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Abstract

In this paper we propose a notion of irreversibility for the evolution of cracks in presence
of cohesive forces, which allows for different responses in the loading and unloading processes,
motivated by a variational approximation with damage models. We investigate its appli-
cability to the construction of a quasi-static evolution in a simple one-dimensional model.
The cohesive fracture model arises naturally via Γ-convergence from a phase-field model of
the generalized Ambrosio-Tortorelli type, which may be used as regularization for numerical
simulations.

Contents

1 Introduction 2

2 Cohesive quasi-static evolution: general setting and assumptions of the model 7

3 Cohesive quasi-static evolution: the time-discrete evolution 9

4 Cohesive quasi-static evolution: the time-continuous evolution 14

5 Relaxation of the cohesive energy 22

6 Static phase-field approximation: the cohesive energy of pristine material 26
6.1 A class of cohesive energies g0 for pristine material . . . . . . . . . . . . . . . . . . 26
6.2 Main properties of g0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Phase-field approximation and blow-up around jump points . . . . . . . . . . . . . 29

7 Static phase-field approximation: the cohesive energy of pre-fractured material 30
7.1 A class of cohesive energies g for pre-fractured material . . . . . . . . . . . . . . . 30
7.2 Main properties of g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 Phase-field approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

∗E-mail: marco.bonacini@unitn.it
†E-mail: sergio.conti@uni-bonn.de
‡E-mail: iurlano@ljll.math.upmc.fr

1



8 Static phase-field approximation: proofs 36
8.1 Proof of the statements of Section 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Proof of Theorem 6.5 in Section 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.3 Proof of the statements of Section 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 Introduction

The variational approach to fracture, as formulated by Francfort and Marigo [34] (see also [13]),
is based on Griffith’s idea [40] that the crack growth is determined by the competition between
the energy spent to increase the crack and the corresponding release in the bulk elastic energy.
By representing the crack as a (n− 1)-dimensional surface Γ and assuming for simplicity that the
material behaves as a linearly elastic body in the unbroken part Ω\Γ of the reference configuration,
for pristine materials one is led to consider an energy of the form

E(u,Γ) :=

∫
Ω

|∇u|2 dx+

∫
Γ

g0(|[u](x)|) dHn−1, (1.1)

where [u](x) := u+(x)−u−(x) is the difference of the traces of the displacement u : Ω→ R on the
two sides of Γ. In the original Griffith’s theory for brittle fracture the energy associated with the
crack is proportional to the measure of the surface of the crack itself, and g0 is assumed not to
depend on the crack opening [u]. It was however early recognized (Barenblatt [10]) that in many
situations fracture should be regarded as a gradual process, and that the presence of cohesive forces
between the lips of the crack should be taken into account: in cohesive fracture models Griffith’s
energy is replaced by various surface energies depending on the actual opening of the crack; in
this case the function g0 in (1.1) is typically assumed to be an increasing and concave function,
with g0(0) = 0, with positive and finite slope g0

′(0) ∈ (0,∞) at the origin, and asymptotically
converging to the value of the fracture toughness. Variants of (1.1) with g0 not necessarily concave
have been used to study the formation of micro-cracks [30, 31].

The notion of irreversible quasi-static evolution in the brittle case (g0 constant), proposed in
[34], under the action of time-dependent loads (for instance, in the form of a prescribed boundary
displacement b(t)), requires three essential ingredients: one looks for a map t 7→ (u(t),Γ(t))
satisfying

(i) (irreversibility) Γ(t1) ⊂ Γ(t2) for t1 < t2;

(ii) (static equilibrium) (u(t),Γ(t)) is a global minimizer of the energy (1.1) with respect to the
boundary condition b(t);

(iii) (energy balance) the increment in stored energy plus the energy spent in crack increase equals
the work of external forces.

The common approach in showing the existence of a variational evolution with the properties
above is based on a time-discretization algorithm, in which one selects at each time step a global
minimizer of the total energy, and then recovers the time-continuous limit by sending to zero the
discretization parameter. This program has been successfully accomplished in the brittle case in
a series of contributions: the existence of a quasi-static evolution was first proven by Dal Maso
and Toader [28] in a two-dimensional, antiplane shear setting and with a uniform bound on the
number of connected components of the crack, then extended to the case of planar elasticity by
Chambolle [19]. The general n-dimensional case, without restrictions on the number of connected
components, was studied by Francfort and Larsen [35] (antiplane case) and by Dal Maso, Francfort
and Toader [24] (finite elasticity). Further results in this direction were obtained in [42, 26, 43, 5].

In the cohesive case the picture is less clear and there is no agreement on a single notion of
irreversibility. Indeed, while in the brittle case the irreversibility constraint is a purely geometric
condition, in the cohesive context one has to take into account also the amplitude of the cracks,
through the inclusion of some internal variable which keeps track of the complete history of the
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fracture process. In particular, it would be desirable to model the possibility of having different
responses of the material to loading and unloading processes. Up to now, several plausible choices
have been proposed in the mathematical literature under the assumption that the crack path is
prescribed (see also the discussion in [13, Chapter 5]): Dal Maso and Zanini [29] adopt as internal
variable the maximal opening of the crack, postulating that the energy is dissipated only once for a
given value of the jump, and additional dissipation can only occur if the distance between the crack
lips is further increased; Bourdin, Francfort and Marigo [13] propose a different model, which
adopts as the memory variable the cumulated opening of the crack and allows for the phenomenon
of fatigue, as the surface energy evolves during each loading phase; in the model by Cagnetti
and Toader [18] part of the dissipated energy is recovered when the crack opening is decreased;
finally also Crismale, Lazzaroni and Orlando [21] include fatigue assuming that some energy is
dissipated also during the unloading phase. In these cases the existence of a quasi-static evolution
(encoding in the definition the relevant notion of irreversibility) is established. In the cohesive
fracture context, further results on evolutions of local minimizers or critical points (rather than
global minimizers) are obtained in [17, 4, 9, 45].

In the first part of this paper (Sections 2–4) we discuss the construction of a quasi-static
evolution for a one-dimensional model of cohesive fracture, which allows for a different response of
the material to loading and unloading. This is achieved by introducing a cohesive energy density
g(s, s′) which depends both on the crack opening s and on the internal variable s′, which keeps
track of the maximum previous opening (see Section 2 for the detailed assumptions on g). It is the
goal of the second part of the paper (Sections 6–8) to show how those assumptions on the energy
density g can be naturally derived by introducing an irreversibility condition on a phase-field
approximation.

The construction of a quasi-static evolution follows a rather standard approach, which we now
outline. We let Ω = (0, 1) represent an elastic bar, on which we prescribe a time-dependent bound-
ary displacement t 7→ (b(t, 0), b(t, 1)). We also include in the energy a lower-order penalization of
the form γ‖u − w(t)‖2L2(0,1), where γ > 0 and t 7→ w(t) is a given function which prescribes the
average behavior of the material. This foundation-type term, as usual in one-dimensional simpli-
fications of models in solid mechanics, represents the boundary conditions in the directions that
have been eliminated. A simple way to understand its physical significance is to imagine solving
for ũ : (0, 1)× (−H,H) → R with boundary conditions ũ(x,±H) = w(x) on the top and bottom
boundaries, and then focusing on u(x) := ũ(x, 0). The difference u − w would be penalized by a
∂2ũ term in the energy. If dealing with the Dirichlet functional, the H1/2 norm of the difference
would be the most natural way to model this effect; for general energy densities there is no clear
natural form. For simplicity we use the L2 norm. Due to the presence of this term the bar can be
fractured at multiple points, while if γ = 0 one can prove that minimizers of the energy have at
most one jump.

We keep track of the state of the fracture at each time t ∈ [0, T ] by means of a pair of internal
variables (Γ(t), s(t)), where Γ(t) is a discrete set of points (representing the sites of the crack
points), and s(t) : Γ(t) → (0,∞) is the maximal amplitude of the jump at the points of Γ(t) for
all the previous times. For technical reasons, we fix a (arbitrarily small) positive threshold s̄ > 0
and we keep track only of the jumps that overcome this value; in other words, fracture points
where the jump is smaller than s̄ are not affected by the irreversibility condition, and the opening
can be reduced with a complete recover of the dissipated energy. From the mathematical point of
view this guarantees a uniform bound on the total number of crack points (this assumption can be
easily removed in the case γ = 0, that is if we do not include the lower order penalization). It is
often convenient to switch to the equivalent formulation in which s is first extended by 0 outside
Γ, and Γ is implicitly replaced by the set {s > 0}.

One main novelty in the problem we consider here is that a new energy density g(s, s′) appears
at the points where the bar was previously broken. The first argument s of g represents the current
opening of the crack at a given point; the second argument s′ represents the maximal amplitude of
the jump reached at that point at the previous times, in particular g(s, 0) = g0(s) represents the
fracture energy in a pristine material. More in general, when s ≥ s′ the additional constraint is

3



irrelevant and one has g(s, s′) = g0(s): this means that, in the process of crack opening, the energy
per unit area of the fracture at a point x is given by g0(|[u(x)]|), the “original” cohesive energy
density. The behaviour of g(s, s′) is instead different when s < s′: in this case s 7→ g(s, s′) is
monotone nondecreasing and, generally, g(s, s′) > g0(s). Hence, when |[u](x)| is smaller than the
maximal opening reached at previous times, the energy density follows a curve which is above the
graph of g0, see Figure 1. If a fracture with opening s is closed, a certain amount of energy g(0, s)
is permanently dissipated, so that a successive opening only has the smaller cost g(s, s)− g(0, s).
We refer to Section 6.1 and Section 7.1 below for the construction of specific examples for the
functions g0 and g, respectively.

We consider a time discretization 0 = t0 < t1 < . . . < tN = T and we initially select the
displacement u0 by minimizing the energy∫ 1

0

|u′|2 dx+
∑
x∈Ju

g0(|[u](x)|) + γ

∫ 1

0

|u− w(t0)|2 dx (1.2)

among all u ∈ SBV(0, 1) attaining the boundary conditions b(t0) at the endpoints of the bar.
To be more precise, we need to consider the lower semicontinuous envelope of the energy and a
minimizer will belong in general to BV(0, 1): indeed the presence of the lower-order term allows
for the possibility of having more than one jump, while some regularity can still be proved, see
Proposition 3.2. In the case γ = 0 it is well-known that minimizers in dimension one are in SBV
with a single jump, see [15]; see also [25, 16] for further regularity results for cohesive energies.

We then define

Γ0 :=
{
x ∈ Jb(t0)

u0
: |[u0](x)| > s̄

}
, s0(x) := |[u0](x)| for x ∈ Γ0

(where the superscript b(t0) in the jump set of u0 indicates that we consider as part of the crack
also the points at which the boundary conditions are not attained). Iteratively, assuming to have
constructed (ui,Γi, si) for i = 0, . . . , k−1, we select the displacement uk at time tk by minimizing
(the relaxation of) the energy∫ 1

0

|u′|2 dx+
∑

x∈Γk−1

g(|[u](x)|, sk−1(x)) +
∑

x∈Ju\Γk−1

g0(|[u](x)|) + γ

∫ 1

0

|u− w(tk)|2 dx (1.3)

with respect to the boundary condition b(tk), and we update the state of the fracture by setting

Γk := Γk−1∪
{
x ∈ Jb(tk)

uk
: |[uk](x)| > s̄

}
, sk(x) := |[uk](x)| ∨ sk−1(x) for x ∈ Γk.

