 ( Ω) and consider the following Dirichlet problem for the complex m-Hessian equation depending on the parameter j ∈ N,

(3.5) (dd c u) m ∧ β n-m = e j(u-h) σ + m (h), u = h in ∂Ω.
By [START_REF] Lu | Viscosity solutions to complex Hessian equations[END_REF], for each j ∈ N, there exists a unique continuous solution u j ∈ SH m (Ω) ∩ C 0 (Ω) to this problem (see also [START_REF] Charabati | Modulus of continuity of solutions to complex Hessian equations[END_REF]).

Our goal is to prove that the sequence (u j ) j∈N increases to h uniformly on Ω. We argue as in [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF] with obvious modifications. Recall h is C 2 in Ω. Then by definition h is a viscosity supersolution to the Dirichlet problem (3.5). Moreover by Proposition 2.16, u j is a viscosity subsolution to the Dirichlet problem (3.5). By the viscosity comparison principle Theorem 2.17, we conclude that u j ≤ h in Ω since u j = h on ∂Ω.

Therefore the pluripotential comparison principle Proposition 2.7 implies that (u j ) is an increasing sequence. On the other hand, by Theorem 2.10 there exists a bounded m-subharmonic function ψ on Ω which is a solution to the complex Hessian equation σ m (ψ) = e ψ-h σ + m (h) with ψ = h on ∂Ω. Moreover for any j ∈ N, one can easily check that the function defined by the formula

ψ j := (1 -1/j) h + (1/j)(ψ -m log j)
is a (pluripotential) subsolution to the equation (3.5), since h ≤ h on Ω. Hence by Proposition 2.7 we have ψ j ≤ u j on Ω.

Summarizing we have proved that for any j ∈ N, ψ j ≤ u j ≤ h on Ω. Therefore 0 ≤ h -u j ≤ h -ψ j = (1/j)( h -ψ + m log j) on Ω for any j ∈ N * . This proves that u j converges to h uniformly on Ω. Then since u j ≤ h on Ω, taking the limit as j → +∞ in (3.5) we obtain inequality (3.4) by the continuity of the Hessian operators for uniform convergence (see [START_REF] Lu | Équations Hessiennes Complexes[END_REF]).

2) For the general case of a bounded m-hyperocnvex domain, we approximate Ω by an increasing sequence (Ω j ) j∈N of smooth strongly m-pseudoconvex domains such that for any j ∈ N, Ω j+1 ⊂ Ω j and Ω = ∪ j∈N Ω j . Then it is easy to see that the sequence (P m,Ω h j ) decreases to P m,Ω h on Ω (see [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF]). Thus the result follows from the previous case by the continuity of the Hessian operator for monotone sequences.

It's worth mentioning that these envelopes have been considered by Berman and Demailly in the context of compact Kähler manifolds where they proved that if h is C 2 then P (h) is C 1,1 and equality holds in (3.3), which means that P (h) is a solution to an obstacle problem (see [START_REF] Berman | Regularity of plurisubharmonic upper envelopes in big cohomology classes[END_REF]).

We can address a similar question.

Question : Is it true that h is C 1,1 locally on Ω when h is C 2 on Ω ? Is there equality in (3.3) ?

Corollary 3.3. Let Ω C n be a strongly m-pseudconvex domain. Let u ∈ SH m (Ω) a negative m-subharmonic function. Then there exists a decreasing sequence (u j ) of continuous m-subharmonic functions on Ω with boundary values 0 which converges pointwise to u on Ω.

Proof. We can assume that u is bounded on Ω and extend it as a semi-continous function on Ω. Let (h j ) j∈N be a decreasing sequence of smooth functions in a neighbourhood of Ω which converges to u in Ω. For each j ∈ N, consider the m-subharmonic envelope v j := P Ω h j on Ω and set u j := max{v j , jρ} on Ω, where ρ is a continuous m-subharmonic defining function for Ω. Then by Lemma 3.1, by the Lemma (u j ) is a decreasing sequence of continuous m-subharmonic functions on Ω which converges to u on Ω.

Applying the smoothing method of Richberg it is possible to construct a decreasing sequence of smooth m-subharmonic functions on Ω which converges to u in Ω (see [P14]).

Hessian measures of Hölder continuous potentials

In this section we will prove two important results which will be used in the proof of the main theorems stated in the introduction. 4.1. Hessian mass estimates near the boundary. Here we prove a comparison inequality which seems to be new even in the case of a complex Monge-Ampère measure.

