
HAL Id: hal-02553519
https://hal.science/hal-02553519

Preprint submitted on 9 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using containers for data analysis
G. Henning

To cite this version:

G. Henning. Using containers for data analysis. 2020. �hal-02553519�

https://hal.science/hal-02553519
https://hal.archives-ouvertes.fr

Using containers for data analysis Greg Henning

1

Using containers for data analysis

Author: Greg Henning1 (Université de Strasbourg, CNRS, IPHC UMR 7178)

Created: April 24th, 2020

Description: this paper describes how one can use container (in particular with
docker) to perform data analysis, distribute analysis code,...

A full version of this document, with examples is available online at
https://gitlab.in2p3.fr/gregoire.henning/docker-for-research/

Motivation

Development environment for data analysis is usually based on a unix system, mostly linux.
Several linux distributions are specifically tailored for scientific purposes: Scientific Linux,
Fedora Scientific CentOs and Cern Linux, BSD, ...

However, for pratical purpose, the users may prefer more general distributions like Ubuntu,
or even different OS such as MacOS and Windows.

The issue of having a unified environnement for data analysis inside a collaboration between
teams, labs, ... arises naturally from this situation.

Even for a simple few-people team, computing environnement can be diverse between the
experimental setup, user laptop and desktop computers, and grid infrastructure to run large
scale analysis.

In the following paper, I'll discuss mostly the situation of a user running linux software on a
windows computer, as it qualifies as the worst combination.

The two objective aimed here are:

• running linux softwares on a non-linux system

• having a defined, reproducible and distribuable environnement for development and
execution of an analysis code.

1 ghenning@iphc.cnrs.fr

https://gitlab.in2p3.fr/gregoire.henning/docker-for-research/
https://www.scientificlinux.org/
https://fedoraproject.org/wiki/Scientific_Spin
https://www.centos.org/
http://linux.web.cern.ch/linux/centos7/
https://www.freebsd.org/

Using containers for data analysis Greg Henning

2

Possibles solutions

Connecting to a linux machine

The easiest way to run a linux environnement on a windows machine is to install and run a
remote desktop or secured connection client (e.g. ssh) on the client computer and connect to
the linux host.

This method has the interest of simpicity, but requires a connection to the host, and does not
provide a specific environnement for developpement and execution, unless the host is
specifically setup to that end.

Cygwin

The cygwin environnement for windows is a suite of native windows softwares and libraries
that runs a POSIX compatible system. With Cygwin, it's possible to compile and run your
software as-if it were on a linux system. However it is not a linux emulator and not all the
applications written for linux will compile and run with cygwin.

Virtual machine

A virtual machine (such as VMware or Virtual Box) emulates the full computer system on top
of the running operating system. This solution allows the user to define the available
memory, CPU, ... of the virtual machine. Any system can then be installed as on a real
computer.

https://www.cygwin.com/
https://www.vmware.com/
https://www.virtualbox.org/

Using containers for data analysis Greg Henning

3

This solution offers the possibility of a very precisely defined and reproducible
environnement as the virtual machine and installed OS can be chosen. However it is not very
efficient for several reasons:

• the whole computer has to be emulated, which costs a lot of memory and CPU on the
host

• File exchange can be tricky between the host and the virtual machine

• The virtual machine system takes up to several tens of Giga-Bytes of space on the disk

• It is not possible (unless putting in place specifi strategies for that) to restart the virtual
machine to its initial state after each run, neither it is simple to run several instance of
the same virtual machine in parrallel.

Windows Subsystem for Linux

The Windows Subsystem for Linux (WSL) is available on Windows 10 and offer a linux kernel
for the windows OS (natively running for WSL2, emulated in its first version).

https://docs.microsoft.com/en-us/windows/wsl/about

Using containers for data analysis Greg Henning

4

This allows the Windows user to run linux distributions with ease and minimal overhead
compared to a virtual machine. Some out-of-the-box distributions are available in the
windows store, such as Ubuntu, SUSE, debian, Kali, ...

However, some disadvantages of virtual machines exist also: the installed distribution
behave like the installed system on a virtual machine: only one instance can be runned and it
can't be reset to an intial state.

