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Abstract. We show that the weighted sum and softmax operations per-
formed in logistic regression classifiers can be interpreted in terms of
evidence aggregation using Dempster’s rule of combination. From that
perspective, the output probabilities from such classifiers can be seen as
normalized plausibilities, for some mass functions that can be laid bare.
This finding suggests that the theory of belief functions is a more general
framework for classifier construction than is usually considered.
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1 Introduction

In the last twenty years, the Dempster-Shafer (DS) theory of belief functions
has been increasingly applied to classification. One direction of research is clas-
sifier fusion: classifier outputs are expressed as belief functions and combined
by Dempster’s rule or any other rule (see, e.g., [8], [1], [7]). Another approach
is to design evidential classifiers, which can be defined as classifiers built from
basic principles of DS theory. Typically, an evidential classifier has the structure
depicted in Figure 1: when presented by a feature vector x, the system computes
k mass functions m1, . . . ,mk defined on the set Θ of classes, based on a learning
set. These mass functions are then combined using Dempster’s rule, or any other
rule. The first evidential classifier was the evidential k-nearest neighbor classifier
[3], in which mass functions mj are constructed from the k nearest neighbor of x,
and combined by Dempster’s rule. In the evidential neural network classifier [5],
a similar principle is applied, but mass functions are constructed based on the
distances to prototypes, and the whole system is trained to minimize an error
function.

In this paper, we show that not only these particular distance-based classi-
fiers, but also a broad class of widely-used classifiers, including logistic regression
and its nonlinear extensions, can be seen as evidential classifiers. This finding
leads us to the conclusion that DS theory is a much more general framework for
classifier construction than was initially believed.

The rest of the paper is organized as follows. Some background definitions
will first be recalled in Section 2. A general model of feature-based evidence will
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Fig. 1. Basic structure of an evidential classifier.

be described in Section 3, where we will show that the normalized plausibility
function, after combining the evidence of J features, is identical to the output of
logistic regression. The recovery of the full mass function will then be addressed,
and a simple example will be given in Section 4. Section 5 will conclude the
paper.

2 Background

In this section, we first recall some basic notions and definitions needed in the
rest of the paper. The notion of weight of evidence will first be recalled in Section
2.1, and some notations for logistic regression will be introduced in Section 2.2.

2.1 Weights of evidence

Let us consider a simple mass function m on a frame Θ, such that

m(A) = s, m(Θ) = 1− s,

where s is a degree of support in [0, 1]. Typically, such a mass function represents
some elementary piece of evidence supporting hypothesis A. Shafer [9, page 77]
defines the weight of this evidence as w = − ln(1− s). Conversely, we thus have
s = 1 − exp(−w). The rationale for this definition is that weights of evidence
are additive: if m1 and m2 are two simple mass functions focussed on the same
subset A, with weights w1 and w2, then the orthogonal sum m1⊕m2 corresponds
to the weight w1 +w2. If we denote a simple mass function with focal set A and
weight w by Aw, we thus have Aw1⊕Aw2 = Aw1+w2 . It follows that any separable
mass function can be written as m =

⊕
∅6=A⊂Θ A

wA , where wA is the weight of
evidence pointing to A. We note that, in [6], following [10], we used the term
“weight” for − lnw. As we will see, the additivity property is central in our
analysis: we thus stick to Shafer’s terminology and notation in this paper.
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2.2 Logistic regression

Consider a multi-category1 classification problem with J-dimensional feature
vector x = (x1, . . . , xJ) and class variable Y ∈ Θ = {θ1, . . . , θK} with K > 2.
In the logistic regression model, we assume the logarithms of the posterior class
probabilities P(Y = θk)|x) to be affine functions of x, i.e.,

lnP(Y = θk|x) =

J∑
j=1

βjkxj + β0k + γ, ∀k ∈ J1,KK, (1)

where βjk, j = 0, . . . , J are parameters and γ is a constant. Using the equation∑K
k=1 P(Y = θk|x) = 1, we easily get the following expressions for the posterior

probabilities,

P(Y = θk|x) =
exp

(∑J
j=1 βjkxj + β0k

)
∑K
l=1 exp

(∑J
j=1 βjlxj + β0l

) . (2)

This transformation from arbitrary real quantities (1) to probabilities is some-
times referred to as the softmax transformation. Parameters βjk are usually
estimated by maximizing the conditional likelihood. In feedforward neural net-
works with a softmax output layer, a similar approach is used, with variables xj
defined as the outputs of the last hidden layer of neurons. These variables are
themselves defined as complex nonlinear functions of the input variables, which
are optimized together with the decision layer weights βjk. Logistic regression is
functionally equivalent to a feedforward neural network with no hidden layer.