Lemma 4.1. Let Ω

C n be a bounded strongly m-pseudoconvex domain and ϕ ∈ SH m (Ω) ∩ C α ( Ω) (0 < α ≤ 1) with ϕ ≡ 0 on ∂Ω. Then for any Borel set K ⊂ Ω, we have

K (dd c ϕ) m ∧ β n-m ≤ κ m [δ K (∂Ω)] mα Cap m (K, Ω),
where δ K (∂Ω) := sup z∈K dist(z; ∂Ω).

The constant δ K (∂Ω) is the Hausdorff distance of K to the boundary in the sense that δ K (∂Ω) ≤ ε means that K is contained in the εneighbourhood of ∂Ω.

The relevant point here is that the estimate takes care of the behaviour at the boundary. It shows in particular that if the volume of the compact set is fixed, the capacity tends to +∞ when the compact set approaches the boundary at a rate controlled by the Hausdorff distance of the compact to the boundary.

Proof. By inner regularity, we can assume that K ⊂ Ω is compact. Since ϕ is Hölder continuous on Ω, we have ϕ(ζ) -ϕ(z) ≤ κ|ζ -z| α for any ζ ∈ ∂Ω and any z ∈ Ω.

Fix a compact set K ⊂ Ω. Since ϕ = 0 in ∂Ω, it follows that for any

z ∈ K, -ϕ(z) ≤ κ [dist(z, ∂Ω)] α ≤ κ [δ K (∂Ω)
] α =: a. Therefore the function v := a -1 ϕ ∈ SH m (Ω) and v ≤ 0 on Ω and v ≥ -1 in K. Fix ε > 0 and let u K be the relative extremal m-subharmonic function of (K, Ω). Then

K ⊂ {(1 + ε)u * K < v} ∪ {u K < u * K }. Since the set {u K < u *
K } has zero m-capacity (see [START_REF] Lu | Équations Hessiennes Complexes[END_REF]), it follows from the comparison principle that for any ε > 0,

K (dd c v) m ∧ β n-m ≤ {(1+ε)u * K <v} (dd c v) m ∧ β n-m ≤ (1 + ε) m {(1+ε)u * K <v} (dd c u * K ) m ∧ β n-m ≤ (1 + ε) m Cap m (K, Ω).
The last inequality follows from (2.9). The estimate of the Lemma follows by letting ε → 0.

4.2. Hölder continuity of Hessian measures. In order to prove the Hölder continuous subsolution theorem we need an additional argument following an idea which goes back to [START_REF] Demailly | Hölder Continuous Solutions to Monge-Ampère Equations[END_REF] and used in a systematic way in [N18a] (see also [START_REF] Ko Lodziej | An inequality between complex hessian measures of Hölder continuous m-subharmonic functions and capacity[END_REF]). Given a continuous function g ∈ C 0 (∂Ω) and a real number R > 0, we denote by E g m (Ω, R) the convex set of bounded m-subharmonic functions v on Ω such that v = g on ∂Ω normalized by the mass condition Ω (dd c v) m ∧ β n-m ≤ R.

In order to prove Theorem B, we will need the following Lemma:

Lemma 4.2. Let ϕ ∈ E 0 m (Ω) ∩ C α (Ω) (0 < α ≤ 1) and g ∈ C 0 (∂Ω) and R > 0. Then for any 1 ≤ k ≤ m, there exists C k = C(k, m, Ω, R) > 0 such that for every u, v ∈ E g m (Ω, R) (4.1) Ω |u -v|(dd c ϕ) k ∧ β n-k ≤ C k [ u -v 1 ] α k , provided that u -v 1 := Ω |u -v|dλ 2n ≤ 1, where α k := α k 2 -k .
Proof. Recall the following notation for the complex Hessian measure of ϕ: σ k (ϕ) := (dd c ϕ) k ∧ β n-k 1 ≤ k ≤ m. We can assume that u ≥ v, since max{u, v} ∈ E g m (Ω) and |u -v| = (max{u, v} -u) + (max{u, v} -v). Moreover by the comparison principle, for any ε > 0, u ε := max{u, v -ε} ∈ E g m (Ω, R). Therefore, replacing u by u ε , we can assume that u = v near the boundary.

On the other hand by approximation on the support S of u-v which is compact, we can assume that u and v are smooth on a neighbourhood of S.

We will argue by induction on k. For k = 0, the inequality is obviously satisfied with C 0 = 1.

Assume that the inequality holds for some integer 0 ≤ k < m i.e.