Passing to the limit as the time-step goes to zero we obtain in Theorem 4.1 the existence of
a quasi-static evolution (u(t),Γ(t), s(t)) satisfying the by now classical unilateral minimality and
energy conservation conditions of quasi-static energy minimizing evolutions, see [44]. The irre-
versibility condition is reflected in the fact that the sets Γ(t) and the maps s(t) are monotonically
increasing in time.

The second part of the paper is devoted to explain how the notion of irreversibility, used
in the construction of the quasi-static evolution in the first part, is related to a corresponding
irreversibility constraint on approximating damage models. In particular, one of the goals of the
second part is to derive the properties of the cohesive energy density g, stated in Section 2, from
a phase-field approximation of the cohesive functional (1.3) in the spirit of [20].

In order to explain the main idea, it is first convenient to refer once again to the brittle case, and
to recall the classical Ambrosio-Tortorelli approximation [7, 8] of the Mumford-Shah functional

E(u) :=

∫
Ω

|∇u|2 dx+Hn−1(Ju), u ∈ SBV(Ω),
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Figure 1: Graph of g0(s) (bottom curve) and g(s, s′) for ms′ = 0.3, 0.5 and 0.7 (from bottom
to top) using the function f b1(s) defined in (6.5) with ` = 1.5, `1 = 0.2. See Section 6.1 and in
particular Figure 5 below for further details.

by the regularizing energies

Eε(uε, vε) :=

∫
Ω

(v2
ε +o(ε))|∇uε|2 dx+

1

2

∫
Ω

(
ε|∇vε|2 +

(1− vε)2

ε

)
dx, (uε, vε) ∈ H1(Ω)×H1(Ω),

with 0 ≤ vε ≤ 1. Here the function uε has to be understood as a regularization of the displacement
u, possibly creating jumps in the limit as ε→ 0, while vε can be interpreted as a damage variable
which concentrates in the regions where the singularities of u are created: more precisely, vε → 1
almost everywhere in Ω, and vε → 0 on the (n − 1)-dimensional surface where the limit jump
will appear. The notion of quasi-static evolution in the regular context of the Ambrosio-Tortorelli
functionals can be formulated including an irreversibility condition in the form of a global mono-
tonicity constraint on vε (the damage can only increase in time). It is proved in [38] that this
evolution converges as ε→ 0 to a quasi-static evolution for brittle fracture.

Returning to the cohesive setting, in the spirit of Ambrosio and Tortorelli it is shown in [20]
(see also [36] for a numerical insight) that, for a suitable choice of the function fε, functionals of
the form

Fε(uε, vε) :=

∫
Ω

(
f2
ε (vε)|∇uε|2 +

(1− vε)2

4ε
+ ε|∇vε|2

)
dx, (uε, vε) ∈ H1(Ω)×H1(Ω), (1.4)

with 0 ≤ vε ≤ 1, Γ-converge as ε → 0 to the relaxation of an energy of the form (1.1) (see
Section 6.3 for the precise statement). The function g0 obtained as limit surface energy density
can be characterized as the solution to a minimum problem,

g0(s) = inf

{∫ ∞
−∞

(
s2f2(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt : (α, β) ∈ H1

loc(R)×H1
loc(R), α′ ∈ L1(R),∣∣∣∣ ∫ ∞

−∞
α′(t) dt

∣∣∣∣ = 1, 0 ≤ β ≤ 1, lim
|t|→∞

β(t) = 1

}
, (1.5)

and satisfies the natural requirements for a cohesive energy (see Figure 1). As before, uε is a
regularization of u developing singularities in the limit, and vε converges to the value 1 almost
everywhere and the measure |∇vε|Ln concentrates on the limit jump. The crucial observation
is that, in contrast with the Ambrosio-Tortorelli case, vε does not tend to zero everywhere on
the jump, but reaches a value depending on the amplitude of the limit jump of u. Indeed,
the one-dimensional blow-up analysis of the behaviour of recovery sequences (uε, vε) → (u, 1)
around a jump point x̄ ∈ Ju, which we perform in Section 6.3, shows that the rescaled functions
zε(x) := uε(xε+εx), wε(x) := vε(xε+εx) converge to an optimal profile (αs, βs) for the minimum
problem (1.5) defining g0(s), for the value s = |[u](x̄)| (Theorem 6.5); moreover the minimum value
reached by vε in a small neighbourhood of x̄, ms := minR βs, is in one-to-one correspondence with
the limit amplitude s of the jump.

Therefore the relevant information about the amplitude of the limit jump |[u]| is carried only
by the value of the minimum of the damage variable vε. This suggests to impose, at level ε, an

5



irreversibility condition in the form of a monotonicity constraint on the value of local minima of
vε: in the points where vε has a local minimum, its value can only decrease. By looking at the
Γ-limit of the functionals Fε in (1.4) with this additional constraint (see Section 7.3), one finds
that the limit energy density has the form

g(s, s′) = inf

{∫ ∞
−∞

(
s2f2(β)|α′|2+

(1− β)2

4
+|β′|2

)
dt : (α, β) ∈ H1

loc(R)×H1
loc(R), α′ ∈ L1(R),∣∣∣∣ ∫ ∞

−∞
α′(t) dt

∣∣∣∣ = 1, 0 ≤ β ≤ 1, lim
|t|→∞

β(t) = 1, inf
R
β ≤ ms′

}
, (1.6)

see Figure 1. In other words, we restrict the class of admissible profiles by imposing that the
minimum value of the profile β does not exceed the minimum value ms′ of the optimal profile βs′

corresponding to the amplitude s′.
We then show that the function g derived in this way has exactly the properties stated in

Section 2. Notice that when s ≥ s′ the additional constraint in (1.6) is irrelevant and one has
g0(s) = g(s, s′). At the same time, g(0, s′) is (at least for s′ not too large, see Section 8 for details)
strictly smaller than g0(s′) = g(s′, s′). Indeed, upon closure of the fracture, the part of the energy
that originates from the elastic degrees of freedom (corresponding to the f2(β)|α′|2 term in (1.6))
is recovered, whereas the part that originates from the internal variable (corresponding to the two

terms (1−β)2

4 and |β′|2 in (1.6), with β(±∞) = 1 and β(0) ≤ ms′) is permanently dissipated. This
behaviour is consistent with models where some of the dissipated energy is recovered when the
crack opening is decreased [18, 4, 45, 46] and our analysis shows that it can be recovered as the
limit of damage models.

It is worth to briefly comment on the connection of this approach with other results in the
mathematical literature. As remarked above, in our model the response of the material when the
crack opening decreases is similar to that considered in [18], that is some dissipated energy is
recovered. However, the memory of the fracture is permanent, and further iterations of opening
and closing the same fracture are reversible. In particular, the phenomenon of fatigue is completely
absent. Fatigue effects are instead taken into account in [13] and in [21] (see also [1]): in particular,
in [21] also when the crack opening is reduced some energy is dissipated, and oscillations of
jumps can produce a complete fracture even if the maximal crack amplitude remains small. This
behaviour is consistent with models where cohesive effects result from the interaction between
damage and plasticity (see [2, 3, 27]); on the contrary, our approach is based on the approximation
[20], where the cohesive behaviour is seen as the effect of the interplay between elasticity and
damage. We expect that our approach could be extended to models of fatigue, by replacing
the maximal amplitude of the opening by the cumulated opening as an internal variable. This
extension is, however, beyond the scope of this paper.

We further remark that the functionals (1.4), when a monotonicity constraint on the minimum
values of vε is included, provide a variational approximation of the limit energy (1.3) in a static
setting (see Section 7.3 for the rigorous Γ-convergence result). It remains an open question whether
a result in the spirit of Giacomini [38] holds also in this case, that is if one can construct a
variational evolution for the functionals Fε and show its convergence, as ε → 0, to a quasi-static
evolution for the limit cohesive model.

We believe that this approach is also suitable for numerical implementation. An appropriate
algorithm should identify the regions where the damage vε is concentrated, and impose the mono-
tonicity constraint only at the local minimum points. This might be numerically less expensive
than imposing the monotonicity constraint at any point. However, it is unclear how to handle
the interplay between the asymptotic process of Γ-convergence and evolution. This problem is
closely related to the difficulties that arise in studying the interplay of relaxation and evolution,
and which may lead to the definition of complex concepts of solutions [37, 33].

The generalization to the higher dimensional case poses several challenges. A first step in
this direction has been obtained in [41], where the Γ-convergence result in Section 7.3 has been
extended to general dimensions, under minimal regularity assumptions on the set Γ on which the
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irreversibility constraint is imposed. The next step would consist in the construction of a quasi-
static evolution under the assumption of a prescribed crack path. We stress, however, that in the
present 1D analysis the position of the crack is not prescribed a priori.

Structure of the paper. The paper is mainly divided into two parts. The first part (Sections 2–
5) is devoted to the proof of the existence of a quasi-static evolution in Theorem 4.1. In particular,
in Section 2 we state the main assumptions on the cohesive energy density g and we set up the
evolution problem; then the construction of a quasi-static evolution for the one-dimensional model
is discussed in Section 3 (time-discretization) and Section 4 (continuous limit); finally in Section 5
we compute the relaxation of the cohesive energy.

In the second part of the paper (Sections 6–8) we explain the connection of the model with
the phase-field approximation. In Section 6 we report the approximation result from [20] and we
discuss the main properties of the cohesive energy density g0(s) = g(s, 0) of the pristine material;
the Γ-convergence result in [20] is also improved with the analysis of the behaviour of recovery
sequences in Section 6.3. In Section 7 we introduce the new surface energy density g, and we show
in Section 7.3 how it can be recovered, via Γ-convergence, from damage models which include an
irreversibility constraint. The proofs of the properties of g0 and g in Sections 6 and 7 are rather
technical and are postponed to Section 8.

Notation. Along the paper we work in dimension one and for simplicity in the interval Ω := (0, 1).
For a function of bounded variation u ∈ BV(0, 1) we denote by Du its distributional derivative,
which is a bounded Radon measure on (0, 1), and by |Du| its total variation. The standard
decomposition of Du is given by

Du = u′L1 +Dcu+
∑
x∈Ju

[u](x)δx ,

where u′ ∈ L1(0, 1) denotes the density of the absolutely continuous part of Du with respect to
the Lebesgue measure L1, Dcu is the Cantor part of Du, Ju is the jump set of u (sometimes
also denoted by J(u) in the following), [u](x) := u+(x) − u−(x), and u+(x) and u−(x) are the
approximate limits from the right and from the left of u at x respectively. We denote by SBV(0, 1)
the space of functions u ∈ BV(0, 1) such that Dcu ≡ 0. For the properties of functions of bounded
variation we refer to the monograph [6]. We use standard notation for Γ-convergence, see [14, 22].