Docker and containers

Many of these drawbacks are solved by the use of containers.

What is a container ?

A container is an environnement that runs a specific set of codes, with a given set of libraries
and parameters.

The basis for a container is an image that contains all the code, its dependencies and settings
needed. However it does not contain the underlying running system as it is the case for a
virtual machine.

When the inage is run by an engine, the container runs on top of the operating system, but
isolated from it (hence the name container). This means that the container will have its own
environment and run only within it, while drawing on the computer capabilities of the host.

The image is the starting point and can be run multiple times in parrallel. Every new instance
of the container will be separated from the others and from previous execution. Because of
that, containers are widely used in web application backends.

As the image contains only the code of interest and not the OS ones (which are taken care of
by the engine), the image file is smaller than a full virtual machine disk. Still, it can contains
parameters, libraries, ... and therefore all the needed files to reproduce the system on any

Using containers for data analysis Greg Henning

5

instance of the engine. Thanks to that, it allows a great deal of uniformity to execute the code
even on a diverse set of underlying infrastuctures.

Docker and other container engines

Docker is a widely used container engine (or runner). It does all the necessary tasks to run
the image with the appropriate containerization. One task of a container engine is to allow
network or file exchange with the host, so that the running application within the container
con be used with external control.

Other container engines exist, such as Singularity or LXD, but we will discuss only docker
here. Most of the examples given below can be transposed in some way to another container
runner.

Rather than giving a detailed documentation of Docker, I will present a few use cases.

Use cases

Now that containers have been introduced, let us discuss some use-cases in order to illustrate
the interest of using such tool.

LATEX

Installing LATEX on windows can be tedious (not outrageously so, but still more complex than
apt install latex on Ubuntu). But one can easily use a docker image ready for latex and
simply run it with docker to convert .tex files to pdf on demand.

https://www.docker.com/
https://sylabs.io/guides/3.5/user-guide/
https://linuxcontainers.org/lxd/introduction/

Using containers for data analysis Greg Henning

6

We actually don't need to get inside the container, we just pass a command to docker and it
is exectuted within the container, then the container simply exits.

dir src
docker run --rm -v %cd%\src:/media/usb -w="/media/usb" texlive/texlive-full l
atex -interaction=batchmode document.tex
docker run --rm -v %cd%\src:/media/usb -w="/media/usb" texlive/texlive-full l
atex -interaction=batchmode document.tex
docker run --rm -v %cd%\src:/media/usb -w="/media/usb" texlive/texlive-full d
vipdfm document.dvi
dir src

(replace %cd% with `pwd` when using a bash-like shell instead of windows' batch).

The command is divided in several parts:

• docker run calls docker and tells it to run a container.

• --rm tells docker to clear (remove) the container after running (otherwise, its state is
saved and one can go back to it later).

• -v %cd%\src:/media/usb mounts the host directory %cd% (i.e. the current working
directoty) onto the container's /media/usb point

• -w="/media/usb" tells docker that the working directory on the container will be
/media/usb

• texlive/texlive-full is the name of the image to fetch from the image repository
and run in the container

• latex -interaction=batchmode document.tex and dvipdfm document.dvi are the
command to run in the container.

The first time the image is used to run a container, docker will fetch it from the docker hub.
The iamge is fetched by parts, because the images are built by adding layers on top of each
other. We will see in the next example how we can create our own image by adding some
libraries to an existing one.

Note that the command docker run ... latex document.tex is called twice because that's
the needed number for latex to proplery build section indexing.

The latex compilation files appear directly and instantly in the directory, since there's no
virtualization layers between the container and the host: latex runs directly on the files.

Test this in the latex directory of the examples

Fortran

It can happen that you have to use some tools written in Fortran. As for other languages,
installing and running a fortran compiler on Windows can be tricky. The easiest way to

https://hub.docker.com/search?q=&type=image
file:///C:/Users/ghenning/ownCloud/2020/article-use-docker-for-research/examples/latex

Using containers for data analysis Greg Henning

7

compile such software is therefore to start a container dedicated to fortran compilation. Once
the code is compiled it can be run from inside the container.

