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Quantifying predictive uncertainty using belief
functions: different approaches and practical
construction

Thierry Denœux

Abstract We consider the problem of quantifying prediction uncertainty using the
formalism of belief functions. Three requirements for predictive belief functions are
reviewed, each one of them inducing a distinct interpretation: compatibility with
Bayesian inference, approximation of the true distribution, and frequency calibra-
tion. Construction procedures allowing us to build belief functions meeting each of
these three requirements are described and illustrated using simple examples.

1 Introduction

Statistical prediction is the task of making statements about a not-yet-observed re-
alization y of a random variable Y , based on past observations x. An important issue
in statistical prediction is the quantification of uncertainty. Typically, prediction un-
certainty has two components:

1. Estimation uncertainty, arising from the partial ignorance of the probability dis-
tribution of Y , and

2. Random uncertainty, due to the variability of Y .

If the distribution of Y is completely known, there is no estimation uncertainty. If Y
is a constant, there is no random uncertainty: this is the case in parameter estimation
problems. In all practical problems of interest, both sources of uncertainty coexist,
and should be accounted for in the prediction method.

In this paper, we assume the past data X and the future data Y to be independent,
and we consider sampling models X ∼ PX (·;θ) and Y ∼ PY (·;θ), where θ is a pa-
rameter known only to belong to some set Θ . The sample spaces of X and Y will be
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denoted by X and Y , respectively. To keep the exposition simple, we will assume
Y to be a real random variable, with Y ⊆ R.

The statistical prediction problem is treated differently in the Bayesian and fre-
quentist frameworks. Here, we briefly outline the main approaches within each of
these two frameworks.

Bayesian approach

In the Bayesian framework, X , Y and θ are considered as random variables. A
Bayesian posterior predictive distribution FB(y|x) can then be computed from the
conditional distribution F(y|x;θ) = F(y|θ) by integrating out θ ,

FB(y|x) =
∫

F(y|θ)p(θ |x)dθ , (1)

where p(θ |x) is the posterior density of θ . The main limitation of this approach is
the necessity to specify a prior distribution p(θ) on θ . In many cases, prior knowl-
edge on θ is either nonexistent, or too vague to be reliably described by a single
probability distribution.

Frequentist approach

In the frequentist framework, the prediction problem can be addressed in several
ways. The so-called plug-in approach is to replace θ in the model by a point esti-
mate θ̂ and to estimate the distribution of Y by PY (·; θ̂). This approach amounts to
neglecting estimation uncertainty. Consequently, it will typically underestimate the
prediction uncertainty, unless the sample size is very large. Another approach is to
consider prediction intervals [L1(X),L2(X)] such that the coverage probability

CP(θ) = PX ,Y (L1(X)≤ Y ≤ L2(X);θ) (2)

has some specified value, perhaps approximately. The coverage probability can take
any value only if Y is continuous; consequently, we often make this assumption
when using this approach. Confidence intervals do account for estimation and pre-
diction uncertainty, but they do not provide any information about the relative plau-
sibility of values inside or outside that set. To address the issue, we may consider
one-sided confidence intervals (−∞,Lα(X)] indexed by α ∈ (0,1), such that

CP(θ) = PX ,Y (Y ≤ Lα(X);θ) (3)

is equal to α , at least approximately. Then, we may treat α-prediction limits Lα(x)
as the α-quantiles of some predictive distribution function F̃p(y|x) [2, 16]. Such
a predictive distribution is not a frequentist probability distribution; rather, it can
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be seen as a compact way of describing one or two-sided (perhaps, approximate)
prediction intervals on Y at any level.

In all the approaches summarized above, uncertainty about Y is represented ei-
ther as a set (in the case of prediction intervals), or as a probability distribution (such
as a frequentist or Bayesian predictive distribution). In this paper, we consider ap-
proaches to the prediction problem where uncertainty about Y is represented by a be-
lief function. In Dempster-Shafer theory, belief functions are expressions of degrees
of support for statements about the unknown quantity under consideration, based on
evidence. Any subset A ⊆ Y can be canonically represented by a belief function,
and any probability measure is also a particular belief function: consequently, the
Dempster-Shafer formalism is more general and flexible than the set-membership
or probabilistic representations. The problem addressed in this paper is to exploit
this flexibility to represent the prediction uncertainty on Y based on the evidence of
observed data x.

The interpretation of a predictive belief function will typically depend on the
requirements imposed on the construction procedure. There is, however, no general
agreement as to which properties should be imposed. The purpose of this paper is
to review some desired properties, and to describe practical construction procedures
allowing us to build predictive belief functions that verify these properties. As we
shall see, three main properties have been proposed in previous work, resulting in
three main types of predictive belief functions.

