This is the supporting information of the submitted version of the following article:
Sayed-Ahmad-Baraza, Y.; Ewels, C. P. Stability, Structure and Reconstruction of 1H-Edges in MoS 2 . Chemistry - A European Journal 2020, 26, 6686-6693.

DOI: 10.1002/chem. 202000399
which has been published in final form at https://doi.org/10.1002/chem.202000399.

Supporting Information
 Stability, structure and reconstruction of 1 H -edges in MoS_{2}

Yuman Sayed-Ahmad-Baraza, ${ }^{[a]}$ and Christopher P. Ewels* ${ }^{* a]}$
[a] Dr Yuman Sayed-Ahmad-Baraza, Dr Christopher Ewels
Institut des Matériaux Jean Rouxel, CNRS UMR6502, Université de Nantes, 2 Rue de la Houssinière, BP32229, 44322 Nantes, France
E-mail: chris.ewels@cnrs-imn.fr

Contents

Mo-100\%S configurations (Figures S1-S6)
Mo-50\%S configurations (Figure S7 \& Table S1) 8
Ribbon models (Figure S-8)

Mo-100\%S configurations (Figures S1-S6)

Figure S1 Top and side views of Mo-100\%S (VD). Grey dashed lines indicate the length of the simulation cell. Atomic distances are in Angstroms. Mo-Mo and Mo-S bulk values are $3.13 \AA$ and 2.39 Å respectively. Atom colour code: blue-green (Mo), yellow (S), red (edge S).

Figure S2 Top and side views of Mo-100\%S (HD-O). Grey dashed lines indicate the length of the simulation cell. Atomic distances are in Angstroms. Mo-Mo and Mo-S bulk values are $3.13 \AA$ and 2.39 Å respectively. Atom colour code: blue-green (Mo), yellow (S), red (edge S).

Figure S3 Top and side views of Mo-100\%S (HD-S). Grey dashed lines indicate the length of the simulation cell. Atomic distances are in Angstroms. Mo-Mo and Mo-S bulk values are $3.13 \AA$ and 2.39 Å respectively. Atom colour code: blue-green (Mo), yellow (S), red (edge S).

Figure S4 Top and side views of Mo-100\%S (R1). Grey dashed lines indicate the length of the simulation cell. Atomic distances are in Angstroms. Mo-Mo and Mo-S bulk values are 3.13 Å and 2.39 Å respectively. Atom colour code: blue-green (Mo), yellow (S), red (edge S).

Figure S5 Top and side views of Mo-100\%S (R2). Grey dashed lines indicate the length of the simulation cell. Atomic distances are in Angstroms. Mo-Mo and Mo-S bulk values are $3.13 \AA$ and $2.39 \AA$ respectively. Atom colour code: blue-green (Mo), yellow (S), red (edge S).

Figure S6 Top and side views of Mo-100\%S (R3). Grey dashed lines indicate the length of the simulation cell. Atomic distances are in Angstroms. Mo-Mo and Mo-S bulk values are 3.13 A and 2.39 Å respectively. Atom colour code: blue-green (Mo), yellow (S), red (edge S).

Figure S7 Top view of the Mo-50\%S edge optimised structures for the different ribbon models presenting $S-0 \% S(\mathbf{a})$ and $S-50 \% S(b)$ as the opposite edge. For each supercell size ($L=1,2,3$ and 4) a different structure, matching the periodicity of the supercell, is found and is labelled as $1 X, 2 X, 3 X$ and 4 X respectively. The size of the unit cell is indicated by dashed lines. The bonds are coloured according to their length; with red (magenta) and blue (green) representing compressed and elongated Mo-Mo (Mo-S) bonds with respect to the bond distances in the infinite single-layer model (white). A colour key is presented for both $\mathrm{Mo}-\mathrm{Mo}$ and $\mathrm{Mo}-\mathrm{S}$ bonds with the absolute and relative distances indicated in the left and right part of each key respectively. Asymmetric S-bridges are indicated with arrows situated on the S atoms pointing to the edge direction for which they are displaced with respect to a symmetric situation. The relative energy per f.e.u. with respect to the 1X models for each type of ribbon (\mathbf{a} and \mathbf{b}), is indicated. In both cases the most stable model (enclosed in a brown box) is the one with $3 X$ periodicity.

Supporting Information

Table S1 Bond angles and distances of the optimised Mo-50\%S edge models composed of reconstructed S-bridges $\left(\mathrm{S}_{\mathrm{B}}\right)$, for the structures obtained using cells of different length (L). The angles and distances presented correspond to the first row of S and Mo atoms at the edge: -(Mo-S $)_{L}$. The bridges involved in the geometry parameters are specified with labels A-D as indicated in Figure S7. Values expressed without (with) parenthesis refer to models presenting in the opposite side of the ribbon the $\mathrm{S}-0 \% \mathrm{~S}\left(\mathrm{~S}-50 \% \mathrm{~S}\right.$ edge). Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are indicated by two and three atomic element symbols connected respectively.