In this example, we will use the ruler program provided by tha IAEA as part of the ENSDF
Analysis and Utility Programs.

We will also create our own fortran-dedicated image to be run in a container. To that end,
we start by writing a Dockerfile:

FROM alpine:3.11.5

RUN apk add gfortran wget

RUN adduser --disabled-password --gecos '' fortran
USER fortran
WORKDIR /home/fortran/

CMD ["/bin/sh"]

We then create the docker image with

docker build -t myfortran:001 .

The image is built (i.e. the commands are executed and the resulting image is kept to be
launch in a container on demand) and saved under the name and tag myfortran:001.

We can now launch the image in a interactive container (i.e. we well be able to type
commands in the shell).

> docker run --rm -ti -v %cd%:/home/fortran/work myfortran:001

And now, we can download, compile and run the fortran software:

~ $ cd work
~/work $ wget --user-agent="Mozilla/4.0 (Windows; MSIE 7.0; Windows NT 5.1; S
V1; .NET CLR 2.0.50727)" --no-check-certifi
cate --no-cache --no-cookies https://www-nds.iaea.org/public/ensdf_pgm/analys
is/ruler/ruler-src-2019-01-24.zip
--2020-03-17 06:01:41-- https://www-nds.iaea.org/public/ensdf_pgm/analysis/r
uler/ruler-src-2019-01-24.zip
Resolving www-nds.iaea.org... 104.20.23.134, 104.20.22.134, 2606:4700:10::681
4:1686, ...
Connecting to www-nds.iaea.org|104.20.23.134|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 239955 (234K) [application/zip]
Saving to: 'ruler-src-2019-01-24.zip'

ruler-src-2019-01-24.zip 100%[==
=======>] 234.33K --.-KB/s in 0.06s

2020-03-17 06:01:44 (3.81 MB/s) - 'ruler-src-2019-01-24.zip' saved [239955/23

https://www-nds.iaea.org/public/ensdf_pgm/
https://www-nds.iaea.org/public/ensdf_pgm/

Using containers for data analysis Greg Henning

8

9955]

~/work $ unzip ruler-src-2019-01-24.zip
Archive: ruler-src-2019-01-24.zip
 creating: ruler-src/
 inflating: ruler-src/howto.txt
 inflating: ruler-src/Makefile
 inflating: ruler-src/nsdflib95.f
 inflating: ruler-src/ruler.ens
 inflating: ruler-src/ruler.f
 inflating: ruler-src/ruler1.rpt-0
 inflating: ruler-src/ruler1.tti
 inflating: ruler-src/ruler1.tto-0
 inflating: ruler-src/ruler2.out-0
 inflating: ruler-src/ruler2.prob-0
 inflating: ruler-src/ruler2.rpt-0
 inflating: ruler-src/ruler2.tti
 inflating: ruler-src/ruler2.tto-0
 inflating: ruler-src/ruler3.ens
 inflating: ruler-src/ruler3.out-0
 inflating: ruler-src/ruler3.prob-0
 inflating: ruler-src/ruler3.rpt-0
 inflating: ruler-src/ruler3.tti
 inflating: ruler-src/ruler3.tto-0
~/work $ cd ruler-src/
~/work/ruler-src $ gfortran ruler.f nsdflib95.f -o ruler
~/work/ruler-src $./ruler <ruler1.tti

 RULER Version 4.1a [19-Nov-2017]
 Modified by F.G. Kondev (ANL) on 12/12/11

 INPUT DATA FILE (DEF: ruler.inp): OUTPUT REPORT FILE (DEF: r
uler.rpt): Mode of Operation
 (R-Compare to RULs,B-Calculate BELW,BMLW)? Assumed DCC theory
(Bricc-1.4%, Hsicc-3%, Other-?) - CURRENT DATA SET: 228TH ADOPTED LEVELS,
GAMMAS
 CURRENT DATA SET: 228TH 228AC B- DECAY
 CURRENT DATA SET: 228TH 228PA EC DECAY
 CURRENT DATA SET: 228TH 232U A DECAY
 CURRENT DATA SET: 228TH 226RA(A,2NG)
 CURRENT DATA SET: 228TH 230TH(P,T)
 NO GAMMAS EXPECTED
 CURRENT DATA SET: 228TH 230TH(A,A 2NG)