The rest of this paper is organized as follows. Some general definitions and re-
sults related to belief functions are first recalled in Section 2. The requirements are
then presented in Section 3, and construction procedures for the three types of pre-
dictive belief functions considered in this paper are described in Section 4. Section 5
contains conclusions.

2 Background on belief functions

In this section, we provide a brief reminder of the main concepts and results from
the theory of belief functions that will be used in this paper. The definitions of belief
and plausibility functions will first be recalled in Section 2.1. The connection with
random sets will be explained in Section 2.2, and Dempster’s rule will be introduced
in Section 2.4.

2.1 Belief and plausibility functions

Let Ω be a set, and B an algebra of subsets of Ω . A belief function on (Ω ,B) is a
mapping Bel : B→ [0,1] such that Bel( /0) = 0, Bel(Ω) = 1, and for any k ≥ 2 and
any collection B1, . . . ,Bk of elements of B,
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Bel
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)
. (4)

Given a belief function Bel, the dual plausibility function Pl : B→ [0,1] is de-
fined by Pl(B) = 1−Bel(B), for any B ∈B. In the Dempster-Shafer theory of be-
lief functions [22], Bel(B) is interpreted as the degree of support in the proposition
Y ∈ B based on some evidence, while Pl(B) is a degree of consistency between that
proposition and the evidence.

If the inequalities in (4) are replaced by equalities, then Bel is a finitely additive
probability measure, and Pl = Bel. If the evidence tells us that Y ∈ A for some
A ∈B, and nothing more, then it can be represented by a function BelA that gives
full degree of support to any B ∈B such that B⊆ A, and zero degree of support to
any other subset. It can easily be verified that BelA is a belief function. If A = Ω , the
belief function is said to be vacuous: it represent complete ignorance on Y .

Given two belief functions Bel1 and Bel2, we say that Bel1 is less committed than
Bel2 if Bel1 ≤ Bel2; equivalently, Pl1 ≥ Pl2. The meaning of this notion is that Bel1
represents a weaker state of knowledge than that represented by Bel2.

2.2 Connection with random sets

A belief function is typically induced by a source, defined as a four-tuple (S ,A ,P,Γ ),
where S is a set, A an algebra of subsets of S , P a finitely additive probability
measure on (S ,A ), and Γ a mapping from S to 2Ω . The mapping Γ is strongly
measurable with respect to A and B if, for any B ∈B, we have

{s ∈S |Γ (s) 6= /0,Γ (s)⊆ A} ∈A .

We can then show [19], that the function Bel defined by

Bel(B) =
P({s ∈S |Γ (s) 6= /0,Γ (s)⊆ B})

P({s ∈S |Γ (s) 6= /0})
, (5)

for all A⊆B is a belief function. The dual plausibility function is

Pl(B) =
P({s ∈S |Γ (s)∩B 6= /0})

P({s ∈S |Γ (s) 6= /0})
. (6)

The mapping Γ is called a random set. We should not, however, get abused by the
term “random”: most of the time, the probability measure P defined on (S ,A ) is
subjective, and there is no notion of randomness involved.
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2.3 Consonant random closed sets

Let us assume that Ω = Rd and B = 2Ω . Let π be an upper semi-continuous map
from Rd to [0,1], i.e., for any s ∈ [0,1], the set sπ

def
= {x ∈ Rd |π(x) ≥ s} is closed.

Furthermore, assume that π(x) = 1 for some x. Let S = [0,1], A be the Borel σ -field
on [0,1], µ the uniform measure, and Γ the mapping defined by Γ (s) = sπ . Then
Γ is a random closed set [20]. We can observe that its focal sets are nested: it is
said to be consonant. The plausibility function is then a possibility measure [25],
and π is the corresponding possibility distribution. Function Pl can be computed as
Pl(B) = supx∈B π(x), for any B⊆ Rd . In particular , Pl{x}= π(x) for all x ∈Ω .

2.4 Dempster’s rule

Assume that we have two sources (Si,Ai,Pi,Γi) for i= 1,2, where each Γi is a multi-
valued mapping from Si to 2Ω , and each source induces a belief function Beli on Y .
Then, the orthogonal sum of Bel1 and Bel2, denoted as Bel1⊕Bel2 is induced by the
source (S1×S2,A1⊗A2,P1⊗P2,Γ∩), where A1⊗A2 is the tensor product algebra
on the product space S1×S2, P1⊗P2 is the product measure, and Γ∩(s1,s2) =
Γ1(s1)∩Γ2(s2). This operation is called Dempster’s rule of combination [7]. It is the
fundamental operation to combine belief functions induced by independent pieces
of evidence in Dempster-Shafer theory.

3 Predictive belief functions

In this paper, we are concerned with the construction of predictive belief functions
(PBF), i.e., belief functions that quantify the uncertain on future data Y , given the
evidence of past data x. This problem can be illustrated by the following examples,
which will be used throughout this paper.