2 Cohesive quasi-static evolution: general setting and as-
sumptions of the model

We start by introducing the main assumptions on the cohesive energy densities g(s, s′) considered
in this paper. We refer to the Introduction for the interpretation of the meaning of the two
variables of g, and to Figure 1 for a visualization of the qualitative behaviour of g.

We let g : [0,+∞)× [0,+∞)→ [0,+∞) satisfy the following assumptions:

(i) g is continuous and monotone nondecreasing in both variables, g(s, s′) = g(s, 0) if s ≥ s′;

(ii) g(s, s′) ≤ 1 and lims→+∞ g(s, s′) = 1 for any s′;

(iii) there exist `, ˜̀> 0 and 1 < p < 2 such that

g(s, 0) = `s− ˜̀sp + o(sp) as s→ 0+; (2.1)

(iv) for every s1, s2, s
′ ≥ 0,

g(s1 + s2, s
′) ≤ g(s1, 0) + g(s2, s

′) ; (2.2)

if in addition s1 > 0 and s2 ∨ s′ > 0, the inequality is strict.
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Notice that for fixed s′, the map g(·, s′) is Lipschitz continuous with Lipschitz constant ` due to
its monotonicity, its subadditivity, and the bound (2.1); in particular g(s, 0) ≤ `s. Moreover, the
global continuity and the strict subadditivity (iv) of g imply that for every ε > 0 there exists a
constant cε > 0, depending on ε, such that

g(s1 + s2, 0)− g(s1, 0)− g(s2, 0) ≤ −cε, for every s1, s2 ≥ ε, (2.3)

g(s1 + s2, s
′)− g(s1, 0)− g(s2, s

′) ≤ −cε, for every s2 ≥ 0 and s1, s
′ ≥ ε. (2.4)

Remark 2.1. We briefly discuss the role of the previous assumptions. We first observe that the
function g0(s) = g(s, 0) (that is, the cohesive energy of a “new” jump) has the expected behaviour
of a cohesive energy in the sense of Barenblatt. The assumption on the behaviour of g at infinity in
(ii) is just a normalization condition and can be assumed without loss of generality. The assumption
(2.1) is instead fundamental and guarantees that minimizers of the associated energy (see (2.8)
below) in one dimension have no Cantor part (see Proposition 3.2); we expect that the range of
exponents p ∈ (1, 2) is not optimal. Finally, the subadditivity condition (iv) is a natural assumption
and is related to the lower semicontinuity of the associated functional (2.8). The condition of strict
subadditivity, which means that one larger jump is energetically more efficient than two small jumps
which are spatially very close to each other, is important for obtaining regularity of minimizers,
see for example Proposition 3.1(iii) and Theorem 4.1(i). We further observe that monotonicity
and strict subadditivity imply that any fracture which is opened and then closed again dissipates a
positive amount of energy, g(0, s) > 0 for all s > 0.

We next prepare the setting for the construction of a quasi-static evolution. Let T > 0 be the
final time. The state of the fracture at each time t ∈ [0, T ] is modeled by a discrete set of points
(representing the sites where the crack is localized), to each of which is attached a scalar quantity
(representing the maximal amplitude of the jump at all the previous times):

Γ ⊂ [0, 1] finite set, s : Γ→ (s̄,∞). (2.5)

Here s̄ > 0 is a fixed positive threshold (which can be taken arbitrarily small but strictly positive,
for technical reasons). The effect of the irreversibility condition affects only the fracture points
where the jump amplitude exceeds the threshold s̄, since only these points will be included in the
crack set Γ; in other words, for small fractures the process is completely reversible. The internal
variable s in (2.5) will be always implicitly extended as s(x) = 0 for x /∈ Γ.

The bar is subject to a time-dependent boundary displacement

b ∈ H1([0, T ];R2), with b(t) = (b(t, 0), b(t, 1)). (2.6)

It is also convenient to denote, for t fixed, by b(t) : [0, 1] → R the affine function interpolating
between the boundary values b(t, 0) and b(t, 1). We will usually write b(t, x) := b(t)(x) and we
will denote by ḃ the time-derivative of b, by b′(t) the spatial derivative of the function b(t).

We would then iteratively minimize a functional of the form∫ 1

0

|u′|2 dx+
∑

x∈Γ∪Ju

g(|[u](x)|, s(x)) (2.7)

among all possible displacements u attaining the boundary conditions u(0) = b(t, 0), u(1) = b(t, 1).
The surface energy in the new fracture points Ju\Γ, where the bar was previously pristine, is
g(|[u]|, 0); at the points of Γ, where the fracture was present at previous times, an irreversibility
condition appears: the surface energy density is given by g(|[u]|, s), with s > s̄, which takes into
account the previous work made on Γ.

Since the function g(·, 0) has finite slope at the origin, the minimization of the functional (2.7)
is in principle not well-posed in SBV, and we have to consider its relaxation with respect to the
weak*-topology of BV, which is given by

Φ(u; Γ, s, b) :=

∫ 1

0

h(|u′|) dx+
∑

x∈Jbu∪Γ

g(|[u](x)|, s(x)) + `|Dcu|(0, 1) , (2.8)
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where we highlighted the dependence of Φ on the state of the fracture (described by the pair
(Γ, s)) and on the boundary datum b. The rigorous proof of the relaxation result will be given in
Section 5. Here the elastic energy density h is

h(ξ) :=

{
ξ2 if |ξ| ≤ `

2 ,

`|ξ| − `2

4 if |ξ| > `
2 ,

(2.9)

and to take into account the boundary conditions, we use the following notation:

Jbu := Ju ∪
{
x ∈ {0, 1} : u(x) 6= b(x)

}
, (2.10)

[u](0) := u+(0)− b(0) , [u](1) := b(1)− u−(1) . (2.11)

Finally, we also add to the total energy a lower-order term of the form γ‖u− w(t)‖2L2(0,1), where
γ ≥ 0 is a fixed constant and

w ∈ AC([0, T ];L∞(0, 1)) (2.12)

is a given map, absolutely continuous in time.

3 Cohesive quasi-static evolution: the time-discrete evolu-
tion

We construct in this section a time-discrete evolution for the one-dimensional cohesive fracture
model, relative to a given time-dependent boundary displacement b(t). We assume in the following
that the boundary displacement b satisfying the assumption (2.6) is given, as well as the lower-
order term w satisfying (2.12) and that a positive threshold s̄ > 0 for the minimal opening which
leads to irreversibility is fixed.

We fix a discretization step τ > 0 and we consider a subdivision of [0, T ] of the form

0 = t0 < t1 < . . . < tNτ < tNτ+1 = T,

where Nτ is the largest integer such that τNτ < T , and tk := kτ for k ∈ {0, . . . , Nτ}. We also set
bτk = b(tk), wτk = w(tk).

The time-discrete evolution in this setting is defined as follows. For k = 0, select a solution
uτ0 ∈ BV(0, 1) of the minimum problem

min

{
Φ(u; bτ0) + γ

∫ 1

0

|u− wτ0 |2 dx : u ∈ BV(0, 1)

}
(3.1)

(with the convention that we do not indicate the dependence on (Γ, s) in the functional Φ defined
in (2.8) when Γ = ∅). We set

Γτ0 :=
{
x ∈ Jbτ0 (uτ0) : |[uτ0 ](x)| > s̄

}
, sτ0(x) := |[uτ0 ](x)| , (3.2)

where s̄ > 0 is the threshold fixed at the beginning of this section. Assume now to have constructed
uτi ∈ BV(0, 1) and pairs (Γτi , s

τ
i ) in the form (2.5), for i = 0, . . . , k − 1. We let uτk ∈ BV(0, 1) be a

minimum point of

min

{
Φ(u; Γτk−1, s

τ
k−1, b

τ
k) + γ

∫ 1

0

|u− wτk |2 dx : u ∈ BV(0, 1)

}
, (3.3)

and we set

Γτk := Γτk−1 ∪
{
x ∈ Jbτk (uτk) : |[uτk](x)| > s̄

}
,

sτk(x) :=

{
|[uτk](x)| ∨ sτk−1(x) if x ∈ Γτk−1,

|[uτk](x)| if x ∈ Γτk\Γτk−1.

(3.4)

9



Notice in particular that all the sets Γτk are finite, since at each step the minimizer uτk has at most
a finite number of jump points where the amplitude of the jump is larger than the fixed threshold
s̄. The well-posedness of this construction is proved in the following proposition. We show below
that uτk ∈ SBV(0, 1).

Proposition 3.1. For all k = 0, 1, . . . Nτ there exists uτk ∈ BV(0, 1) such that, by defining (Γτk, s
τ
k)

as in (3.4) (with Γτ−1 = ∅), the following hold:

(i) uτk is a minimizer of problem (3.3);

(ii) ‖uτk‖∞ ≤ max
{
‖bτk‖∞, ‖wτk‖∞

}
;

(iii) infτ infk min
{
|x− y| : x, y ∈ Γτk, x 6= y

}
> 0.

Proof. As this is a static result, we fix τ and k and drop them from the notation. We need to
show that, given a pair (Γ, s) as in (2.5), an affine function b : [0, 1] → R, and w ∈ L∞(0, 1), the
minimum problem

min

{
Φ(u; Γ, s, b) + γ

∫ 1

0

|u− w|2 dx : u ∈ BV(0, 1)

}
(3.5)

has a solution. Let (un)n be a minimizing sequence for problem (3.5). By a truncation argument
we can take ‖un‖∞ ≤ max{‖b‖∞, ‖w‖∞}. By comparing un with the function b (and possibly
replacing un with b) we obtain the uniform bound

Φ(un; Γ, s, b) + γ

∫ 1

0

|un − w|2 dx ≤
∫ 1

0

h(|b′|) dx+
∑
x∈Γ

g(0, s(x)) + γ

∫ 1

0

|b− w|2 dx ≤ C.

Let now s∗ > 0 be such that g(s∗, 0) = 1
2 , and let `∗ ∈ (0, `) be such that g(s, 0) ≥ `∗s for all

s ∈ [0, s∗]. Then the lower estimates h(t) ≥ `t− `2

4 , g(t, s) ≥ g(t, 0) yield

C ≥ Φ(un; Γ, s, b) ≥ `
∫ 1

0

|u′n|dx−
`2

4
+ `|Dcun|(0, 1) +

∑
x∈Jbun

g(|[un](x)|, 0)

≥ `
∫ 1

0

|u′n|dx−
`2

4
+ `|Dcun|(0, 1) +

∑
|[un](x)|≤s∗

`∗|[un](x)|+ 1

2
H0
(
{|[un](x)| > s∗}

)
(3.6)

≥ `
∫ 1

0

|u′n|dx−
`2

4
+ `|Dcun|(0, 1) +

∑
|[un](x)|≤s∗

`∗|[un](x)|+ 1

4‖un‖∞
∑

|[un](x)|>s∗

|[un](x)| .