L	S_{B}	Mo-Mo	Mo-S	Mo-S-Mo	$\mathrm{S}_{\mathrm{B}}-\mathrm{S}_{\mathrm{B}}$	S-S	$\mathrm{S}_{\mathrm{B}}-\mathrm{S}_{\mathrm{B}}-\mathrm{S}_{\mathrm{B}}$	S-S-S
1	A	$\begin{array}{r} 3.127 \\ (3.127) \end{array}$	$\begin{array}{r} 2.360 \\ (2.359) \end{array}$	$\begin{array}{r} 83.0 \\ (83.0) \end{array}$	A-A	$\begin{array}{r} 3.127 \\ (3.127) \end{array}$	A-A-A	$\begin{array}{r} 180.0 \\ (180.0) \end{array}$
2	A (out)	$\begin{array}{r} 2.884 \\ (2.923) \end{array}$	$\begin{array}{r} 2.331 \\ (2.334) \end{array}$	$\begin{array}{r} 76.4 \\ (77.6) \end{array}$	A-B	$\begin{array}{r} 3.130 \\ (3.129) \end{array}$	A-B-A	$\begin{array}{r} 174.7 \\ (175.7) \end{array}$
	B (in)	$\begin{array}{r} 3.370 \\ (3.331) \end{array}$	$\begin{array}{r} 2.385 \\ (2.380,2.381) \end{array}$	$\begin{array}{r} 89.9 \\ (88.8) \end{array}$	B-A	$\begin{array}{r} 3.130 \\ (3.129) \end{array}$	B-A-B	$\begin{array}{r} 174.7 \\ (175.7) \end{array}$
3	A (out)	$\begin{array}{r} 2.926 \\ (2.924) \end{array}$	$\begin{array}{r} 2.298,2.389 \\ (2.298,2.391) \end{array}$	$\begin{array}{r} 77.2 \\ (77.1) \end{array}$	A-B	$\begin{array}{r} 3.175 \\ (3.175) \end{array}$	A-B-C	$\begin{array}{r} 172.9 \\ (172.8) \end{array}$
	B (in)	$\begin{array}{r} 3.530 \\ (3.533) \end{array}$	$\begin{array}{r} 2.397 \\ (2.397) \end{array}$	$\begin{array}{r} 94.8 \\ (95.0) \end{array}$	B-C	$\begin{array}{r} 3.175 \\ (3.175) \end{array}$	B-C-A	$\begin{array}{r} 176.4 \\ (176.4) \end{array}$
	C (out)	$\begin{array}{r} 2.926 \\ (2.924) \end{array}$	$\begin{array}{r} 2.298,2.389 \\ (2.298,2.391) \end{array}$	$\begin{array}{r} 77.2 \\ (77.1) \end{array}$	C-A	$\begin{array}{r} 3.043 \\ (3.043) \end{array}$	C-A-B	$\begin{array}{r} 176.4 \\ (176.4) \end{array}$
4	A (out)	$\begin{array}{r} 2.890 \\ (2.930) \end{array}$	$\begin{array}{r} 2.356,2.313 \\ (2.370,2.310) \end{array}$	$\begin{array}{r} 76.5 \\ (75.5) \end{array}$	A-B	$\begin{array}{r} 3.164 \\ (3.180) \end{array}$	A-B-C	$\begin{array}{r} 173.0 \\ (173.0) \end{array}$
	B (in)	$\begin{array}{r} 3.492 \\ (3.510) \end{array}$	$\begin{array}{r} 2.394 \\ (2.390) \end{array}$	$\begin{array}{r} 93.7 \\ (94.4) \end{array}$	B-C	$\begin{array}{r} 3.165 \\ (3.180) \end{array}$	B-C-D	$\begin{array}{r} 174.7 \\ (175.4) \end{array}$
	C (out)	$\begin{array}{r} 2.890 \\ (2.930) \end{array}$	$\begin{array}{r} 2.356,2.313 \\ (2.370,2.310) \end{array}$	$\begin{array}{r} 76.5 \\ (75.4) \end{array}$	C-D	$\begin{array}{r} 3.097 \\ (3.080) \end{array}$	C-D-A	$\begin{array}{r} 176.5 \\ (177.8) \end{array}$
	D (in)	$\begin{array}{r} 3.236 \\ (3.140) \end{array}$	$\begin{array}{r} 2.376 \\ (2.370) \end{array}$	$\begin{array}{r} 85.8 \\ (83.1) \end{array}$	D-A	$\begin{array}{r} 3.096 \\ (3.080) \end{array}$	D-A-B	$\begin{array}{r} 174.7 \\ (175.4) \end{array}$

Ribbon models (Figure S-8)

Figure S8 Top views of representative examples of complete ribbon models used in this work for the study of Mo-100\%S and Mo-50\%S edges. All Mo-100\%S models have been studied using 4×8 ribbon presenting an opposite edge with a S-0\%S configuration frozen in the bulk atomic positions. For the models with a Mo- 50% S edge ribbon models of $W=10$ with different cell sizes ($L=1-4$) have been used. In this case both S-0\%S and S-50\%S configurations have been used as opposite edge. Atoms enclosed in an orange box have been kept frozen during the geometry optimisation at the bulk positions. Atom colour code: blue-green (Mo), yellow (S), red (edge S).