Example 1 We have observed the times between successive failures of an air-
conditioning (AC) system, as shown in Table 1 [21]. We assume the time ξ between
failures to have an exponential distribution E (θ), with cdf

F(ξ ;θ) =
[
1− exp(−θx)

]
I(ξ ≥ 0),

where θ is the rate parameter. Here, the past data x = (ξ1, . . . ,ξn) is a realization
of an iid sample X = (Ξ1, . . . ,Ξn), with Ξi ∼ E (θ), and Y is a random variable
independent from X, also distributed as E (θ). Based on these data and this model,
what can we say about the time to the next failure of the system? �

Example 2 The data shown in Figure 1(a) are annual maximum sea-levels recorded
at Port Pirie, a location just north of Adelaide, South Australia, over the period
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Table 1 Times between successive failures of an air-conditioning system, from [21].

23 261 87 7 120 14 62 47 225 71
246 21 42 20 5 12 120 11 3 14
71 11 14 11 16 90 1 16 52 95

1923-1987 [5]. The probability plot in Figure 1(b) shows a good fit with the Gumbel
distribution, with cdf

FX (ξ ;θ) = exp

(
−exp

(
−ξ −µ

σ

))
, (7)

where µ is the mode of the distribution, σ a scale parameter, and θ = (µ,σ). Sup-
pose that, based on these data, we want to predict the maximum sea level Y in the
next m= 10 years. Assuming that the distribution of sea level will remain unchanged
in the near future (i.e., neglecting, for instance, the effect of sea level rise due to cli-
mate change), the cdf of Y is

FY (y;θ) = FX (y;θ)m = exp

(
−mexp

(
−y−µ

σ

))
. (8)

The parameter θ is unknown, but the observed data provides information about it.
How to represent this information, so as to quantify the uncertainty on Y ? What can
be, for instance, a sound definition for the degree of belief in the proposition Y ≥ 5?
�
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Fig. 1 Annual maximum sea-levels recorded at Port Pirie over the period 1923-1987 (a), and
probability plot for the Gumbel fit to the data (c).
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In general, the evidence on Y may consist in (1) the observed data x and (2) prior
knowledge on θ , which can be assumed to be represented by a belief function Bel0

θ
.

A predictive belief function on Y can thus be denoted as BelY (·;x,Bel0
θ
). If Bel0

θ
is

vacuous, we simple write BelY (·;x). The following three requirements have been
proposed for BelY .

R0: Likelihood principle

As we assume X and Y to be independent, the observation of X provides information
on Y only through the parameter θ . The likelihood principle [4, 13] states that all
relevant information about θ , after observing X = x, is contained in the likelihood
function L(θ ;x) = p(x;θ). Formally, this principle means that two observations X
and X ′ generated by two different random experiments, with probability distribu-
tions p(x;θ) and p(x′;θ), provide the same information about θ as long as p(x;θ)
and p(x′;θ) are proportional, i.e., there is some constant c = c(x,x′) not depending
on θ , such that p(x;θ) = c · p(x′;θ) for all θ ∈Θ . Consequently, we should also
have (

∀θ ∈Θ , p(x;θ) = c · p(x′;θ)
)
⇒ BelY (·;x) = BelY (·;x′). (9)

The likelihood principle was shown by Birnbaum in [4] to follow from two princi-
ples generally accepted by most (but not all) statisticians: the conditionality princi-
ple (see also [3, page 25]) and the sufficiency principle.

R1: Compatibility with Bayes

For some statisticians, Bayesian reasoning is a perfectly valid approach to statistical
inference provided a prior probability distribution is available, but is questionable
in the absence of such prior information. Many authors have attempted to gener-
alize Bayesian inference to some “prior-free” method of inference. This was, in
particular, Dempster’s motivation in his early papers on belief functions [6, 8]. If
we adopt this point of view, then a predictive belief function should coincide with
the Bayesian posterior predictive distribution if a probabilistic prior is available.
Formally, if Bel0

θ
= P0

θ
is a probability measure, then the following equality should

hold,
BelY (A;x,P0

θ ) = PB(A|x) (10)

for all measurable event A ⊆ Y , where PB(·|x) is the Bayesian posterior predic-
tive probability measure corresponding to (1). This requirement ensures that the
Bayesian and belief function approaches yield the same predictions when they are
provided with exactly the same information.