Therefore the sequence (un)n is bounded in BV(0, 1) and, up to subsequences, it converges weakly*
in BV to some function u ∈ BV(0, 1), which is a minimizer of (3.5) by the lower semicontinuity
of the functional Φ, proved in Theorem 5.1 below. In particular, it also follows that ‖u‖∞ ≤
max{‖b‖∞, ‖w‖∞}.

It remains to prove (iii). We first show that there is a minimal distance between any two
new fracture points in Γτk\Γτk−1, independent of k and τ . Consider x1, x2 ∈ Jb

τ
k (uτk)\Γτk−1, with

si := [uτk](xi) and |si| > s̄, i = 1, 2. Suppose also x1 < x2. Let v := uτk + s2χ(x1,x2): by minimality
of uτk in problem (3.3) we have

0 ≤ g(|s1 + s2|, 0)− g(|s1|, 0)− g(|s2|, 0)+2γs2

∫ x2

x1

(uτk−wτk) dx+γs2
2|x1−x2| ≤ −cs̄+C|x1−x2|,

where the last inequality follows from (2.3) and the uniform L∞-bound on uτk and w. This proves
that the distance between x1 and x2 is larger than a uniform positive constant.

Similarly, we prove that any new fracture point of uτk cannot be too close to the points of Γτk−1.

Consider x1 ∈ Jb
τ
k (uτk)\Γτk−1 with s1 := [uτk](x1), |s1| > s̄. Let x2 ∈ Γτk−1 and let s2 := [uτk](x2).
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Assuming without loss of generality that x1 < x2 (the construction in the other case is symmetric),
by comparing the energy of uτk and v := uτk − s1χ(x1,x2) we have

0 ≤ g(|s1 + s2|, sτk−1(x2))− g(|s1|, 0)− g(|s2|, sτk−1(x2))− 2γs1

∫ x2

x1

(uτk − wτk) dx+ γs2
1|x1 − x2|

≤ −cs̄ + C|x1 − x2|,

where the last inequality follows from (2.4) and the uniform L∞-bound on uτk and w.

Proposition 3.2. Any minimizer u of (3.3) obeys Dcu = 0 and |u′| ≤ `
2 almost everywhere.

Proof. We define the measure µ := (u′ − `
2 )+ + (Dcu)+. We shall show that µ = 0, the argument

with (u′ + `
2 )− + (Dcu)− is identical.

Assume that there are a 6= b ∈ (0, 1) such that µ((a − ε, a + ε)) > 0 and µ((b − ε, b + ε)) > 0
for all ε > 0 sufficiently small. If such a pair does not exist, then the measure µ is concentrated
on {0, 1} and at most one additional point, and since µ does not contain any Dirac measure we
obtain µ = 0 and we are done. Let Iε := (a−ε, a+ε), Jε′ := (b−ε′, b+ε′), where ε, ε′ are positive
numbers such that these two intervals are disjoint subsets of (0, 1). We set

ψε,ε′(x) := νε,ε′((0, x)), with νε,ε′ :=
1

µ(Iε)
µ Iε −

1

µ(Jε′)
µ Jε′ .

We compare u with u + ρψε,ε′ for some ρ chosen below. This gives, since ψε,ε′ ∈ BV(0, 1) with
ψε,ε′(0) = ψε,ε′(1) = 0 and Jψε,ε′ = ∅,

0 ≤
∫ 1

0

[
h(u′ + ρψ′ε,ε′)− h(u′)

]
dx+ `|Dc(u+ ρψε,ε′)|(0, 1)− `|Dcu|(0, 1)

+ γ

∫ 1

0

[
(u− wτk + ρψε,ε′)

2 − (u− wτk)2
]

dx.

We observe that

u′ + ρψ′ε,ε′ −
`

2
= u′ − `

2
+

ρ

µ(Iε)
χIε(u

′ − `

2
)+ −

ρ

µ(Jε′)
χJε′ (u

′ − `

2
)+

where χIε and χJε′ are the characteristic functions of the two intervals. Therefore for any ρ ∈
(−µ(Iε), µ(Jε′)) we have u′ + ρψ′ε,ε′ − `

2 ≥ 0 whenever ρψ′ε,ε′ 6= 0, so that h(u′ + ρψ′ε,ε′)− h(u′) =
`ρψ′ε,ε′ . Analogously, for the same set of values of ρ we have

(Dcu)+ + ρDcψε,ε′ =

(
1 +

ρ

µ(Iε)
χIε −

ρ

µ(Jε′)
χJε′

)
(Dcu)+ ≥ 0

which implies |Dc(u + ρψε,ε′)|(0, 1) = |Dcu|(0, 1) + ρDcψε,ε′(0, 1). The above expression then
becomes

0 ≤
∫ 1

0

`ρψ′ε,ε′ dx+ `ρDcψε,ε′(0, 1) + γ

∫ 1

0

[
2ρ(u− wτk)ψε,ε′ + ρ2ψ2

ε,ε′
]

dx.

The sum of the first two terms is `ρνε,ε′(0, 1) = 0, and since ρ can still be chosen arbitrarily small

we conclude that
∫ 1

0
(u− wτk)ψε,ε′ dx = 0 for all admissible ε, ε′. By Fubini’s theorem we have

0 =

∫ 1

0

(u− wτk)(x)ψε,ε′(x) dx =

∫ 1

0

(u− wτk)(x)

∫ x

0

dνε,ε′(y) dx =

∫ 1

0

F (y) dνε,ε′(y)

for all ε, ε′, where F (y) :=
∫ 1

y
(u− wτk)(x) dx is continuous.
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We now consider the measure ν̂ε := 1
µ(Iε)

µ Iε−δb and set ψ̂ε(x) := ν̂ε((0, x)). Since νε,ε′ ⇀ ν̂ε

as ε′ → 0, and F is continuous, we obtain
∫ 1

0
F dν̂ε = 0. We compare u with u+ ρψ̂ε and obtain

0 ≤
∫ 1

0

[
h(u′ + ρψ̂′ε)− h(u′)

]
dx+ `|Dc(u+ ρψ̂ε)|(0, 1)− `|Dcu|(0, 1)

+ γ

∫ 1

0

[
(u− wτk + ρψ̂ε)

2 − (u− wτk)2
]

dx+ g(|[u](b)− ρ|, sτk−1(b))− g(|[u](b)|, sτk−1(b))

where as usual sτk−1(b) = 0 if b 6∈ Γτk−1. By the same computation as above, using that ν̂ε(Iε) = 1,

0 ≤ρ`+ 2γρ

∫ 1

0

F dν̂ε + γρ2

∫ 1

0

ψ̂2
ε dx+ g(|[u](b)− ρ|, sτk−1(b))− g(|[u]|(b), sτk−1(b)).

By (2.2) and (2.1) we have for |ρ| small

g(|[u](b)− ρ|, sτk−1(b)) ≤ g(|[u]|(b), sτk−1(b)) + g(|ρ|, 0) ≤ g(|[u]|(b), sτk−1(b)) + `|ρ| − ˜̀|ρ|p + o(|ρ|p).

Recalling
∫ 1

0
F dν̂ε = 0 we have

0 ≤ρ`+ `|ρ| − ˜̀|ρ|p + o(|ρ|p) + γρ2

∫ 1

0

ψ̂2
ε dx

for all ρ sufficiently small (positive or negative). This is a contradiction, hence we conclude that
µ = 0.

Proposition 3.1 allows to construct a piecewise constant evolution, relative to the discrete
boundary values bτk = b(tk) and to wτk := w(tk),

t 7→
(
uτ (t),Γτ (t), sτ (t)

)
for t ∈ [0, T ], (3.7)

where the piecewise constant interpolations in time are defined as

uτ (t) := uτk , Γτ (t) := Γτk , sτ (t) := sτk for t ∈ [tk, tk+1) , (3.8)

with k = 0, 1, . . . , Nτ , with Γτ−1 = ∅, sτ−1 = 0. We also consider the piecewise constant and the
piecewise affine interpolations in time of the boundary data, which are respectively defined as

bτ (t) := bτk , bτ (t) := bτk +
t− tk
τ

(bτk+1 − bτk) for t ∈ [tk, tk+1) , (3.9)

and similarly

wτ (t) := wτk , wτ (t) := wτk +
t− tk
τ

(wτk+1 − wτk) for t ∈ [tk, tk+1) . (3.10)

In the following we use the notation uτ (t, x) := (uτ (t))(x) (and similarly for the other functions
introduced above). We recall that we extend sτk by 0 outside Γτk.

We observe that for any k

Φ(uτk; Γτk−1, s
τ
k−1, b

τ
k) = Φ(uτk; Γτk, s

τ
k, b

τ
k). (3.11)

To see this, it suffices to show that

g
(
|[uτk](x)|, sτk(x)

)
= g
(
|[uτk](x)|, sτk−1(x)

)
for any x ∈ Jbτk (uτk) ∪ Γτk.

This is true, since in (3.4) we defined sτk(x) = sτk−1(x) ∨ |[uτk]|(x). If sτk−1(x) ≥ |[uτk]|(x) then
sτk−1(x) = sτk(x) and the two terms are identical. If not, then sτk(x) = |[uτk]|(x) and, re-

calling the assumption (i) on g in Section 2, we have g
(
|[uτk]|(x), sτk(x)

)
= g(|[uτk]|(x), 0) =

g
(
|[uτk]|(x), sτk−1(x)

)
. Therefore (3.11) holds.

We are interested in the evolution of the discrete total energy at time t, with timestep τ , which
is defined for t ∈ [0, T ] by

Eτ (t) := Φ(uτ (t); Γτ (t), sτ (t), bτ (t)) + γ

∫ 1

0

|uτ (t)− wτ (t)|2 dx . (3.12)
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Lemma 3.3. For any t ∈ [0, T ], letting tk be the discretization point such that t ∈ [tk, tk+1), we
have

Eτ (t) ≤ Eτ (0) +

∫ tk

0

∫ 1

0

(
h′((uτ (r))′)(ḃτ (r))′ + 2γ(uτ (r)− wτ (r))(ḃτ (r)− ẇτ (r))

)
dxdr +Rτ (t),

(3.13)
where

Rτ (t) :=

∫ tk

0

(
τ

∫ 1

0

|(ḃτ (r))′|2 dx+ γτ

∫ 1

0

|ḃτ (r)|2 dx

+γ

∣∣∣∣∫ 1

0

(wτ (r + τ)− wτ (r))ẇτ (r) dx

∣∣∣∣+ 2γ

∣∣∣∣∫ 1

0

(wτ (r + τ)− wτ (r))ḃτ (r) dx

∣∣∣∣)dr. (3.14)

Proof. We compare uτk with v :=uτk−1 + bτk − bτk−1: by minimality of uτk in problem (3.3) we have
by Proposition 3.2

Φ(uτk;Γτk−1, s
τ
k−1, b

τ
k) + γ

∫ 1

0

|uτk − wτk |2 dx

≤
∫ 1

0

h
(
|(uτk−1 + bτk − bτk−1)′|

)
dx+ γ

∫ 1

0

|uτk−1 + bτk − bτk−1 − wτk |2 dx

+
∑

x∈Γτk−1∪J
bτ
k−1 (uτk−1)

g
(
|[uτk−1](x)|, sτk−1(x)

)
.

