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ABSTRACT
While accurate tumor delineation in FDG-PET is a vital task,
noisy and blurring imaging system makes it a challenging
work. In this paper, we propose to address this issue using the
theory of belief functions, a powerful tool for modeling and
reasoning with uncertain and/or imprecise information. An
automatic segmentation method based on clustering is devel-
oped in 3-D, where, different from available methods, PET
voxels are described not only by intensities but also com-
plementally by features extracted from patches. Considering
there are a large amount of features without consensus regard-
ing the most informative ones, and some of them are even un-
reliable due to image quality, a specific procedure is adopted
to adapt distance metric for properly representing clustering
distortions and neighborhood similarities. A specific spatial
regularization is also included in the clustering algorithm to
effectively quantify local homogeneity. The proposed method
has been evaluated by real-patient images, showing good per-
formance.

Index Terms— PET Image Segmentation, Spatial Evi-
dential c-Means, Adaptive Distance Metric, Feature Selec-
tion, Belief Functions.

1. INTRODUCTION

Positron emission tomography (PET), with the radio-tracer
fluoro-2-deoxy-D-glucose (FDG), is an advanced imaging
tool generally used in radiation oncology for diagnosis, stag-
ing, and restaging of tumors. An increasing number of s-
tudies, e.g., [1, 2, 3], are also showing that the functional
information provided by FDG-PET can predict early treat-
ment outcomes in radiation therapy, providing significant
evidence to support the adaptation of a more effective treat-
ment planning for individual patients.

While the accurate delineation of tumor volumes in FDG-
PET is a pivotal step for the tasks discussed above, noisy and
blurring images due to the acquisition system make it a chal-
lenging work. To this end, diverse automatic or semiautomat-
ic PET image segmentation algorithms have been proposed,

including thresholding methods [4], statistical methods [5],
graph-based methods [6], and clustering methods [7, 8], etc..

Unlike supervised learning methods that need a training
step, clustering methods are suitable for PET image segmen-
tation, because the positive tissues are inhomogeneous with
non-convex shapes and vary according to patients [9]. As an
extension of FCM and possibilistic clustering [10], an evi-
dential c-means algorithm (ECM) [11] has been proposed in
the framework of belief functions [12]. A spatial version of
ECM, namely SECM [8], has then been proposed recently for
lung tumor delineation in multi-tracer PET images. In the ob-
jective function of SECM, local homogeneity is quantified by
the weighted sum of the intensity distances from the neigh-
borhood of each voxel to the cluster prototypes. Finding an
alternative way to model directly the spatial information us-
ing belief functions seems to be more appropriate to enhance
the performance of ECM in low-quality PET images. It is al-
so worth noting that only intensity values have been used for
PET image segmentation in the methods mentioned above.
Textural features, which describe the spatial environment sur-
rounding each voxel, are very useful to provide complemen-
tary information for more reliable delineation.

Considering noise and imprecision modeling is of great
concern for reliable PET image segmentation [9], in this pa-
per, this critical issue is addressed via the theory of belief
functions (BFT), a powerful tool for modeling and reason-
ing with uncertain and/or imprecise information [12]. In the
framework of BFT, we propose a 3-D clustering algorithm tai-
lored for the delineation of tumor volumes, where each voxel
is described not only by intensity but also complementarily
by textures extracted from a patch. The proposed method has
two main contributions: 1) Using an adaptive distance metric
to properly represent clustering distortions and neighborhood
similarities. Since a large amount of textures can be construct-
ed without consensus regarding the most informative ones,
and some of them are even unreliable due to image quality, a
sparsity constraint is included in the metric updating proce-
dure to perform joint feature selection and low-dimensional
feature transformation, thus reducing the influence of unre-



liable inputs on the output segmentation; 2) A new spatial
regularization is integrated in the clustering procedure, so as
to effectively quantify local homogeneity.

The rest of this paper is organized as follows. The pro-
posed method is introduced in Section 2. In Section 3, the
proposed method is evaluated by a cohort of real-patient
FDG-PET images, and the segmentation performance is com-
pared with that of other methods. Finally, we conclude paper
in Section 4.

2. METHOD

Let {Xi}ni=1 be feature vectors in Rp describing n voxels
in a volume of interest (VOI). We assume that all the vox-
els belong either to the background (i.e. hypothesis ω1) or
to the positive tissue (i.e. hypothesis ω2), without existence
of outliers. Thus, the whole frame of clusters is set as Ω =
{ω1, ω2}. The proposed method is grounded on a new con-
cept of partition, namely the credal partition [13], which ex-
tends the concepts of hard, fuzzy, and possibilistic partition by
allocating, for each voxel, a degree of belief, not only to single
clusters, but also to any subset of the whole frame Ω. In the
framework of BFT, the degree of belief can be quantified by
a mass function m [12], which obeys m({ω1}) +m({ω2}) +
m(Ω) ≡ 1 in our study. As m(Ω) measures the ambiguity re-
garding the clusters ω1 and ω2, blurring boundary and severe
heterogeneous region will be assigned to m(Ω).