A PBF verifying requirements (9) and (10) will be called a Type-I PBF. It can
be seen as a representation of the evidence about Y from the observation of X , and
possibly additional information on θ ; it becomes the Bayesian predictive posterior
distribution when combined with a probabilistic prior.
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R2: Approximation of the true future data distribution

We may also consider that, if we knew the true value of parameter θ , then we would
equate the predictive belief function with the true distribution PY (·;θ) of Y . If we do
not know θ , but we have only observed a sample x of X , then the predictive belief
function should most of the time (i.e., for most of the observed samples) be less
committed than PY (·;θ) [1, 10]. Formally, we may thus fix some α ∈ (0,1), and
require that, for any θ ∈Θ ,

PX
(
BelY (·;X)≤ PY (·;θ);θ

)
≥ 1−α. (11)

If X = (Ξ1, . . . ,Ξn) is a sequence of observations, a weaker requirement is to de-
mand that (11) holds in the limit, as n→ ∞. A PBF verifying (11), at least asymp-
totyically, will be called a type-II PBF. For most of the samples, a type-II PBF is
a lower approximation of the true probability distribution of Y . It can thus be com-
pared to the plug-in distribution PY (·; θ̂), which is also an approximation of PY (·;θ).
However, the PBF will generally be non-additive, as a consequence of accounting
not only for random uncertainty, but also for estimation uncertainty.

R3: Calibration

Another line of reasoning, advocated by Martin and Liu [18], is to consider that
plausibility values be calibrated, in the sense that the plausibility of the true value
Y should be small with only a small probability [18, Chapter 9]. More precisely, for
any θ ∈Θ and any α ∈ (0,1), we my impose the following condition,

PX ,Y (plY (Y ;X)≤ α;θ)≤ α, (12)

or, equivalently,
PX ,Y (plY (Y ;X)> α;θ)≥ 1−α, (13)

where plY (Y ;X) = PlY ({Y};X) is the contour function evaluated at Y . Eqs. (12) and
(13) may hold only asymptotically, as the sample size tends to infinity. It follows
from (13) that the sets {y ∈ Y |plY (y;X) > α} are prediction sets at level 1−α

(maybe, approximately). A PBF verifying (13) will be called a type-III PBF. It can
be seen as encoding prediction sets at all levels; as such, it is somewhat similar
to a frequentist predictive distribution; however, it is not required to be additive.
Requirement (13) is very different from the previous two. In particular, a type-III
PBF has no connection with the Bayesian predictive distribution, and it does not
approximate the true distribution of Y . Rather, (12) establishes a correspondence
between plausibilities and frequencies. A type III-PBF can be seen as a generalized
prediction interval.

In the following section, we introduce a simple scheme that will allow us to
construct PBF of each of the three kinds above, for any parametric model. We will
also mention some alternative methods.
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4 Construction of predictive belief functions

In [14, 15], the authors introduced a general method to construct PBFs, by writing
the future data Y in the form

Y = ϕ(θ ,V ), (14)

where V is a pivotal variable with known distribution [6, 15, 18]. Equation (14) is
called a ϕ-equation. It can be obtained by inverting the cdf of Y . More precisely, let
us first assume that Y is continuous; we can then observe that V = FY (Y ;θ) has a
standard uniform distribution. Denoting by F−1

Y (·;θ) the inverse of the cdf FY (·;θ),
we get

Y = F−1
Y (V ;θ), (15)

with V ∼ U ([0,1]), which has the same form as (14). When Y is discrete, (15) is
still valid if F−1

Y now denotes the generalized inverse of FY ,

F−1
Y (V ;θ) = inf{y|FY (y;θ)≥V}. (16)

Example 3 In the Air Conditioning example, it is assumed that Y ∼ E (θ), i.e.,
FY (y;θ) = 1− exp(−θy). From the equality FY (Y ;θ) =V , we get

Y =− log(1−V )

θ
, (17)

with V ∼U ([0,1]). �

Example 4 Let Y be the maximum sea level in the next m years, with cdf given
by (8). From the equality FY (Y ;θ) = V , we get Y = µ − σ log log(V−1/m), with
V ∼U ([0,1]). �

The plug-in prediction is obtained by plugging the MLE θ̂ in (14),

Ŷ = ϕ(θ̂ ,V ). (18)

Now, the Bayesian posterior predictive distribution can be obtained by replacing the
constant θ in (14) by a random variable θB with the posterior cdf Fθ (·;x). We then
get a random variable YB with cdf FB(y|x) given by (1). We can write

YB = ϕ(F−1
θ

(U |x),V ). (19)

The three methods described in the sequel somehow generalize the above meth-
ods. They are based on (14), and on belief functions Belθ and BelV on θ and V
induced, respectively, by random sets Γ (U ;x) and Λ(W ), where U and W are ran-
dom variables. The predictive belief function on Y is then induced by the random
set

Π(U,W ;x) = ϕ(Γ (U ;x),Λ(W )). (20)

Assuming that Π(u,w;x) 6= /0 for any u, v and x, we thus have
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BelY (A;x) = PU,W
{

Π(U,W ;x)⊆ A
}

and
PlY (A;x) = PU,W

{
Π(U,W ;x)∩A 6= /0

}
for all subset A⊆ Y for which these expressions are well-defined.