If x ∈ {0, 1}, we remark that v(x)− bτk(x) = uτk−1(x)− bτk−1(x), so that the notation [uτk−1](x) is
appropriate. Therefore, recalling (3.11),

Φ(uτk;Γτk−1, s
τ
k−1, b

τ
k) + γ

∫ 1

0

|uτk − wτk |2 dx

≤ Φ(uτk−1; Γτk−2, s
τ
k−2, b

τ
k−1) + γ

∫ 1

0

|uτk−1 − wτk−1|2 dx

+

∫ 1

0

[
h
(
|(uτk−1 + bτk − bτk−1)′|

)
− h
(
|(uτk−1)′|

)]
dx

+ γ

∫ 1

0

(
|uτk−1 + bτk − bτk−1 − wτk |2 − |uτk−1 − wτk−1|2

)
. (3.15)

Since h′ is a Lipschitz function with |h′′| ≤ 2, the mean-value theorem gives

h(x+ y) ≤ h(x) + yh′(x) + y2 for all x, y ∈ R.

In particular,

h
(
(uτk−1 + bτk − bτk−1)′

)
− h
(
(uτk−1)′

)
≤ h′((uτk−1)′)(bτk − bτk−1)′ + |(bτk − bτk−1)′|2 .

Similarly,

|uτk−1 + bτk − bτk−1 − wτk |2 − |uτk−1 − wτk−1|2

= (wτk + wτk−1 − 2uτk−1)(wτk − wτk−1) + 2(uτk−1 − wτk)(bτk − bτk−1) + |bτk − bτk−1|2 .
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By inserting these inequalities into (3.15) and iterating we find

Φ(uτk; Γτk−1, s
τ
k−1, b

τ
k) + γ

∫ 1

0

|uτk − wτk |2 dx ≤ Φ(uτ0 ; bτ0) + γ

∫ 1

0

|uτ0 − wτ0 |2 dx

+

k∑
i=1

(∫ 1

0

h′((uτi−1)′)(bτi − bτi−1)′ dx+

∫ 1

0

|(bτi − bτi−1)′|2 dx

+ γ

∫ 1

0

(wτi + wτi−1 − 2uτi−1)(wτi − wτi−1) dx

+ 2γ

∫ 1

0

(uτi−1 − wτi )(bτi − bτi−1) dx+ γ

∫ 1

0

|bτi − bτi−1|2 dx

)
.

We can rewrite this inequality in terms of the interpolants defined in (3.8), (3.9), (3.10): for any
t ∈ [0, T ], denoting by tk the discretization point such that t ∈ [tk, tk+1), and observing that (3.11)
and (3.12) give

Eτ (t) = Φ(uτk; Γτk−1, s
τ
k−1, b

τ
k) + γ

∫ 1

0

|uτk − wτk |2 dx ,

we have

Eτ (t) ≤ Eτ (0) +

∫ tk

0

(∫ 1

0

h′((uτ (r))′)(ḃτ (r))′ dx+ τ

∫ 1

0

|(ḃτ (r))′|2 dx

+ γ

∫ 1

0

(wτ (r + τ) + wτ (r))ẇτ (r) dx− 2γ

∫ 1

0

wτ (r + τ)ḃτ (r) dx

+ 2γ

∫ 1

0

uτ (r)(ḃτ (r)− ẇτ (r)) dx+ γτ

∫ 1

0

|ḃτ (r)|2 dx

)
dr .

This concludes the proof.

4 Cohesive quasi-static evolution: the time-continuous evo-
lution

The goal of this section is to pass to the limit in the time-discrete evolution as the time-step τ
goes to zero. As in the previous section, we fix a positive threshold s̄ > 0 for the jumps, the final
time T > 0, a time-dependent boundary displacement b ∈ H1([0, T ];R2), and a lower order term
w ∈ AC([0, T ];L∞(0, 1)). Let (τn)n∈N be a decreasing sequence of time-discretization steps with
τn → 0 as n→∞. Correspondingly, let

0 = tn0 < tn1 < . . . < tnNn < tnNn+1 = T

be the subdivision of [0, T ] with tnk := kτn for k ∈ {0, . . . , Nn}. Let

t 7→
(
un(t) := uτn(t), Γn(t) := Γτn(t), sn(t) := sτn(t)

)
, for t ∈ [0, T ], (4.1)

be the piecewise constant interpolation, defined in (3.8), of a time-discrete evolution relative to
the boundary data bnk = b(tnk ) and to wnk = w(tnk ), as constructed in the previous section. Let also

bn(t) := bτn(t), bn(t) := bτn(t), wn(t) := wτn(t), wn(t) := wτn(t) (4.2)

be the piecewise constant and the piecewise affine interpolants of the maps b and w, according to
(3.9)–(3.10). We also consider the associated energy En(t) := Eτn(t), see (3.12). Our main result
is the following.

Theorem 4.1 (Existence of a quasi-static evolution). Under the assumptions of Section 2, with
b and w as in (2.6) and (2.12), there exists

(
u(t),Γ(t), s(t)

)
, for t ∈ [0, T ], with the following

properties:
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(i) u(t) ∈ BV(0, 1), supt∈[0,T ] ‖u(t)‖∞ ≤ supt∈[0,T ] max{‖b(t)‖∞, ‖w(t)‖∞}, Γ(t) ⊂ [0, 1] is a
finite set, s(t) : Γ(t)→ [s̄,∞), supt∈[0,T ] ‖s(t)‖∞ ≤ 2 supt∈[0,T ] max{‖b(t)‖∞, ‖w(t)‖∞};

(ii) (irreversibility) Γ(t1) ⊂ Γ(t2) and s(t1) ≤ s(t2) for all 0 ≤ t1 ≤ t2 ≤ T ;

(iii) u(0) minimizes the functional Φ(v; b(0)) + γ‖v − w(0)‖2L2(0,1) among all v ∈ BV(0, 1), and

Γ(0) = {x ∈ Jb(0)(u(0)) : |[u(0)](x)| > s̄}, s(0) = |[u](0)| on Γ(0);

(iv) {x ∈ Jb(t)(u(t)) : |[u(t)](x)| > s̄} ⊂ Γ(t) and |[u](t)| ≤ s(t) on Γ(t), for all t ∈ (0, T ];

(v) (static equilibrium) for all t ∈ (0, T ], u(t) minimizes the functional

Φ(v; Γ(t), s(t), b(t)) + γ

∫ 1

0

|v − w(t)|2 dx

among all v ∈ BV(0, 1);

(vi) (non-dissipativity) the total energy

E(t) := Φ(u(t); Γ(t), s(t), b(t)) + γ

∫ 1

0

|u(t)− w(t)|2 dx

satisfies for every t ∈ [0, T ]

E(t) = E(0) +

∫ t

0

∫ 1

0

(
h′((u(r))′)(ḃ(r))′ + 2γ(u(r)− w(r))(ḃ(r)− ẇ(r))

)
dxdr. (4.3)

Corollary 4.2. Theorem 4.1 implies that (u(t),Γ(t), s(t)) minimizes the functional

Φ(v; Γ, s, b(t)) + γ

∫ 1

0

|v − w(t)|2 dx

among all (v,Γ, s) such that Γ is a finite set with Γ(t) ⊂ Γ, s : Γ → [s̄,∞) satisfies s ≥ s(t) on
Γ(t), and v ∈ BV(0, 1) is such that {x ∈ Jb(t)(v) : |[v](x)| > s̄} ⊂ Γ.

Proof. By Theorem 4.1(i) and (iv), (u(t),Γ(t), s(t)) is admissible. Let now (v,Γ, s) be admissible.
By monotonicity of g we have Φ(v; Γ(t), s(t), b(t)) ≤ Φ(v; Γ, s, b(t)), and Theorem 4.1(v) then
concludes the proof.

Proof of Theorem 4.1. We divide the proof into several steps. In the following, we will denote by
C a generic constant, possibly depending on b, w, and γ, but independent of n and t, which might
change from line to line. As a preliminary remark, we observe that un(t) is a minimizer of problem
(3.3), for the value of k such that t ∈ [tnk , t

n
k+1); then

Φ(un(t); Γn(t− τn), sn(t− τn), bn(t)) + γ

∫ 1

0

|un(t)− wn(t)|2 dx

≤ Φ(v; Γn(t− τn), sn(t− τn), bn(t)) + γ

∫ 1

0

|v − wn(t)|2 dx for all v ∈ BV(0, 1).

Using (3.11) on the left-hand side, and monotonicity on the right-hand side, this implies

Φ(un(t);Γn(t), sn(t), bn(t)) + γ

∫ 1

0

|un(t)− wn(t)|2 dx

≤ Φ(v; Γn(t), sn(t), bn(t)) + γ

∫ 1

0

|v − wn(t)|2 dx for all v ∈ BV(0, 1).

(4.4)

Step 1: compactness. The first goal is to prove a uniform bound on En(t), independent of n and t,
by using the energy inequality (3.13). To this aim, notice that by using v = b(0) as test function
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in (3.1) we easily obtain a uniform bound on the initial energy En(0). Then (3.13) yields, as
|h′(ξ)| ≤ ` for all ξ,

En(t) ≤ En(0) +

∫ tnk

0

∫ 1

0

(
h′((un(r))′)(ḃn(r))′ + 2γ(un(r)− wn(r))(ḃn(r)− ẇn(r))

)
dxdr +Rn(t)

≤ C + `

∫ T

0

∫ 1

0

|(ḃn(r))′|dxdr

+ 2γ sup
r∈[0,T ]

(
‖un(r)‖∞ + ‖wn(r)‖∞

)∫ T

0

∫ 1

0

(
|ḃn(r)|+ |ẇn(r)|

)
dxdr +Rn(t).

For the remainder Rn(t), defined in (3.14), we have:

Rn(t) ≤ Cτn
∫ T

0

‖ḃn(r)‖2H1(0,1) dr + C sup
r∈[0,T ]

‖wn(r)‖∞
∫ T

0

(
‖ẇn(r)‖L1(0,1) + ‖ḃn(r)‖L1(0,1)

)
dr.