 Program completed successfully
~/work/ruler-src $ diff ruler1.rpt ruler1.rpt-0
--- ruler1.rpt
+++ ruler1.rpt-0
@@ -1,5 +1,5 @@

Using containers for data analysis Greg Henning

9

-RULER Version 4.1a [19-Nov-2017] RUN ON 17-Mar-
2020
+RULER Version 4.1a [19-Nov-2017] RUN ON 24-Jan-
2019

 Comparison to RUL s Mode
 INPUT FILE: ruler.ens
~/work/ruler-src $ echo "Done !"
Done !
~/work/ruler-src $ exit

The commands are listed in the commands.sh file of the example directory.

Dedicated softwares and libraries

Science and data analysis often comes with many dedicated softwares and libraries. Keeping
up with the versions, ... on a single machine can be tedisou. It's even harder - as mentionned
in the introduction - in a large collaboration where many team members have to use the same
environnement.

That's when docker (or containers) come in play and make everything simpler. Members of
the team just have to use the same image for their work and the homogenieity of software
and librabries environnement is assured.

Cern's Root

The largely used Root library has several versions with sometimes no backward compatibity
between major ones.

Docker can help for both cases: either to keep uptodate with the latest version without having
to reinstall or upgrade your own computer, or keeping one static version.

Unfortunately, there has not been any support for official root image for a while:
https://hub.docker.com/u/rootproject

A few basic images exist and can be used, but their intereste stays limited as a working image.
However, they can be used as basis for your own images.

If you want an image that can work for you out of the box, you can try unofficial ones. The
image akalinow/root-fedora31 works well and offer jupyterlab support, solving the issue
of display with a container (a container is intended to work as command line only or over
http connection).

file:///C:/Users/ghenning/ownCloud/2020/article-use-docker-for-research/examples/fortran/commands.sh
https://root.cern.ch/
https://hub.docker.com/u/rootproject

Using containers for data analysis Greg Henning

10

In general, it is better if you or your own collaboration designs its own image with the specific
tools needed, by building on top of existing ones.

Geant4

Like Root, there is no official image provided. An unofficial image for trainning purpose exist
at https://hub.docker.com/r/dplatten/geant4-educational with the issue of visualisation
solved thru the use of an RDP server running in the container to which you connect from
outside. It's an elegant solution, but makes the image quite large.

In the following, we will write our own docker file for a simple geant4 image.

Writing the Dockerfile

The Dockerfile will contain the following lines:

• FROM ubuntu:18.04 indicates that we are using ubuntu version 18.04 as basis for our
image.

https://hub.docker.com/r/dplatten/geant4-educational

Using containers for data analysis Greg Henning

11

• RUN apt-get update &&\
 apt-get install -y libxerces-c-dev qt4-dev-tools freeglut3-dev
libmotif-dev tk-dev cmake libxpm-dev libxmu-dev libxi-dev wget tar &&\
 apt-get clean : this updates the package list for the distribution, install the
needed libraries to build Geant4 and clean up. It is important to put all the commands
into one RUN line because each call to RUN creates a new layer in the image and potentially
increase the size of the final image. If we were to clean in a separate RUN line, the
previous layer would still contain the files cached by apt and the size of the final image
will not be reduced by the subsequent RUN apt-get clean call.

• RUN mkdir /geant4.setup && cd /geant4.setup && \
 wget http://cern.ch/geant4-data/releases/geant4.10.06.p01.tar.gz && \
 tar -xsf geant4.10.06.p01.tar.gz && \
 mkdir geant4-build && mkdir /geant4-install && \
 cd geant4-build && cmake -DCMAKE_INSTALL_PREFIX=/geant4-install -
DGEANT4_INSTALL_DATA=ON /geant4.setup/geant4.10.06.p01 && \
 make install && \
 cd / && rm -rf /geant4.setups
this series of command (again, put together to reduce the layer size) download the
geant4 installation package, unpack it, configure it, compile it, install it and clean up
the setup files.