(4.2)

Ω (u -v)σ k (ϕ) ≤ C k [ u -v 1 ] α k .
We will show that there exists C k+1 > 0 such that

Ω (u -v)σ k+1 (ϕ) ≤ C k+1 [ u -v 1 ] α k+1 .
We will approximate ϕ by smooth functions. We first extend ϕ as a Hölder continuous function on C n . Indeed recall that for any z, ζ ∈ Ω, we have ϕ(z) ≤ ϕ(ζ) + κ|z -ζ| α . Then it is easy to see that the following function

(4.3) φ(z) := sup{ϕ(ζ) -κ|z -ζ| α ; ζ ∈ Ω}, z ∈ C n .
is Hölder continuous of order α on C n and φ = ϕ on Ω. For simplicity, we will denote this extension by ϕ.

Then we denote by ϕ δ the smooth approximants of ϕ on C n , obtained by the formula (2.3).

Then by Lemma 2.3 for 0

< δ < δ 0 , ϕ δ ∈ SH m (Ω δ ) ∩ C ∞ (C n ).
To prove the required estimate, we write

Ω (u -v)(dd c ϕ) k+1 ∧ β n-k-1 = A + B,
where

A := Ω (u -v)dd c ϕ δ ∧ (dd c ϕ) k ∧ β n-k-1 , and 
B := Ω (u -v)dd c (ϕ δ -ϕ) ∧ (dd c ϕ) k ∧ β n-k-1 .
We estimate each term separately. Fix 0 < δ < δ 0 . Since ϕ is Hölder continuous, we have |ϕ δ (z) -ϕ(z)| ≤ κδ α for any z ∈ Ω.

Moreover, differentiating the formula (2.2), we obtain for z ∈ Ω, (4.4) dd c ϕ δ (z) ≤ M 1 κδ α δ 2 β, where M 1 > 0 depends only on Ω and χ.

By (4.4) and (4.2), we have

(4.5) |A| ≤ M 1 κδ α δ 2 Ω (u -v)σ k (ϕ) ≤ M 1 C k κδ α-2 C k [ u -v 1 ] α k .
To estimate B, observe that, since u -v = 0 near the boundary, we can integrate by parts to get the following formula

B = Ω (ϕ -ϕ δ )dd c (u -v) ∧ (dd c ϕ) k ∧ β n-k-1 , and then |B| ≤ Ω |ϕ δ -ϕ|dd c (u + v) ∧ (dd c ϕ) k ∧ β n-k-1 . Therefore since |ϕ δ -ϕ| ≤ κδ α on Ω, it follows that (4.6) |B| ≤ (I k (u, ϕ) + I k (v, ϕ)) κδ α , where I k (u, ϕ) := Ω dd c u ∧ (dd c ϕ) k ∧ β n-k-1 .
Observe that by Lemma 2.8 and the normalization mass condition, it follows that there exists a constant d(m, n) > 0 such that for any

1 ≤ k ≤ m, I k (u, ϕ) + I k (v, ϕ) ≤ d(m, n).
Combining this with the inequalities (4.5) and (4.6), we obtain for 0 < δ < δ 0 ,

Ω (u -v)σ k+1 (ϕ) ≤ M 1 C k κδ α-2 [ u -v 1 ] α k + d(m, n)κδ α . Since [ u -v 1 ≤ 1., we can take δ = δ 0 [ u -v 1 ] α k < δ 0 the last inequality to obtain Ω (u -v)σ k+1 (ϕ) ≤ (M 1 C k + d(m, n)) κ [ u -v 1 ] α k α = C k+1 [ u -v 1 ] α k+1 ,
where α k+1 := α k (α/2).

It is an open problem to know the precise modulus of continuity of the Hessian measure σ m (ϕ) acting on the space of normalized msubharmonic potentials E g m (Ω, R) ⊂ L 1 (Ω, λ 2n ). We also don't know if the lemma is true when the total mass of the Hessian measure σ m (ϕ) on Ω is infinite.

Proofs of the main results

In this section we will give the proofs of Theorem A and Theorem B stated in the introduction using the previous results. 5.1. Proof of Theorem A. For the proof of Theorem A, we will use the same idea as [START_REF] Ko Lodziej | An inequality between complex hessian measures of Hölder continuous m-subharmonic functions and capacity[END_REF]. However, since our measure has not a compact support, we need to use the control on the behaviour of the mass of the m-Hessian of the subsolution close to the boundary, given by Lemma 4.1.

Proof. We extend ϕ as a Hölder continuous function on the whole of C n with the same exponent and denote by ϕ the extension (see (4.3)). Then denote by ϕ δ (0 < δ < δ 0 ) the smooth approximants of ϕ on Ω defined as usual by the formula (2.3). Then we know that ϕ δ ∈ SH m (Ω δ ) ∩ C ∞ (C n ).