In view of the assumptions on b and w and of Proposition 3.1(ii), all the previous quantities are
uniformly bounded, therefore we obtain a uniform estimate on the energies En(t) and in turn,
similarly to (3.6), on the BV-norm of the functions un(t):

sup
n,t
En(t) <∞, sup

n,t
|Dun(t)|(0, 1) <∞. (4.5)

Fix now a countable dense set D ⊂ [0, T ], with 0 ∈ D. By a diagonal argument and by the
uniform bounds (4.5) we can find a subsequence (which we denote by the same symbol) such that

un(t) ⇀ u(t) weakly* in BV(0, 1), for all t ∈ D, (4.6)

for some u(t) ∈ BV(0, 1), with ‖u(t)‖∞ ≤ maxr∈[0,T ] max{‖b(r)‖∞, ‖w(r)‖∞}. This implies in
particular that supt supn supx |sn(t)(x)| <∞.

Thanks to Proposition 3.1(iii), it is clear that we have a uniform bound on the number of
points of Γn(t):

sup
n,t
H0(Γn(t)) <∞. (4.7)

Up to further subsequences, we can therefore assume that for any t ∈ D and n large enough
Γn(t) = {x̄n1 (t), . . . , x̄nN(t)(t)} (with the points x̄in(t) distinct and N(t) independent of n), and that

each sequence x̄ni (t) converges as n → ∞; we denote by Γ(t) = {x̄1(t), . . . , x̄N(t)(t)} the set of
limit points of these sequences,

Γ(t) :=
{
x̄i(t) := lim

n→∞
x̄ni (t), i = 1, . . . , N(t)

}
⊂ [0, 1] for t ∈ D. (4.8)

Notice that all the points x̄i(t) are distinct, since two different sequences (x̄ni (t))n, (x̄nj (t))n cannot
converge to the same limit point by Proposition 3.1(iii). Moreover, in view of the monotonicity
property Γn(t1) ⊂ Γn(t2) for t1 < t2, we also have

Γ(t1) ⊂ Γ(t2) for all t1, t2 ∈ D, t1 < t2. (4.9)

Finally, we also have compactness for the maps sn(t): by possibly extracting another subse-
quence, for every t ∈ D there exists a map s(t) : Γ(t)→ [s̄,∞), such that

sn(t)(x̄ni (t))→ s(t)(x̄i(t)) for all i = 1, . . . , N(t), t ∈ D. (4.10)

Moreover s(t1) ≤ s(t2) on Γ(t1) for all t1, t2 ∈ D, t1 < t2, since every map sn(t) is nondecreasing
in time by construction. As usual, we extend s by 0 on [0, 1]\Γ(t).

Step 2. We now prove the following claims:{
x ∈ Jb(t)(u(t)) : |[u(t)](x)| > s̄

}
⊂ Γ(t) for all t ∈ D, (4.11)
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and
|[u(t)](x)| ≤ s(t, x) for all x ∈ Γ(t) and t ∈ D. (4.12)

We first recall that by Proposition 3.2 we have un ∈ SBV (0, 1) and |u′n| ≤ `
2 almost everywhere.

In order to prove (4.11), suppose by contradiction that for some t ∈ D there exists x̄ ∈
Jb(t)(u(t))\Γ(t) with |[u(t)](x̄)| ≥ s̄ + ε, for some ε > 0. We also assume that x̄ ∈ (0, 1), as the
boundary case follows by a similar argument. Let Iδ := (x̄− δ, x̄+ δ) be such that Iδ ∩ Γn(t) = ∅
for all sufficiently large n; then, by definition of Γn(t), all the jumps of un(t) inside Iδ are smaller
than the threshold s̄: |[un(t)](x)| ≤ s̄ for every x ∈ Jun(t) ∩ Iδ. Moreover, as Γn(t − τn) ⊂ Γn(t),
un(t) solves the minimum problem

min

{∫
Iδ

h(|v′|) dx+
∑

x∈Jv∩Iδ

g(|[v](x)|, 0) + `|Dcv|(Iδ) + γ

∫
Iδ

|v − wn(t)|2 dx : v ∈ BV(Iδ),

{v 6= un(t)} ⊂⊂ Iδ
}
. (4.13)

By (4.6) and lower semicontinuity of the total variation, we have for every δ > 0

lim inf
n→∞

|Dun(t)|(Iδ) ≥ |Du(t)|(Iδ) ≥ s̄+ ε.

In view of Proposition 3.2, it is not possible that the limit jump of u(t) at x̄ is created by a nonzero
contribution from the absolutely continuous part of the measures Dun(t): more precisely, we can
assert that

for every δ > 0 sufficiently small lim inf
n→∞

∑
x∈Jun(t)∩Iδ

∣∣[un(t)](x)
∣∣ ≥ s̄+

ε

2
,

and each un(t) has at least two jumps in Iδ since |[un(t)](x)| ≤ s̄. In particular, for n large we
can find a partition Jun(t) ∩ Iδ = An ∪Bn such that∑

x∈An

∣∣[un(t)](x)
∣∣ ≥ ε

4
,

∑
x∈Bn

∣∣[un(t)](x)
∣∣ ≥ ε

4
. (4.14)

We construct a competitor for the minimum problem (4.13) by moving all the jumps of un(t) in
a single point xn ∈ Iδ\Jun(t): then the minimality of un(t) in (4.13) and the subadditivity of g
yield

0 ≤ g
(∣∣∣∣ ∑

x∈Jun(t)∩Iδ

[un(t)](x)

∣∣∣∣, 0
)
−

∑
x∈Jun(t)∩Iδ

g
(
|[un(t)](x)|, 0

)
+ Cδ

≤ g
( ∑
x∈Jun(t)∩Iδ

|[un(t)](x)|, 0
)
− g
(∑
x∈An

|[un(t)](x)|, 0
)
− g
(∑
x∈Bn

|[un(t)](x)|, 0
)

+ Cδ

≤ −cε/4 + Cδ,

the last inequality following by (4.14) and (2.3). This is a contradiction for δ small enough and
completes the proof of (4.11).

We next show (4.12). Let x̄i(t) be any point in Γ(t). Recalling (4.10) and that by construction
|[un(t)](x̄ni (t))| ≤ sn(t, x̄ni (t)), it is sufficient to prove that

|[u(t)](x̄i(t))| ≤ lim inf
n→∞

|[un(t)](x̄ni (t))| . (4.15)

Let us momentarily omit the dependence on t. Suppose by contradiction that for some ε > 0 one
has |[u](x̄i)| ≥ lim infn→∞ |[un](x̄ni )|+ε. Then, by Proposition 3.2, (4.6), and lower semicontinuity
of the total variation, we have for Iδ := (x̄i − δ, x̄i + δ) and sufficiently small δ

lim sup
n→∞

∑
x∈Jun∩Iδ\{x̄ni }

∣∣[un](x)
∣∣ ≥ ε

2
.
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We construct a competitor by moving all the jumps of un at the point x̄ni : the minimality of un
in (4.4) yields for n large enough

0 ≤ g
(∣∣∣∣ ∑

x∈Jun∩Iδ

[un](x)

∣∣∣∣, sn(x̄ni )

)
− g(|[un](x̄ni )|, sn(x̄ni ))−

∑
x∈Jun∩Iδ\{x̄ni }

g(|[un](x)|, 0) + Cδ

≤ g
( ∑
x∈Jun∩Iδ

∣∣[un](x)
∣∣, sn(x̄ni )

)
− g(|[un](x̄ni )|, sn(x̄ni ))− g

( ∑
x∈Jun∩Iδ\{x̄ni }

∣∣[un](x)
∣∣, 0)+ Cδ

≤ −cε/2 + Cδ,

where the last inequality follows by (2.4). This is a contradiction for δ small enough, and proves
that (4.15) holds.

Step 3: lower semicontinuity of the energies. We now claim that for every t ∈ D

Φ(u(t); Γ(t), s(t), b(t)) ≤ lim inf
n→∞

Φ(un(t); Γn(t), sn(t), bn(t)) . (4.16)

First observe that, in view of the continuity and monotonicity properties of g, (4.15), and (4.10),
we have ∑

x∈Γ(t)

g(|[u(t)](x)|, s(t, x)) ≤ lim inf
n→∞

∑
x∈Γn(t)

g
(
|[un(t)](x)|, sn(t, x)

)
. (4.17)

Consider any relatively open set A ⊂⊂ [0, 1]\Γ(t); by lower semicontinuity of the functional∫
A

h(|u′(t)|) dx+
∑

x∈Jb(t)(u(t))∩A

g(|[u(t)](x)|, 0) + `|Dcu(t)|(A)

≤ lim inf
n→∞

[∫
A

h(|u′n(t)|) dx+
∑

x∈Jbn(t)(un(t))∩A

g(|[un(t)](x)|, 0) + `|Dcun(t)|(A)

]

so that taking the supremum over all A and recalling (4.17) we obtain (4.16).

Step 4: static equilibrium. We now show that the minimality condition (v) holds for every t ∈ D.
In order to do this, we first show that for every v ∈ BV(0, 1) we can construct vn ∈ BV(0, 1) such
that vn → v in L2(0, 1) as n→∞ and

lim sup
n→∞

[
Φ(vn; Γn(t), sn(t), bn(t))− Φ(v; Γ(t), s(t), b(t))

]
≤ 0. (4.18)

Recalling (4.8), this can be done by considering the (possible) jumps of v on the points of Γ(t) and
moving them to the corresponding points of Γn(t): more precisely, assuming for simplicity that
Γ(t) ⊂ (0, 1) (the construction can be straightforwardly adapted if one of the boundary points
belongs to Γ(t)), we define vn by the conditions

v+
n (0) := v+(0), Dvn := Dv −

N(t)∑
i=1

[v](x̄i(t))δx̄i(t) +

N(t)∑
i=1

[v](x̄i(t))δx̄ni (t).

Then vn → v in L2(0, 1). By (4.8), if n is sufficiently large then x̄ni (t) 6= x̄j(t) for i 6= j. We set
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χni = 1 if x̄ni (t) 6= x̄i(t), and χni = 0 if x̄ni (t) = x̄i(t). We estimate

Φ(vn; Γn(t), sn(t), bn(t))− Φ(v; Γ(t), s(t), b(t))

=

N(t)∑
i=1

χni

[
g
(
|[v](x̄ni (t)) + [v](x̄i(t))|, sn(t, x̄ni (t))

)
− g
(
|[v](x̄i(t))|, s(t, x̄i(t))

)
− g(|[v](x̄ni (t))|, 0)

]

+

N(t)∑
i=1

(1− χni )
[
g
(
|[v](x̄i(t))|, sn(t, x̄ni (t))

)
− g
(
|[v](x̄i(t))|, s(t, x̄i(t))

)]
+ g(|v+(0)− bn(t, 0)|, 0)− g(|v+(0)− b(t, 0)|, 0) + g(|v−(1)− bn(t, 1)|, 0)− g(|v−(1)− b(t, 1)|, 0)

(2.2)

≤
N(t)∑
i=1

χni

[
g
(
|[v](x̄i(t))|, sn(t, x̄ni (t))

)
− g
(
|[v](x̄i(t))|, s(t, x̄i(t))

)]

+

N(t)∑
i=1

(1− χni )
[
g
(
|[v](x̄i(t))|, sn(t, x̄ni (t))

)
− g
(
|[v](x̄i(t))|, s(t, x̄i(t))

)]
+ g(|v+(0)− bn(t, 0)|, 0)− g(|v+(0)− b(t, 0)|, 0) + g(|v−(1)− bn(t, 1)|, 0)− g(|v−(1)− b(t, 1)|, 0).