• RUN useradd -m geant
USER geant
WORKDIR /home/geant/
Creates a user geant and setup the image to start running with the working directory
/home/geant and the user geant

• RUN echo "cd /geant4-install/bin; source geant4.sh" >>
/home/geant/.bashrc &&\
echo "clear;" >>/home/geant4.bashrc : Sets up the bash environnement for the
user geant so that it loads the PATHS needed for geant4 when starting a new bash
session.

• CMD ["/bin/bash"]: Sets /bin/bash as the entrypoint of the image, i.e. the command
that is run when starting a container.

The actual Dockerfile can be found here. It contains a few additionnal commands to make
the compilation easier.

The image building then is done by calling, from the directory where the dockerfile is,

docker built -t geant4:001 .

The different calls of RUN will then be executed. In particular, the compilation of the geant4
library will be done. It will take some time.

Once the image is built, you can verify it by calling

file:///C:/Users/ghenning/ownCloud/2020/article-use-docker-for-research/examples/geant4/Dockerfile

Using containers for data analysis Greg Henning

12

$ docker images
REPOSITORY TAG IMAGE ID CREATED
SIZE
alpine 3.11.5 a187dde48cd2 3 days ago
5.6MB
geant4 001 196bbfe60bfa 9 days ago
2.87GB
ubuntu 18.04 775349758637 4 months ago
64.2MB
faster 001 a9083b220ea6 3 months ago
389MB

We see that the size of the image is about 2.87 GB, most of it comes from the reactiond ata
bases used by Geant4.

Using the image

Now, we will start up an container using our new image and run an example of Geant4.

Start docker with

docker run --rm -ti geant4:001

We can now type the following commands in the bash terminal :

mkdir example
wget http://cern.ch/geant4-data/releases/geant4.10.06.p01.tar.gz
tar -xzf geant4.10.06.p01.tar.gz
cp -vr geant4.10.06.p01/examples/basic/B2 ./example/
rm -rf geant4.10.06.p01.tar.gz
cd example
mkdir B2-build
cd B2-build
cmake ../B2
make
cd B2a
ls -lsh
./exampleB2a run1.mac

This will download, prepare, compile and run an example script for Geant4. If it runs
correctly, that means our distribution is ready to be used to run our simulations.

Obviously, you may want to add to this Dockerfile, for example to add support for the Root
library...

Using a software distributed via linux package

Containers can also be a simple solution to use a software distributed via only one channel
(such as debian repository) on an a priori uncompatible system.

file:///C:/Users/ghenning/ownCloud/2020/article-use-docker-for-research/examples/geant4/commands.sh

Using containers for data analysis Greg Henning

13

For example, the faster acquisition system comes with some analysis tools that are
distributed uniquely as debian packages. That prevents anybody running Windows, MacOs
or a non-debian based flavor of Linux to use them... unless using containers.

It is very easy to create an image on which the package is installed and can be runned from:

FROM ubuntu:18.04

RUN apt-get update &&\
 apt-get install -y wget software-properties-common &&\
 apt-get clean

RUN wget -O - http://faster.in2p3.fr/distribution/fasterv2/fasterv2_repo_pgp_
pub_key.asc | apt-key add - && \
 apt-add-repository 'deb http://faster.in2p3.fr/distribution/fasterv2/ubun
tu/ bionic non-free' && \
 apt-key list && \
 apt-get update && \
 apt-get install -y fasterac &&\
 apt-get clean

RUN adduser --disabled-password --gecos '' faster
USER faster
WORKDIR /home/faster/

CMD ["/bin/bash"]

The image is built using docker build -t faster:001 . and then used as following for
example.

Start the container with

docker run -ti --rm -v %cd%:/home/faster/work faster:001

and type the following commands:

pwd
cd work
ls -lhs
faster_disfast -I 073_5650keV_0001.fast
exit

This allows you to use the faster tools on your local files as if you were on an Ubuntu 18.04
system.