We consider the m-subharmonic envelope of ϕ δ on Ω defined by the formula ψ δ := sup{ψ ∈ SH m (Ω); ψ ≤ ϕ δ on Ω}• It follows from Lemma 3.1 that ψ δ ∈ SH m (Ω) and ψ δ ≤ ϕ δ on Ω.

Fix 0 < δ < δ 0 and a compact set K ⊂ Ω δ and consider the set E := {3κδ α u * K + ψ δ < ϕ -2κδ α } ⊂ Ω. Since ϕ is Hölder continuous on Ω, we have ϕ -κδ α ≤ ϕ δ ≤ ϕ + κδ α on Ω and then ϕ -κδ α ≤ ψ δ ≤ ϕ δ ≤ ϕ(z) + κδ α on Ω. Therefore lim inf z→∂Ω (ψ δ -ϕ + κδ α ) ≥ 0, and then E Ω. By the comparison principle, we conclude that Since ϕ is Hölder continuous on Ω, we have (5.3) dd c ϕ δ ≤ M 1 κδ α δ 2 β, on Ω, where M 1 > 0 is a uniform contant depending only on Ω.

Hence by Theorem 3.2, we have

(5.4) (dd c ψ δ ) m ∧ β n-m ≤ (σ m (ϕ δ )) + ≤ M m 1 κ m δ mα δ 2m β n ,
in the sense of currents on Ω. Therefore E (dd c ψ δ ) m ∧ β n-m ≤ M m 1 κ m δ m(α-2) λ 2n (E).

From this estimate and the inequalities (5.2) and (5.4), we deduce that (5.5) where C (m, n, α) > 0 is a positive constant which can be made explicity using the proof in [START_REF] Guedj | A. Hölder continuous solutions to Monge-Ampère equations[END_REF]. This proves the Hölder continuity of u on Ω.

  on Ω in the viscosity sense iff it holds in the usual sense.Definition 2.15. A continuous function u : Ω → R is a viscosity solution to (2.7) if it is both a subsolution and a supersolution.The first important result in this theory compares the viscosity and potential subsolutions.

  Proposition 2.16 ([START_REF] Lu | Viscosity solutions to complex Hessian equations[END_REF]). Let u be a bounded upper semi-continuous function in Ω. Then the inequality(2.8) σ m (u) ≥ F (•, u)β nholds in the viscosity sense on Ω if and only if u is m-subharmonic and (2.8) holds in the potential sense on Ω.Now we can state the viscosity comparison principle.

E

  (dd c ϕ) m ∧ β n-m ≤ E (dd c (3κδ α u * K + ψ δ )) m ∧ β n-m ≤ 3κLδ α E (dd c (u * K + ψ δ )) m ∧ β n-m (5.1) + E (dd c ψ δ ) m ∧ β n-m , where L := max 0≤j≤m-1 (3κδ α 0 ) j . Observe that -1 + ϕ -κδ α ≤ u * K + ψ δ ≤ ϕ + κδ α on Ω, hence |u * K + ψ δ | ≤ sup Ω |ϕ| + 1 + κ δ α 0 =: M 0 on Ω.Therefore from inequality (5.1), it follows that (5.2)E (dd c ϕ) m ∧ β n-m ≤ 3κδ α LM m 0 Cap m (E, Ω) + E (dd c ψ δ ) m ∧ β n-m .

E.