Hence (4.18) follows by taking into account (4.10), the continuity of g, and that bn(t)→ b(t).
We are now in position to conclude the proof of (v) for t ∈ D. Let v ∈ BV(0, 1) and let vn be

the sequence constructed before. Then, using the convergence of un(t) → u(t) and wn(t) → w(t)
in L2(0, 1),

Φ(u(t); Γ(t), s(t), b(t)) + γ

∫ 1

0

|u(t)− w(t)|2 dx

(4.16)

≤ lim inf
n→∞

[
Φ(un(t); Γn(t), sn(t), bn(t)) + γ

∫ 1

0

|un(t)− wn(t)|2 dx

]
(4.4)

≤ lim inf
n→∞

[
Φ(vn; Γn(t), sn(t), bn(t)) + γ

∫ 1

0

|vn − wn(t)|2 dx

]
(4.18)

≤ Φ(v; Γ(t), s(t), b(t)) + γ

∫ 1

0

|v − w(t)|2 dx.

Notice in particular that, by taking v = u(t), the previous chain of inequalities yields the conver-
gence of the energies:

Φ(u(t); Γ(t), s(t), b(t)) = lim
n→∞

Φ(un(t); Γn(t), sn(t), bn(t)). (4.19)

Step 5: definition of the evolution for t /∈ D. By the monotonicity property (4.9), the uniform
bound on the number N(t) of points in Γ(t), and the monotonicity of t 7→ s(t), there exists a set
D′ ⊂ [0, T ]\D, at most countable, such that⋂
t′∈D,t′≥t

Γ(t′) =
⋃

t′∈D,t′≤t

Γ(t′), inf
t′∈D,t′≥t

s(t′) = sup
t′∈D,t′≤t

s(t′) for all t ∈ [0, T ]\D′. (4.20)

We then define Γ(t) and s(t) to be equal to the common values in (4.20) for all t ∈ [0, T ]\D′.
Moreover, by repeating the construction in Steps 1–4 for the points t ∈ D′, and up to a further
subsequence, we obtain a triple (u(t),Γ(t), s(t)) for all t ∈ D∪D′ such that the conclusions of the
previous steps hold for every t ∈ D ∪D′.

It remains to define u(t) for t ∈ [0, T ]\(D ∪D′). For t ∈ [0, T ], we introduce the quantity

θn(t) :=

∫ 1

0

(
h′((un(t))′)(ḃ(t))′ + 2γ(un(t)− wn(t))(ḃ(t)− ẇ(t))

)
dx, (4.21)
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as well as
θ∞(t) := lim sup

n→∞
θn(t). (4.22)

Notice that |θn(t)| ≤ C(‖ḃ(t)‖W 1,1(0,1) +‖ẇ(t)‖L1(0,1)) ∈ L1(0, T ), therefore θ∞ ∈ L1(0, T ) and by
Fatou’s Lemma

lim sup
n→∞

∫ t

0

θn(r) dr ≤
∫ t

0

θ∞(r) dr for all t ∈ [0, T ]. (4.23)

For a given t ∈ [0, T ]\(D ∪ D′), we can find a subsequence (nj)j , dependent on t, such that
θnj (t)→ θ∞(t), and unj (t) converges weakly* in BV(0, 1) to a function u(t) as j →∞. We choose
this limit function to define the triple (u(t),Γ(t), s(t)) for t ∈ [0, T ]\(D ∪ D′). Notice that the
arguments in Steps 2–4 can be repeated at the point t for this subsequence: therefore the evolution
t 7→ (u(t),Γ(t), s(t)) satisfies the properties (i)–(v) in the statement for all t ∈ [0, T ].

Step 6: non-dissipativity. To complete the proof, it only remains to show the condition (vi).
Setting

θ(t) :=

∫ 1

0

(
h′((u(t))′)(ḃ(t))′ + 2γ(u(t)− w(t))(ḃ(t)− ẇ(t))

)
dx, (4.24)

we first claim that
θ(t) = θ∞(t) for almost every t ∈ [0, T ]. (4.25)

In particular, this will give the measurability and integrability of θ(t) in [0, T ]. The claim (4.25)
can be proved by an argument similar to [24, Lemma 4.11]: fix t ∈ [0, T ] and consider any sequence
of positive numbers δi → 0 and any d ∈ R. By the definition of u(t) there is a sequence nj →∞
such that unj (t)(x) + dδix ⇀ u(t)(x) + dδix weakly* in BV(0, 1); by arguing as in Step 3 to prove
the lower semicontinuity of the energy along the sequence unj (t)(x) + dδix, and recalling (4.19),
we find

1

δi

(
Φ(u(t) + dδix; Γ(t), s(t), b(t) + dδix)− Φ(u(t); Γ(t), s(t), b(t))

)
≤ lim inf

j→∞

1

δi

(
Φ(unj (t) + dδix; Γnj (t), snj (t), bnj (t) + dδix)− Φ(unj (t); Γnj (t), snj (t), bnj (t))

)
.

By writing the explicit expressions of the previous quantities, we find

1

δi

∫ 1

0

(
h(|u′(t) + δid|)− h(|u′(t)|)

)
dx ≤ lim inf

j→∞

1

δi

∫ 1

0

(
h(|u′nj (t) + δid|)− h(|u′nj (t)|)

)
dx,

therefore there exists an increasing sequence of integers ji ≥ i such that

1

δi

∫ 1

0

(
h(u′(t) + δid)− h(u′(t))

)
dx ≤ 1

δi

∫ 1

0

(
h(u′nji

(t) + δid)− h(u′nji
(t))
)

dx+
1

i
.

Taking the limit i→∞ we obtain proceeding as in [24, Lemma 4.11],

d

∫ 1

0

h′(u′(t)) dx = lim inf
i→∞

∫ 1

0

h(u′(t) + δid)− h(u′(t))

δi
dx

≤ lim inf
i→∞

∫ 1

0

h(u′nji
(t) + δid)− h(u′nji

(t))

δi
dx

= lim inf
i→∞

d

∫ 1

0

h′(u′nji
(t) + τid) dx = lim inf

i→∞
d

∫ 1

0

h′(u′nji
(t)) dx

for suitable τi : (0, 1) → [0, δi]. Taking d = 1 and d = −1 we see that this is actually an equality
and that the limit does not depend on the subsequence ji, which implies

lim
j→∞

∫ 1

0

h′((unj (t))
′) dx =

∫ 1

0

h′((u(t))′) dx.
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By the strong convergence of unj (t)→ u(t) and wnj (t)→ w(t) in L2(0, 1), we then conclude that
θnj (t)→ θ(t) as j →∞ and, since θ∞ was the limit of the subsequence θnj , this shows (4.25).

By Lemma 3.3 we have

Enj (t) ≤ E(0) +

∫ t
nj
k

0

θnj (r) dr +Rnj (t) +

∫ t
nj
k

0

∫ 1

0

h′((unj (r))
′)(ḃnj (r)− ḃ(r))′ dx dr

+ 2γ

∫ t
nj
k

0

∫ 1

0

(unj (r)− wnj (r))(ḃnj (r)− ḃ(r)− ẇnj (r) + ẇ(r)) dx dr, (4.26)

where t
nj
k is the discretization point such that t ∈ [t

nj
k , t

nj
k+1). One can now check that the last

two terms in the previous expression are actually equal to zero, and that Rnj (t) → 0 as j → ∞,
thanks to the assumptions on b and w. Therefore, recalling (4.23), (4.25), and that Enj (t)→ E(t)
by (4.19), we conclude that

E(t) ≤ E(0) +

∫ t

0

θ(r) dr. (4.27)

To conclude the proof it remains to show the opposite inequality. Let us stress that the
subsequence nj depends on t, so that we do not have a unique subsequence converging pointwise
almost everywhere in [0, T ] to θ(t). This prevents to take directly the lower limit in the opposite
of inequality (4.26), to get the opposite of inequality (4.27). In order to overcome this difficulty,
we will first approximate the Lebesgue integral of θ by Riemann sums.

We fix t ∈ (0, T ]. We first observe that there exists a sequence of subdivisions of [0, t] of the
form

0 = ρm0 < ρm1 < . . . < ρmim−1 < ρmim = t, with lim
m→∞

max
i=1,...,im

|ρmi − ρmi−1| = 0,

with the property that

lim
m→∞

im∑
i=1

∣∣∣∣(ρmi − ρmi−1)θ(ρmi )−
∫ ρmi

ρmi−1

θ(r) dr

∣∣∣∣ = 0, (4.28)

lim
m→∞

im∑
i=1

∫ 1

0

∣∣∣∣(ρmi − ρmi−1)ḃ(ρmi )−
∫ ρmi

ρmi−1

ḃ(r) dr

∣∣∣∣dx = 0, (4.29)

lim
m→∞

im∑
i=1

∫ 1

0

∣∣∣∣(ρmi − ρmi−1)ẇ(ρmi )−
∫ ρmi

ρmi−1

ẇ(r) dr

∣∣∣∣dx = 0 (4.30)

(see [24, Lemma 4.12], and also [23, Lemma 4.12] for a proof, adapting the arguments of [32,
page 63]). We now exploit the global stability of u(ρmi−1) (property (v)), taking the competi-
tor u(ρmi ) + b(ρmi−1) − b(ρmi ) and adopting an iteration argument similar to that in the proof of
Lemma 3.3. We repeatedly use that b ∈ H1([0, T ],R2), with b(t) = (b(t, 0), b(t, 1)), and that
b(t) : [0, 1]→ R denotes the affine function interpolating between the boundary values b(t, 0) and
b(t, 1). Then, using also the monotonicity property (ii), we find

E(t) ≥ E(0) +

im∑
i=1

∫ ρmi

ρmi−1

∫ 1

0

h′((u(ρmi ))′)(ḃ(r))′ dxdr

+ 2γ

im∑
i=1

∫ ρmi

ρmi−1

∫ 1

0

(
w(ρmi )− u(ρmi )

)(
ẇ(r)− ḃ(r)

)
dx dr − Sm(t), (4.31)
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where

Sm(t) := γ

im∑
i=1

∫ 1

0

(
w(ρmi )− w(ρmi−1)

)2
dx− 2γ

im∑
i=1

∫ 1

0

(
w(ρmi )− w(ρmi−1)

)(
b(ρmi )− b(ρmi−1)

)
+

im∑
i=1

∫ 1

0

|b′(ρmi )− b′(ρmi−1)|2 dx+ γ

im∑
i=1

∫ 1

0

|b(ρmi )− b(ρmi−1)|2 dx.