3 Model

We consider a multi-category classification problem as described in Section 2.2.
We assume that each feature xj provides some evidence about the class variable
Y . For each θk, the evidence of feature xj points either to the singleton {θk} or

to its complement {θk}, depending on the sign of

wjk = βjkxj + αjk, (3)

where (βjk, αjk), k = 1, . . . ,K, j = 1, . . . , J are parameters. The weights of

evidence for {θk} and {θk} are, respectively,

w+
jk = (wjk)+ and w−jk = (wjk)−, (4)

where (·)+ and (·)− denote, respectively, the positive and the negative parts. For
each feature xj and each class θk, we thus have two simple mass functions

m+
jk = {θk}w

+
jk and m−jk = {θk}

w−
jk . (5)

1 The case of binary classification with K = 2 classes requires a separate treatment.
Due to space constaints, we focus on the multi-category case in this paper.
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Assuming these mass functions to be independent, they can be combined by
Dempster’s rule. Let

m+
k =

J⊕
j=1

m+
jk = {θk}w

+
k and m−k =

J⊕
j=1

m−jk = {θk}
w−

k

where

w+
k =

J∑
j=1

w+
jk and w−k =

J∑
j=1

w−jk. (6)

The contour functions pl+k and pl−k associated, respectively, with m+
k and m−k

are

pl+k (θ) =

{
1 if θ = θk,

exp
(
−w+

k

)
otherwise,

and

pl−k (θ) =

{
exp

(
−w−k

)
if θ = θk,

1 otherwise.

Now, let

m+ =

K⊕
k=1

m+
k and m− =

K⊕
k=1

m−k ,

and let pl+ and pl− be the corresponding contour functions. We have

pl+(θk) ∝
K∏
l=1

pl+l (θk) = exp

−∑
l 6=k

w+
l

 = exp

(
−

K∑
l=1

w+
l

)
exp(w+

k )

∝ exp(w+
k ),

and

pl−(θk) ∝
K∏
l=1

pl−l (θk) = exp(−w−k ).

Finally, let m = m+⊕m− and let pl be the corresponding contour function. We
have

pl(θk) ∝ pl+(θk)pl−(θk) ∝ exp(w+
k − w

−
k )

∝ exp

 J∑
j=1

wjk

 = exp

 J∑
j=1

βjkxj +

J∑
j=1

αjk

 .

Let p be the probability mass function induced from m by the plausibility-
probability transformation [2], and let

β0k =

J∑
j=1

αjk. (7)
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We have

p(θk) =
exp

(∑J
j=1 βjkxj + β0k

)
∑K
l=1 exp

(∑J
j=1 βjlxj + β0l

) , (8)

which is equivalent to (2). We thus have proved that the output probabilities
computed by a logistic regression classifier can be seen as the normalized plau-
sibilities obtained after combining elementary mass functions (5) by Dempster’s
rule: these classifiers are, thus, evidential classifiers as defined in Section 1.

4 Recovering the mass function

Having shown that the output probabilities of logistic regression classifiers are
normalized plausibilities, it is interesting to recover the underlying output mass
function, defined as

m =

K⊕
k=1

(
{θk}w

+
k ⊕ {θk}

w−
k

)
. (9)

Its complete expression can be derived (after some tedious calculation), but it
cannot be given here for lack of space.

There is, however, a difficulty related to the identifiability of the weights w+
k

and w−k . First, parameters βjk are not themselves identifiable, because adding
any constant vector c to each vector βk = (β0k, . . . , βJk) produces the same
normalized plausibilities (8). Secondly, for given β0k, any αjk verifying (7) will
yield the same probabilities (8). This problem is addressed in the next section.