The three methods described below differ in the choice of the random sets
Γ (U ;x) and Λ(W ). As will we see, each of the three types of PBF described in
Section 3 can be obtained by suitably choosing these two random sets.

4.1 Type-I predictive belief functions

As shown in [11], Requirements R0 and R1 jointly imply that the contour function
pl(θ ,x) associated to Belθ (·;x) should be proportional to the likelihood function
L(·;x). The least committed belief function (in some sense, see [11]) that meets this
constraint is the consonant belief function defined by the following contour function,

pl(θ ;x) =
L(θ ;x)

L(θ̂ ;x)
, (21)

where θ̂ is a maximizer of L(θ ;x), i.e., a maximum likelihood estimate (MLE) of
θ , and it is assumed that L(θ̂ ;x) < +∞. As it is consonant, the plausibility of any
hypothesis H ⊆Θ is the supremum of the plausibilities of each individual values of
θ inside H,

Plθ (H;x) = sup
θ∈H

pl(θ ;x). (22)

The corresponding random set is defined by

Γ̀ (U) = {θ ∈Θ |pl(θ ;x)≥U} (23)

with U ∼ U ([0,1]), i.e., it is the set of values of θ whose relative likelihood is
larger than a uniformly distributed random variable U . This likelihood-based belief
function was first introduced by Shafer [22], and it has been studied by Wasserman
[23], among others.

The prediction method proposed in [14, 15] consists in choosing Belθ defined by
(21)-(22) as the belief function on θ , and PV , the uniform probability distribution
of V , as the belief function on V . The resulting PBF BelY,`(·;x) is induced by the
random set

Π`(U,V ;x) = ϕ(Γ̀ (U ;x),V ), (24)

where (U,V ) has a uniform distribution in [0,1]2.
By construction, combining Belθ (·;x) with a Bayesian prior P0

θ
by Dempster’s

rule yields the Bayesian posterior PB(·|x). The random set (24) then becomes

ΠB(U,V ;x) = ϕ(F−1
B (U |x),V ), (25)
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with (U,V ) uniformly distribution in [0,1]2. This random set is actually a random
point, i.e., a random variable, and this rv is identical to (19): its distribution is the
Bayesian posterior predictive distribution. Consequently, the PBF BelY,` constructed
by this method meets requirements R0 and R1.

Example 5 The contour function for the AC data of Example 1, assuming an ex-
ponential distribution, is shown in Figure 2(a). As it is unimodal and continuous,
the sets Γ̀ (u;x) are closed intervals [θ−(u),θ+(u)], whose bounds can be approxi-
mated numerically as the roots of the equation pl(θ ;x) = u. From (17), the random
set Π`(U,V ;x) is then the random closed interval

Π`(U,V ;x) = [Y−(U,V ;x),Y+(U,V ;x)],

with

Y−(U,V ;x) =− log(1−V )

θ+(U)

and

Y+(U,V ;x) =− log(1−V )

θ−(U)
.
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Fig. 2 AC data. (a): Contour function; (b): Lower and upper cdf (solid lines) and plug-in cdf
(dotted line)

As shown by Dempster [9], the following equalities hold, for any y≥ 0,

BelY ((−∞,y]) = PU,V (Y+(U,V ;x)≤ y)

PlY ((−∞,y]) = PU,V (Y−(U,V ;x)≤ y),

i.e., they are the cdfs of, respectively, the upper and lower bounds of Π`. Func-
tions BelY ((−∞,y]) and PlY ((−∞,y]) are called the lower and upper cdfs of the
random set Π`(U,V ;x). As explained in [15], they can be approximated by Monte
Carlo simulation: let (ui,vi), i = 1, . . . ,N be a pseudo-random sequence generated
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independently from the uniform distribution in [0,1]2. Let y−i = y−(ui,vi;x) and
y+i = y+(ui,vi;x) be the corresponding realizations of the bounds of Π`. Then, the
lower and upper cdfs can be approximated by the empirical cdfs of the y+i and the
y−i , respectively. These functions are plotted in Figure 2(b), together with the plug-in
cdf FY (y; θ̂), with θ̂ = 1/x. We can observe that the plug-in cdf is always included
in the band defined by the lower and upper cdf, which is a consequence of the in-
equalities θ−(u)≤ θ̂ ≤ θ−(u) for any u ∈ (0,1]. We note that θ̂ = θ−(1) = θ+(1).