  (dd c ϕ) m ∧ β n-m ≤ 3κδ α LM m 0 Cap m (E, Ω) + M m 1 κ m δ (α-2)m λ 2n (E).on ∂Ω, it follows thatu δ (z) ≤ w δ (z) ≤ w(z) + κ w δ α ≤ w(ζ) + 2κ w δ α = v(ζ) + 2κ w δ α ≤ v(z) + (κ v + 2κ w )δ α ≤ u(z) + κδ α ,where κ := κ v + 2κ w and κ v (resp. κ w ) is the Hölder constant of v (resp. w). This proves our claim. Therefore the following functionũδ := max{u δ -κδ α , u} on Ω δ , u on Ω \ Ω δis m-subharmonic and bounded on Ω and satisfies 0≤ ũδ (z) -u(z) = (u δ (z) -u(z) -κδ α ) + ≤ u δ (z) -u(z) for z ∈ Ω δ and ũδ (z) -u(z) = 0 on Ω \ Ω δ .Moreover, since ũδ ≥ u on Ω and ũδ = u on Ω \ Ω δ , Corollary 2.9 implies thatΩ δ (dd c ũδ ) m ∧ β n-m ≤ Ω δ (dd c u) m ∧ β n-m .Hence for any 0 < δ < δ 0 , we haveΩ (dd c ũδ ) m ∧ β n-m ≤ µ(Ω) < ∞.Since ũδ ≥ u on Ω, Proposition 2.20 implies that for any 0 < γ < γ(m, n, α) := mα m(m+1)α+2(n-m) , there exists a constant D γ > 0 such that any 0 < δ < δ 0 , (5.14) supΩ (ũ δ -u) ≤ D γ Ω (ũ δ -u)dµ γOn the other hand, since µ ≤ (dd c ϕ) m ∧ β n-m on Ω, it follows from Theorem A that we can apply Lemma 4.2 and get for 0 < δ < δ 0 ,Ω (ũ δ -u)dµ ≤ C m Ω (ũ δ -u)(z)dλ(z) αm ≤ C m Ω δ (u δ (z) -u(z)dλ(z) αm .By Lemma 2.3, the previous inequality implies that (5.15)Ω (ũ δ -u)dµ ≤ C m (B ∆u Ω δ 2 ) αm .Since max{u δ -κδ α , u} -u ≤ u δ -u on Ω, it follows from the equations (5.14) and (5.15) thatsup Ω δ (u δ -u) ≤ sup Ω (ũ δ -u) + κδ α ≤ C γ m D γ (B ∆u Ω δ 2 ) γαm + κδ α .By Lemma 2.8, we have ∆u Ω ≤ c m,n µ(Ω) 1/m < +∞. Then for 0 < δ < δ 0 , supΩ δ (u δ -u) ≤ C (m, n, α)δ 2γαm .Since 2γα m < α, it follows by Lemma 2.5 that for 0 < δ < δ 0 and z ∈ Ω δ , supB(z,δ)u ≤ u(z) + C (m, n, α)δ 2γαm ,
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By the volume-capacity comparison inequality (2.11), it follows that for any fixed 1 < r < m n-m , there exists a constant N (r) > 0 such that (5.6) λ 2n (E) ≤ N (r)[Cap m (E, Ω)] 1+r .

Since E ⊂ {u * K < -1/3}, by the comparison principle we deduce the following inequality

Therefore if we set c m (•) := Cap m (•, Ω), we finally deduce from (5.5), (5.6) and (5.7) that for a fixed 0 < δ < δ 0 and any compact set K ⊂ Ω δ , we have (5.8)

where C 0 := 3 m+1 LM m 0 and C 1 := M m 1 3 mr N (r). By inner regularity of the capacity, we deduce that the previous estimate holds for any Borel subset B ⊂ Ω δ i.e.

(5.9)

Let K ⊂ Ω be any fixed compact set and 0 < δ < δ 0 . Then

We will estimate each term separately. By (5.9) the first term is estimated easily:

To estimate the second term we apply Lemma 4.1 for the Borel set

Therefore we obtain the following estimate. For any 0 < δ < δ 0 and any compact set K ⊂ Ω, we have (5.10)

We want to optimize the right hand side of (5.10) by taking δ :=

(2-α)m+α , then by Lemma 4.1 we get

(2-α)m+α in inequality (5.10) and get (5.12)

Combining inequalities (5.11 ) and (5.12), we obtain the estimate of the theorem with the constant A given by the following formula:

(5.13)

5.2. Proof of Theorem B. Now we are ready to prove Theorem B from the introduction using Theorem A and Lemma 4.2.

Proof. According to Theorem 2.10, we know that there is a unique

in the weak sense on Ω and u = g on ∂Ω.

To complete the proof we need to show that u is Hölder continuous up to the boundary.

For 0 < δ < δ 0 and denote as before by u δ (z) the δ-regularization of u. Recall that u δ is m-subharmonic on Ω δ .

We construct a global m-subharmonic function ũδ which is close to u δ on Ω δ .

By [N14] there exists a continuous maximal m-subharmonic function w ∈ SH(Ω) ∩ C α ( Ω) such that w = g on ∂Ω. Then v := w + ϕ ∈ SH(Ω) ∩ C α ( Ω) is a subsolution to the Dirichlet problem (1.1) such that v = g on ∂Ω. Hence v ≤ u ≤ w. To prove Hölder continuity on Ω, it's enoug by Lemma 2.5 to estimate u δ := u χ δ on Ω δ .

We claim that there exists a constant κ > 0 such that for z ∈ ∂Ω δ , we have u(z) ≥ u δ (z) -κδ α . Indeed fix z ∈ ∂Ω δ . Then there exists ζ ∈ ∂Ω such that |z -ζ| = δ. Since v ≤ u ≤ w on Ω and they are equal