4.1 Identification

To identifying the underlying output mass function, we propose to apply the
Least Commitment Principle, by searching for the mass function m∗ of the form
(9) verifying (8) and such that the sum of the squared weights of evidence is

minimum. More precisely, let {(xi, yi)}ni=1 be a learning set, let β̂jk be the max-
imum likelihood estimates of the weights βjk, and let α denote the vector of

parameters αjk. Any β∗jk = β̂jk + cj will verify (8). The parameter values β∗jk
and α∗jk minimizing the sum of the squared weights of evidence can thus be
found by solving the following minimization problem

min f(c,α) =

n∑
i=1

J∑
j=1

K∑
k=1

[
(β̂jk + cj)xij + αjk

]2
(10)

subject to
J∑
j=1

αjk = β̂0k + c0, ∀k ∈ J1,KK. (11)



6 T. Denoeux

In (10), xij denotes the value of feature j for learning vector xi. Developing the
square in (10), we get

f(c,α) =
∑
j,k

(β̂jk+cj)
2

(∑
i

x2ij

)
+n

∑
j,k

α2
jk+2

∑
j,k

(β̂jk+cj)αjk
∑
i

xij . (12)

Assuming that the input variables xj have been centered, we have
∑
i xij = 0

and
∑
i x

2
ij = s2j , where s2j is the empirical variance of feature xj . Eq. (12) then

simplifies to

f(c,α) =
∑
j,k

s2j (β̂jk + cj)
2 + n

∑
j,k

α2
jk. (13)

Due to constraint (11), for any c0, the second term in the right-hand side of (13)

is minimized for αjk = 1
J (β̂0k + c0), for all j ∈ J1, JK and k ∈ J1,KK. Hence, the

problem becomes

min
c
f(c) =

J∑
j=1

s2j

{
K∑
k=1

(β̂jk + cj)
2

}
+
n

J

K∑
k=1

(β̂0k + c0)2.

Each of the J + 1 terms in this sum can be minimized separately. The solution
can easily be found to be

c∗j = − 1

K

K∑
k=1

β̂jk, ∀j ∈ J0, JK

The optimum coefficients are, thus,

β∗jk = β̂jk −
1

K

K∑
l=1

β̂jl, ∀j ∈ J0, JK,∀k ∈ J1,KK

and
α∗jk = β∗0k/J, ∀j ∈ J1, JK,∀k ∈ J1,KK. (14)

To get the least committed mass function m∗ with minimum sum of squared
weights of evidence and verifying (8), we thus need to center the rows of the
(J + 1) × K matrix B = (βjk), set α∗jk according to (14), and compute the

weights of evidence w−k and w+
k from (3), (4) and (6).

4.2 Example

As a simple example, let us consider simulated data with J = 1 feature, K = 3
classes, and Gaussian conditional distributions X|θk ∼ N (µk, 1), with µ1 = −1,
µ2 = 0 and µ3 = 1. We randomly generated 10, 000 from each of the three
conditional distributions, we standardized the data and we trained a logistic
regression classifier on these data. Decisions are usually based on the posterior
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class probabilities P(θk|x) displayed in Figure 2(a). Figure 3 shows the under-
lying masses, computed as explained in Section 4.1. As we can see, masses are
assigned to subsets of classes in regions where these classes overlap, as could be
expected. Figure 2(b) shows the contour functions pl(θk|x) vs x. Interestingly,
the graphs of these functions have quite different shapes, as compared to those of
the posterior probabilities shown in Figure 2(a). Whereas decisions with proba-
bilistic classifiers are classically based on minimum expected loss, seeing logistic
regression classifiers as evidential classifiers opens the possibility to experiment
with other rules such as minimum lower or upper expected loss [4] or interval
dominance [11].

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P
os

te
rio

r 
pr

ob
ab

ili
ty

θ1

θ2

θ3

(a)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P
la

us
ib

ili
ty

θ1

θ2

θ3

(b)

Fig. 2. Posterior class probabilities P(θk|x) (a) and contour functions pl(θk|x) for the
logistic regression example.

5 Conclusions

We have shown that logistic regression classifiers and also, as a consequence,
generalized linear classifiers such as feedforward neural network classifiers, which
essentially perform logistic regression in the output layer, can be seen as pooling
evidence using Dempster’s rule of combination. This finding may have important
implications, as it opens the way to a DS analysis of many widely used classifiers,
beyond the particular distance-based classifiers introduced in [3] and [5]. In fu-
ture work, we will deepen this analysis by exploring the consequences of viewing
neural network classifiers as evidential classifiers, in terms of decision strategies,
classifier fusion, and handling missing or uncertain inputs, among other research
directions.
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Fig. 3. Masses on singletons (a) and compound hypotheses (b) vs. x for the logistic
regression example.
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