�

Example 6 Let us now consider the Sea Level data of Example 2. The contour
function (21) for these data is plotted in Figure 3(a). As the level sets Γ̀ (u;x) of
this function are closed and connected, the sets Π`(U,V ;x) still are closed inter-
vals in this case [15]. To find the bounds Y−(u,v;x) and Y+(u,v;x) for any pair
(u,v), we now need to search for the minimum an the maximum of ϕ(θ ,v), under
the constraint pl(θ ;x)≥ u. This task can be performed by a nonlinear constrained
optimization algorithm. The lower and upper cdfs computed using this method are
shown in Figure 3(b). �
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Fig. 3 Port Pirie sea-level data: (a): Contour plot of the relative likelihood function; (b): Lower
and upper cdfs of the type-I PBF; the central broken line corresponds to the plug-in prediction.

4.2 Type-II predictive belief functions

The ϕ-equation (14) also allows us to construct a type-II PBF, such as defined in
[10]. Let C(X) be a confidence set for θ at level 1−α , i.e.,

PX (C(X) 3 θ ;θ) = 1−α. (26)
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Consider the following random set,

ΠY,c(V ;x) = ϕ(C(x),V ), (27)

which is a special case of the general expression (20), with Γ (U ;x) = C(x) for
all U ∈ [0,1], W = V and Λ(V ) = V . The following theorem states that the belief
function induced by the random set (27) is a type-II PBF.

Theorem 1 Let Y = ϕ(θ ,V ) be a random variable, and C(X) a confidence region
for θ at level 1−α . Then, the belief function BelU,c(·;x) induced by the random set
ΠY,c(V ;x) = ϕ(C(x),V ) verifies

PX (BelY,c(·;X)≤ PY (·;θ);θ)≥ 1−α, (28)

i.e., it is a type-II PBF.

Proof. If θ ∈C(x), then ϕ(θ ,V ) ∈ ϕ(C(x),V ) for any V . Consequently, the follow-
ing implication holds for any measurable subset A⊆ Y , and any x ∈X ,

ϕ(C(x),V )⊆ A⇒ ϕ(θ ,V ) ∈ A.

Hence,
PV (ϕ(C(x),V )⊆ A)≤ PV (ϕ(θ ,V )⊆ A),

or, equivalently,
BelY,c(A;x)≤ PY (A;θ). (29)

As (29) holds whenever θ ∈C(x), and PX (C(X)3 θ ;θ) = 1−α , it follows that (29)
holds for any measurable event A with probability at least 1−α , i.e.,

PX
(
BelY,c(·;X)≤ PY (·;θ);θ

)
≥ 1−α.

�
If C(X) is an approximate confidence region, then obviously (28) will hold only

approximately. In the case where X = (X1, . . . ,Xn) is iid, the likelihood function
will often provide us with a means to obtain a confidence region on θ . From Wilks’
theorem [24], we know that, under regularity conditions, −2log pl(θ ;X) has ap-
proximately, for large n, a chi square distribution with p degrees of freedom, where
p is the dimension of θ . Consequently, the sets

Γ̀ (c;X) = {θ ∈Θ |pl(θ ;X)≥ c,

with c = exp(−0.5χ2
p;1−α

), are approximate confidence regions at level 1−α . The
corresponding predictive random set is

ΠY,c(V ;x) = ϕ(Γ̀ (c;x),V ). (30)

We can see that this expression is similar to (24), except that, in (30), the relative
likelihood function is cut at a fixed level c. A similar idea was explored in Ref. [26].
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Table 2 gives values of c for different values of p and α = 0.05. We can see that c
decreases quickly with p, which means that the likelihood-based confidence regions
and, consequently, the corresponding PBFs will become increasing imprecise as
p increases. In particular, the likelihood-based type-II PBFs will typically be less
committed than the type-I PBFs.

Table 2 Likelihood levels c defining approximate 95% confidence regions.

p 1 2 5 10 15
c 0.15 0.5 3.9e-03 1.1e-04 3.7e-06

Example 7 For the AC data, the likelihood-based confidence level at level 1−α =
0.95 is

[θ−(c),θ+(c)] = [0.01147,0.02352],

with c = 0.15. It is very close to the exact confidence level at the same level, θ̂ χ2
α/2,2n

2n
,

θ̂ χ2
1−α/2,2n

2n

= [0.01132,0.02329].

The corresponding Type-II PBF is induced by the random interval

ΠY,c(V ;x) =
[
− log(1−V )

θ+(c)
,− log(1−V )

θ−(c)

]
.

The lower and upper bounds of this interval have exponential distributions with
rates θ+(c) and θ−(c), respectively. Figure 4 shows the corresponding lower and
upper cdfs, together with those of the Type-I PBF computed in Example 5. We can
see that the Type-II PBF at the 95% confidence level is less committed than the
Type-I PBF.