Assuming the prototypes of single cluster ω1 and ω2

are V1 and V2, respectively. Then, for each nonempty sub-
set Aj ∈ {{ω1}, {ω2},Ω}, a centroid V̄j is defined as the
barycenter of the prototypes associated with the singletons
in Aj , i.e., V̄j = 1

cj

∑2
k=1 skjVk, where skj is binary, and it

equals 1 iff ωk ∈ Aj ; while cj = |Aj | denotes the cardinality
of Aj . The proposed method attempts to segment tumor in
FDG-PET images via automatically learning a credal par-
tition matrix M = {mi}ni=1, where mi ∈ R3 is the mass
function for the ith voxel. This end is realized via minimizing
a cost function with the form of

Jpt(M) =

n∑
i=1

∑
Aj

c2jm
2
ij

[
d2(Xi, V̄j)

]
+η

n∑
i=1

∑
t∈Φ(i)

[
dm2(mi,m

i
t)
] [
d2(Xi, X

i
t)
]

+λF − log
(
d2(X̄ω1 , X̄ω2)

)
,

(1)

subjects to mij ≥ 0, and
∑

j mij = 1, ∀i = 1, . . . , n, and
{j|Aj 6= ∅, Aj ⊆ Ω}. As a variant of the original ECM [11],
the novelty of the proposed method is that adaptive distance
metric and a specific spatial regularization are integrated in
the new cost function for clustering voxels in noisy and blur-
ring PET images:

1) Spatial Regularization: According to the spatial prior
of a PET volume, the credal partition matrix M = {mi}ni=1

Fig. 1. Two tumors delineated by our method in 3-D. In the
first column, the green, magenta, and orange region consist of
true positive, false positive, and false negative voxels.

that we want to learn can be viewed as a specific random
field, where each mass function mi is a random vector in
R3, and its distribution is depended on the mass functions
of adjacent voxels in 3-D. Let Φ = {Φ(i)}ni=1 be a neigh-
borhood system, where Φ(i) = {1, . . . , T} is the set of
the T neighbors of a voxel i, excluding i. The correspond-
ing mass functions of voxels in Φ(i) are {mi

1, . . . ,m
i
T },

while the feature vectors of these voxels are {Xi
1, . . . , X

i
T }.

Then, in the second term of the constructed cost function
(1), penalty

∑
t∈Φ(i)

[
dm2(mi,m

i
t)
] [
d2(Xi, X

i
t)
]

quantifies
the smoothness around voxel i, where d2(Xi, X

i
t) denotes

the distance between voxel i and its neighbor t in the fea-
ture space (which will play an important role in distance
metric adaptation procedure that discussed in sequel); while,
dm2(mi,m

i
t) measures the dissimilarity (or independence)

between mi and mi
t, i.e., the inconsistency between the clus-

ter membership of voxel i and its neighbor t.
The metric defined by Jousselme et al. [14] is adopted to

quantify the dissimilarity between mi and mi
t, ∀t ∈ Φ(i), as

dm2(mi,m
i
t) = (mi −mi

t)Jac(mi −mi
t)

T , (2)

where Jac is a positive definite matrix whose elements are
Jaccrad indexes, i.e., Jac(A,B) = |A∩B|/|A∪B|, ∀A,B ∈
2Ω \ ∅. The matrix Jac used in our study has a specific form,
such as

Jac =

 1 0 0.5
0 1 0.5

0.5 0.5 1

 . (3)

It is worth noting that (2) satisfies the requirements for a valid
distance metric. In addition, it effectively accounts for the in-
teraction between different hypothesis, i.e., subsets of Ω [14].
The scalar η > 0 controls the influence of this regularization.

2) Adaptive Distance Metric: A distance metric adapted
to the data at hand is beneficial for clustering methods [15].
Considering a large amount of features can be extracted with-
out consensus regarding the most informative ones, we look
for a low-rank matrix D ∈ Rp×q during clustering, under the
constraint q � p, by which the dissimilarity between any two
feature vectors, say X1 and X2, can be represented as

d2(X1, X2) = (X1 −X2)DDT (X1 −X2)T . (4)



Table 1. Quantified segmentation results (mean±std) obtained by different methods.
TAD 3D-LARW FCM-SW ECM SECM Ours

DSC 0.72± 0.10 0.82± 0.07 0.82± 0.11 0.72± 0.13 0.77± 0.12 0.86± 0.05
HD 4.22± 4.27 4.43± 4.52 4.69± 3.73 8.42± 3.71 5.89± 4.03 2.59± 1.24

TAD ECM SECM 3D-LARW FCM-SW Ours 

Fig. 2. Contours delineated by different methods for four tumor volumes shown in different rows.