Publishing your own application by distributing binaries without the source code

Finally, using images can be useful wif you want to distribute your software (with all its
dependencies) but not the source code. Evidently, it is strongly recommended to
distribute data and analysis source code openly as part of an Open Science startegy.
However, there are various good reasons why fully open distribution of your code is not

https://gitlab.in2p3.fr/snippets/493
file:///C:/Users/ghenning/ownCloud/2020/article-use-docker-for-research/examples/faster/commands.sh

Using containers for data analysis Greg Henning

14

possible (because you use restricted distribution dependencies, part of the code is not open,
...) in that case, distributing the final binary is a good alternative.

Building an image, one can compile a code in a controlled environnement and remove the
sources from the final image, effectively distributing a garantee-to-run binary without being
concerned with users not having the necessary libraries, ... (since they are all in the image).

In this example, we will compile a C++ code written to read faster files and extract data in
ascii formatted files and distribute it as an image. The code we use is not restricted in access,
although not yet openly distributed because it has to go thru additionnal testing before
release to the public.

The Dockerfile looks like this:

FROM gcc:9.3.0

COPY faster2h-c /setup
RUN ls -lhs && cd setup && ls -lhs &&\
 make binaries && ls -lhs &&\
 cp -v bin/faster2h.`hostname` /usr/bin/faster2h &&\
 cd / && rm -rf /setup
RUN adduser --disabled-password --gecos '' user
USER user
WORKDIR /home/user/

CMD ["/bin/bash"]

You see there that at the end of compilation, we rm -rf /setup to remove all source files.

The image can be used with docker run --rm -ti -v %cd%/work:/home/user/work
distrib:001 (from the examples/distrib directory), and launch as a test:

cd work
faster2h --conf=etc/the.config --map=etc/the.map --input=data/test_0001.fast

And it should work perfectly...

Discussion

Now that we looked at a few example of how containers can be used to run your projects,
let's considere the pros and cons.

Containers allow a controlled environnement to be run in a consistent way one different
platforms (Windows, MacOs, Linux, ...) with all the dependincies and needed libraries
contained in the image. It's a great opportunity for open science, open source (even with the
source code, having a ready-made environnement where to run the code is nice). It is likely
to be the basis of distributed grid job submission in the future.

file:///C:/Users/ghenning/ownCloud/2020/article-use-docker-for-research/examples/distrib

Using containers for data analysis Greg Henning

15

On the other hand, one still have to install the proper container runner on the host machine,
which may require special permission that normal users don't have. Using plenty of images
and containers may accumulate junk (dead container, unused images, ...) on the host
computer. Also, the average user may not know how to write aproper Dockerfile for his
needs. Additionnaly, there are several container runners avaialble (docker, singularity, ...)
and even if they have some cross compatibility, they are not used the same way.

Perspectives

One thing to look forward in container runners close future is the distirbution of Window's
WSL2 (Windows subsystem for linux 2). As the first version relied on an emulated linux
kernel, WSL2 will provide a native Linux kernel on the Windows host. This will speed up the
execution, faciliate file access, ...

Large computing infracstructures such as Open Science grid and EGI are starting to integrate
containers running in their job submission (more or less easily). It is certain than in the
future, any job launch on a grid will include the name of an image to run the job on.

Finally, people developping code in Github or a Gitlab use docker images to run their CI/CD
(Continuous Integration/Continuous Deployment) jobs.

Conclusion

Containers offer the ability to define and distribute a consistent and uniform software
environnement accross teams and machines in order to facilitate research work. The
container images can be tailored to your own need and include all necessary software,
libraries and dependencies needed to run the analysis work associated. Containers are ideal
for deployement of code in multiple, parallel tasks that need to run the same environnement.

https://docs.microsoft.com/en-us/windows/wsl/wsl2-install
https://docs.microsoft.com/en-us/windows/wsl/wsl2-install
https://opensciencegrid.org/
https://www.egi.eu/
https://github.com/
https://about.gitlab.com/
https://docs.gitlab.com/ee/ci/