Example 8 Figure 5 shows the lower and upper cdfs of the type-II PBF constructed
from the likelihood-based confidence region with α = 0.05. The estimate of the true
coverage probability, obtained using the parametric bootstrap method with B =
5000 bootstrap samples, was 0.94998, which is remarkably close to the nominal
level. The simulation method to compute these functions is similar to that explained
in Example 6, except that we now have ui = c = 0.05 for i = 1, . . . ,n. The lower and
upper cdfs form a confidence band on the true cdf of Y . Again, we observe that this
band is larger than the one corresponding to the type-I PBF.
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Fig. 4 Lower and upper cdfs of the type-II PBF for the AC data (solid lines). The type-I lower and
upper cdf are shown as broken lines.
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Fig. 5 Lower and upper cdfs of the type-II PBF for the sea-level example (solid lines). The type-I
lower and upper cdf are shown as broken lines.

4.3 Type-III predictive belief functions

The calibration condition (12) was introduced by Martin and Liu [17, 18], in the
context of their theory of Inferential Models (IMs). An equivalent formulation is to
require that the random variable plY (Y ;X) be stochastically not less than a random
variable having a standard uniform distribution. In [18, Chapter 9], Martin and Liu
propose a quite complex method for constructing PBFs verifying this requirements,
based on IMs. It turns out that such Type-III PBFs (as we call them in this paper)
can be generated by a simple construction procedure based on the ϕ-equation (14)
and suitable belief functions on θ and V . Because the notion of Type-III PBFs is
intimately related to prediction sets, and prediction sets at a given level can only be
defined for continuous random variables, we will assume Y to be continuous in this
section.
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Let us first assume that θ is known. In that case, predicting Y = ϕ(θ ,V ) boils
down to predicting V = F(Y ;θ). Consider the random interval

Λ(W ) =

[
W
2
,1−W

2

]
,

with W ∼U ([0,1]). It is easy to check that the induced contour function is pl(v) =
1− |2v− 1| (it is a triangular possibility distribution with support [0,1] and mode
0.5), and pl(V )∼U ([0,1]). Consider the predictive random set

ΠY (W ) = ϕ(θ ,Λ(W )) (31)

and the associated contour function

pl(y) = 1−|1−2F(y;θ)|. (32)

It is clear that pl(Y ) = pl(V ) ∼ U ([0,1]), and the consonant belief function with
contour function (32) verifies the calibration property (12). We can observe that the
transformation (32) from the probability distribution of Y to this possibility distri-
bution is an instance of the family of probability-possibility transformations studied
in [12]. The mode of the possibility distribution is the median y0.5 = ϕ(θ ,0.5), and
each α-cut ΠY (α) = [yα/2,y1−α/2] with α ∈ (0,1) is a prediction interval for Y , at
level 1−α .

Until now, we have assume θ to be known. When θ is unknown, we could think
of replacing it by its MLE θ̂ , and proceed as above by applying the same probability-
possibility distribution to the plug-in predictive distribution FY (u; θ̂). As already
mentioned, this approach would amount to neglecting the estimation uncertainty,
and the α-cuts of the resulting possibility distribution could have a coverage proba-
bility significantly smaller than 1−α . A better approach, following [16], is to con-
sider the exact or approximate pivotal quantity Ṽ =F(Y ; θ̂(X)). We assume that θ̂ is
a consistent estimator of θ as the information about θ increases, and Ṽ is asymptot-
ically distributed as U ([0,1]) [16]. However, for finite sample size, the distribution
of Ṽ will generally not be uniform. Let G be the cdf of Ṽ , assuming that it is pivotal,
and let Λ̃(W ) be the random interval

Λ̃(W ) =
[
G−1(W/2),G−1(1−W/2)

]
with W ∼U ([0,1]) and corresponding contour function

pl(ṽ) = 1−
∣∣1−2G(ṽ)

∣∣ .
The random set

Π̃Y (W ;x) = ϕ(θ̂(x),Λ̃(W ))

induces the contour function

pl(y;x) = 1−
∣∣∣1−2G{F [y; θ̂(x)]}

∣∣∣ . (33)
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As G(F(Y ; θ̂(X))) ∼ U ([0,1]), we have pl(Y ;X) ∼ U ([0,1]), and the focal sets
Π̃Y (α;X) are exact prediction intervals at level 1−α . Consequently, the consonant
belief function with contour function (33) is a type-III PBF. We can remark that it is
obtained by applying the probability-possibility transformation (32) to the predictive
confidence distribution F̃(y;x) = G{F [y; θ̂(x)]}.

When an analytical expression of the cdf G is not available, or Ṽ is only asymp-
totically pivotal, an approximate distribution G̃ can be determined by a parametric
bootstrap approach [16]. Specifically, let x∗1, . . . ,x

∗
B be B and y∗1, . . . ,y

∗
B be B boot-

strap replicates of x and y, respectively. We can compute the corresponding values
ṽ∗b = F(y∗i ; θ̂(x∗b)), b = 1, . . . ,B, and the distribution of Ṽ can be approximated by
the empirical cdf

G̃(v) =
1
B

B

∑
b=1

I(ṽ∗b ≤ v).