In other words, matrix D transforms the original feature s-
pace to a low-dimensional subspace, where important input
features will have a strong impact when calculating the dis-
similarity. To find such a transformation matrix D, the clus-
tering distortion d2(Xi, V̄j) in the first term of (1) is repre-
sented by (4). The spatial regularization that defined by the
second term of (1) is also used to adapt the distance metric:
During the iterative minimization of (1), a large dissimilari-
ty dm2(mi,m

i
t) quantified by (2) will reveal that the current

distance measure (4) is inadequate; then, it should be adjust-
ed at the next step to reduce the dissimilarity between Xi and
Xi

t , so as to bring the two adjacent voxels closer together.
To select input features during feature transformation,

the third term of (1) is defined as the sparsity regularization
||D||2,1 of matrix D, i.e., F =

∑p
i=1

√∑q
j=1D

2
i,j . By

forcing rows of D to be zero, it only selects the most reli-
able input features to calculate the linear transformation, thus
controlling the influence of unreliable features on the clus-
tering result. Scalar λ is a hyper-parameter that controls the
influence of this regularization.

Finally, the last term of (1) is used to prevent the objective
function being trivially solved with D = 0, which collapses
all the features vectors into a single point. Vectors X̄ω1

and
X̄ω2 are two predetermined seeds for the positive tissue and
the background, respectively.

It is worth noting that the metric adaptation procedure dis-
cussed above is distinct to supervised metric learning methods

(e.g. our previous work [16]), as it is performed in the frame-
work of unsupervised clustering.

3) Iterative Optimization: Seeds X̄ω1 and X̄ω2 , initial M,
and initial V are obtained by the original ECM. The output
dimension, namely the number of columns q in D, is deter-
mined by applying principle component analysis on {Xi}ni=1.
The initial D is then constructed by the top 95% eigenvectors.
After initialization, cost (1) can be minimized in an EM-like
iterative optimization scheme. It alternates between cluster
assignment (i.e. M estimation) in the E-step, and both proto-
type determination (i.e. V estimation) and metric adaptation
(i.e. D estimation) in the M-step.

3. EXPERIMENTAL RESULTS

The proposed method was evaluated by FDG-PET images of
14 non-small cell lung cancer patients. Since the image res-
olution is anisotropic, a 3 × 3 window in 2-D was defined to
extract features for the proposed method. A 28-dimensional
feature vector was extracted for each voxel, which consists
of 6 SUV-based, 7 GLSZM-based [17], and 15 GLCM-
based [18] features. The segmentation performance of the
proposed method was compared with that of an adaptive
thresholding method (TAD) [4], a graph-based method, i.e.,
3D-LARW [6], FCM-SW [7], SECM [8], and also the orig-
inal ECM [11]. Experimental results were quantified by the
Dice coefficient (DSC) and the Hausdorff distance (HD), us-



ing manual delineation by expert clinicians as the reference.
All the compared methods were post-processed by selecting
only the largest connected component as the target tumor.

To demonstrate the performance, two different examples
deduced by our method are shown in Fig. 1, where the top and
bottom row corresponds, respectively, to a large heterogenous
tumor, and a small tumor. The first column of Fig. 1 presents
the tumor volumes in 3-D. Using the manually segmentation
by clinicians as the reference, the green region consists of
the true positive voxels, the magenta region consists of the
false positive voxels, while the orange region consists of the
false negative voxels. The second to the last column of Fig. 1
show the corresponding results slice by slice in the axis plane,
where the green and blue line represent the contours delineat-
ed by our method and clinicians, respectively. As can be seen,
the delineation by the proposed method is in consistent with
that by clinicians in this experiment.

The quantitative performance of the proposed method is
compared with that of other methods in Table 1, which shows
that our method led to the best average performance on the
14 sets of images. The visual examples are also presented in
Fig. 2 for comparison. The first column of Fig. 2 presents the
axis slices of four different tumors. The second column to the
last column of Fig. 2 compare the contours delineated by dif-
fernt methods (green line) with the references (blue line). As
can be seen, the contours delineated by the propose method
(the last column) are more in consistent with the reference
contours in this experiment.

4. CONCLUSION

In this paper, a belief function based clustering algorithm inte-
grating adaptive distance metric and spatial regularization has
been proposed for the delineation of tumor volumes in FDG-
PET images. The experimental results obtained on fourteen
real-patient PET stacks have shown the effectiveness of the
proposed method. As our future work, we will study how to
include the anatomical information provided by CT into the
proposed segmentation algorithm, so as to further improve the
tumor delineation performance in FDG-PET.
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