Example 9 Consider again the AC example. For the exponential distribution, it has
been shown [16] that the quantity

Ṽ = F(Y, θ̂(X)) = 1− exp(−Y θ̂(X))

is pivotal, and has the following cdf,

G(ṽ) = 1−
{

1− 1
n

log(1− ṽ)
}−n

.

The predictive cdf is then

F̃(y;x) = G{F(y, θ̂(x))}= 1−

(
1+

yθ̂(x)
n

)−n

and the contour function of the type-III PBF is

pl(y;x) = 1−

∣∣∣∣∣∣2
(

1+
yθ̂(x)

n

)−n

−1

∣∣∣∣∣∣ . (34)

Figure 6(a) shows the contour function (34) for the AC data (solid line), together
with the contour function induced by the plug-in distribution (interrupted line). The
two curves are quite close in this case: for n = 30, the distribution of Ṽ is already
very close to the standard uniform distribution. Figure 6(b) shows the lower and
upper cdfs of the PBF, together with the Type-I and Type-II (1−α = 0.95) lower
and upper cdfs for the same data. As the Type-III PBF is consonant, the lower and
upper cdfs can computed from the contour function as

PlY ((−∞,y]) = sup
y′≤y

pl(y′) =

{
pl(y;x) if y≤ F̃−1(0.5;x)
1 otherwise,
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and

BelY ((−∞,y]) = 1− sup
y′>y

pl(y′) =
[
1− pl(y;x)

]
I
(

y > F̃−1(0.5;x)
)
.

�
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Fig. 6 AC example. (a): Contour function of the type-III PBF (solid line), and contour function
induced by the plug-in distribution (interrupted line); (b): Lower and upper cdfs of the type-III PBF
(solid lines). The type-I and type-II lower and upper cdf are shown, respectively, as interrupted and
dotted lines.

Example 10 Let us now consider again the sea-level data. Here, the exact distri-
bution of the quantity Ṽ = FY (Y ; θ̂(X)) is intractable, but it can be estimated by
the parametric bootstrap technique. Figure 7(a) shows the bootstrap estimate of the
distribution of Ṽ , with B = 10000. There is clearly a small, but discernible depar-
ture from the uniform distribution. Figure 7(b) shows the contour function of the
type-III PBF, together with that induced by the plug-in predictive distribution (cor-
responding to the approximation G(ṽ) = ṽ). Again, the two curves are close, but
clearly discernible. With n = 65, the prediction intervals computed from the plug-in
distribution have true coverage probabilities quite close to the stated ones. Finally,
the lower and upper cdf of the type-III PBF for the Port-Pirie data are shown in Fig-
ure 7(c), together with the corresponding functions for the type-I and type-II PBFs.
Comparing Figures 6(b) and 7(c), we can see that, in both cases, the type-I PBF
is less committed than the type-III PBF. It is not clear, however, whether this result
holds in general. �
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Fig. 7 Sea-level example. (a): Bootstrap estimate of the cdf G of Ṽ = F(Y, θ̂(X)); (b): Contour
function of the type-III PBF (solid line), and contour function induced by the plug-in distribution
(interrupted line); (c): Lower and upper cdfs of the type-III PBF (solid lines). The type-I and type-II
lower and upper cdf are shown, respectively, as interrupted and dotted lines.

5 Conclusions

Being related to random sets, belief functions have greater expressivity than proba-
bility measures. In particular, the additional degrees of freedom of the belief func-
tion framework make it possible to distinguish between lack of information and
randomness. In this paper, we have considered different ways of exploiting this
high expressivity to quantify prediction uncertainty. Based on three distinct require-
ments, three different kinds of predictive belief functions have been distinguished,
and construction procedures for each of them have been proposed. Type-I belief
functions have a Bayesian flavor, and boil down to Bayesian posterior predictive
belief functions when a prior probability distribution on the parameter is provided.
In contrast, belief functions of the other types are frequentist in spirit. Type-II be-
lief functions correspond to a family of probability measures, which contain the
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true distribution of the random variable of interest with some probability, in a re-
peated sampling setting. Type-III belief functions are “frequency-calibrated”, in so
far as the true value of the variable of interest rarely receives a small plausibility. It
should be noticed by “frequentist” predictive belief functions (of types II and III)
are not compatible with Bayesian inference, i.e., they do not allow us to recover the
Bayesian posterior predictive distribution when combined with a Bayesian prior. It
thus seems that the Bayesian and frequentist views cannot be easily reconciled, and
different inference procedures have to coexist, just as frequentist and Bayesian pro-
cedures in mainstream statistics. Beyond philosophical arguments, the practicality
of these construction procedures, as well as their interpretability and acceptability
by decision-makers remain to be investigated.
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