Notice that, in view of the assumptions on w and b, we have Sm(t)→ 0 as m→∞. Recalling the
definition (4.24) of the map θ(t), we further obtain from (4.31)

E(t) ≥ E(0) +

im∑
i=1

(ρmi − ρmi−1)θ(ρmi )−Rm(t)− Sm(t), (4.32)

with the position

Rm(t) :=

im∑
i=1

∫ ρmi

ρmi−1

∫ 1

0

h′((u(ρmi ))′)
(
ḃ(ρmi )− ḃ(r)

)′
dxdr

+ 2γ

im∑
i=1

∫ ρmi

ρmi−1

∫ 1

0

(
u(ρmi )− w(ρmi )

)(
ḃ(ρmi )− ḃ(r)− ẇ(ρmi ) + ẇ(r)

)
dxdr.

Using the definition of h and the uniform bound in L∞ on u and w we can estimate

|Rm(t)| ≤ `
im∑
i=1

∣∣∣∣(ρmi − ρmi−1)(ḃ(ρmi ))′ −
∫ ρmi

ρmi−1

(ḃ(r))′ dr

∣∣∣∣
+ C

im∑
i=1

∫ 1

0

∣∣∣∣(ρmi − ρmi−1)
(
ḃ(ρmi )− ẇ(ρmi )

)
−
∫ ρmi

ρmi−1

(
ḃ(r)− ẇ(r)

)
dr

∣∣∣∣ dx ,
and the previous quantity vanishes in the limit as m → ∞ in view of (4.29)–(4.30). Eventually,
by passing to the limit as m→∞ in (4.32), recalling (4.28) and that Rm(t)→ 0, Sm(t)→ 0, we
conclude that

E(t) ≥ E(0) +

∫ t

0

θ(r) dr,

which completes the proof of (vi).

Remark 4.3. Notice that in the proof of Theorem 4.1 we do not obtain a unique subsequence
(nj)j, independent of t, such that the time-discrete evolution (unj (t),Γnj (t), snj (t)) converges to
the limit evolution (u(t),Γ(t), s(t)) for all t ∈ [0, T ]. This in general holds only for t in a countable
dense set. It would be possible to prove convergence of a subsequence for every t ∈ [0, T ] if we
knew that the minimum problem solved by u(t) has a unique solution.

5 Relaxation of the cohesive energy

In order to construct a time-discrete evolution in the cohesive setting including our notion of
irreversibility, we made use in Sections 2 and 3 of a relaxation result in the spirit of [11, 12].
The main difference is that the surface part of our energy contains also information on points
representing a preexisting crack, and therefore is not considered in the existing literature; however,
the proof is a small variant of the standard theory, and we present it in this section. A similar
problem was discussed by Giacomini in [39].
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Let b : {0, 1} → R be a given boundary datum. Let also (Γ, s) be a given pair with Γ ⊂ [0, 1]
countable and s : Γ→ (0,∞). Let Φ0 : BV(0, 1)→ [0,∞] be the functional defined by

Φ0(u) :=


∫ 1

0

|u′|2 dx+
∑

x∈Jbu∪Γ

g(|[u](x)|, s(x)) if u ∈ SBV(0, 1),

∞ otherwise,

(5.1)

where Jbu and the jump [u](x) at the boundary points x ∈ {0, 1} are defined in (2.10) and (2.11)
respectively.

Theorem 5.1. Assume that the surface energy density g satisfies assumptions (i)-(iv) of Section 2.
The relaxation of the functional Φ0 with respect to the weak*-topology of BV(0, 1) is given by
Φ : BV(0, 1)→ [0,∞],

Φ(u) :=

∫ 1

0

h(|u′|) dx+
∑

x∈Jbu∪Γ

g(|[u](x)|, s(x)) + `|Dcu|(0, 1) , (5.2)

where the elastic energy density h is defined in (2.9).

Proof. In order to handle the boundary conditions, we work in a larger open interval I containing
[0, 1], for instance I := (−1, 2), and we extend the boundary values as b(x) = b(0) for x ≤ 0,
b(x) = b(1) for x ≥ 1. We consider the functional

Ψ0(u) :=


∫ 1

0

|u′|2 dx+
∑

x∈Jbu∪Γ

g(|[u](x)|, s(x))
if u ∈ SBV(I),

u = b on I\(0, 1),

∞ otherwise in BV(I).

The statement is equivalent to proving that the relaxation of the functional Ψ0 with respect to
the weak*-topology of BV(I) is given by

Ψ(u) :=

∫ 1

0

h(|u′|) dx+
∑

x∈Jbu∪Γ

g(|[u](x)|, s(x)) + `|Dcu|(0, 1) (5.3)

if u ∈ BV(I) with u = b on I\(0, 1), Ψ(u) =∞ otherwise in BV(I).

Step 1: lower semicontinuity of Ψ. Let un ∈ BV(I) be a sequence converging weakly* in BV to

some function u; in particular, un → u in L1(I) and Dun
∗
⇀ Du in the sense of measures. We

can also assume without loss of generality that un = b on I\(0, 1) for every n, and that Ψ(un) has
a limit as n → ∞. Since Ψ can be obtained as the supremum of functionals corresponding to a
finite set Γ, we may also assume that Γ = {x1, . . . , xm}, with si = s(xi).

We now isolate the possible jumps of un at the points xi ∈ Γ: namely, we consider the atomic
measures

µn :=

m∑
i=1

[un](xi)δxi ,

and we can assume that [un](xi)→ ai for suitable values ai ∈ R, or equivalently

µn
∗
⇀ µ :=

m∑
i=1

aiδxi . (5.4)

We then consider the function vn ∈ BV(I) defined by vn(x) := b(0) + (Dun−µn)((−1, x)). Notice
in particular that vn is continuous at the points xi ∈ Γ, i = 1, . . . ,m. Moreover vn → v weakly*
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in BV, with v ∈ BV(I) satisfying Du = Dv + µ. With this decomposition we have

lim inf
n→∞

Ψ(un) ≥ lim inf
n→∞

[∫ 1

0

h(|v′n|) dx+
∑
x∈Jvn

g(|[vn](x)|, 0) + `|Dcvn|(0, 1)

]

+ lim inf
n→∞

m∑
i=1

g(|[un](xi)|, si) .

By standard results the first term on the right-hand side is lower semicontinuous with respect to
weak*-convergence in BV, see for instance [6, Theorem 5.2]; therefore, using also (5.4) and the
continuity of g,

lim inf
n→∞

Ψ(un) ≥
[∫ 1

0

h(|v′|) dx+
∑
x∈Jv

g(|[v](x)|, 0) + `|Dcv|(0, 1)

]
+

m∑
i=1

g(|ai|, si)

=

∫ 1

0

h(|u′|) dx+
∑

x∈Ju\Γ

g(|[u](x)|, 0) + `|Dcu|(0, 1)

+

m∑
i=1

(
g(|[v](xi)|, 0) + g(|ai|, si)

)
.

Finally, as [u](xi) = [v](xi)+ai, using the subadditivity property of g, we can bound from below the
last sum by

∑m
i=1 g(|[u](xi)|, si), and in turn we recover the desired inequality lim infn→∞Ψ(un) ≥

Ψ(u).

Step 2: relaxation. For all open sets A ⊂ I we consider the localized versions Ψ0(·;A) and Ψ(·;A)
of Ψ0 and Ψ respectively. We denote by Ψ0(·;A) the relaxation of Ψ0(·;A) with respect to the
weak*-topology of BV. Notice that this coincides with the lower semicontinuous envelope of
Ψ0(·;A) with respect to the strong topology of L1, that is

Ψ0(u;A) = inf
{

lim inf
n→∞

Ψ0(un;A) : un → u in L1(A)
}

(see Remark 5.3 below). The thesis amounts to show that Ψ0 = Ψ.
We further remark that since g is nondecreasing in the first argument,

∑
x∈Γ g(0, s(x)) ≤

Ψ(u) ≤ Ψ0(u) for all u. In particular, we can assume that
∑
x∈Γ g(0, s(x)) <∞ for the rest of the

proof.
By the lower semicontinuity of Ψ proved in the previous step, the inequality Ψ ≤ Ψ0 is immedi-

ate. We therefore show the opposite inequality. By the same argument as in [12, Proposition 3.3]
we have that for every fixed u ∈ BV(I) the set function Ψ0(u; ·) is the restriction to the family of
open subsets of I of a regular Borel measure.

Notice that for every u ∈ SBV(I) with u = b on I\(0, 1) and every open set A ⊂ I we have,
using the subadditivity of g,

Ψ0(u;A) ≤
∫
A

|u′|2 dx+
∑

x∈Ju∩A
g(|[u](x)|, 0) +

∑
x∈Γ∩A

g(0, s(x)) .

As a consequence of [12, Theorem 3.1] we obtain for every u ∈ BV(I) with u = b on I\(0, 1) and
every open set A ⊂ I

Ψ0(u;A) ≤
∫
A

h(|u′|) dx+ `|Dcu|(A) +
∑

x∈Ju∩A
g(|[u](x)|, 0) +

∑
x∈Γ∩A

g(0, s(x)) .

In particular, from the previous inequality it follows that

Ψ0(u; ·) (I\Γ) ≤ h(|u′|)L1 + `|Dcu|+
∑

x∈Ju\Γ

g(|[u](x)|, 0)δx . (5.5)
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It remains to evaluate Ψ0(u; ·) Γ. Without loss of generality we may assume that u ∈ BV(I)
with u = b on I\(0, 1). Let K ⊂ Γ be any finite subset of Γ. For ε > 0 we take an open set Aε ⊂ I
with K ⊂ Aε and

|Du|(Aε\K) < ε ,
∑

x∈Aε∩Γ\K

g(0, s(x)) < ε .

We can construct a sequence of functions uh ∈ SBV(I), with uh = b on I\(0, 1), such that uh is
piecewise constant, |Duh|(Aε\K) ≤ |Du|(Aε\K) < ε, and uh → u strongly in L∞(I). Then

Ψ0(u;Aε) ≤ lim inf
h→∞

Ψ0(uh;Aε) = lim inf
h→∞

∑
x∈Aε∩(Juh∪Γ)

g(|[uh](x)|, s(x))

≤ lim inf
h→∞

(∑
x∈K

g(|[uh](x)|, s(x)) +
∑

x∈Aε∩Γ\K

g(0, s(x)) +
∑

x∈(Juh\K)∩Aε

g(|[uh](x)|, 0)

)
≤
∑
x∈K

g(|[u](x)|, s(x)) +
∑

x∈Aε∩Γ\K

g(0, s(x)) + ` lim sup
h→0

|Duh|(Aε\K)

≤
∑
x∈K

g(|[u](x)|, s(x)) + (1 + `)ε ,

where we used the subadditivity of g in the second line, and the inequality g(s, 0) ≤ `s in the
third line. By letting ε→ 0 we obtain

Ψ0(u;K) ≤
∑
x∈K

g(|[u](x)|, s(x)) ,

and since K is an arbitrary finite subset of Γ we conclude that

Ψ0(u; ·) Γ ≤
∑
x∈Γ

g(|[u](x)|, s(x))δx . (5.6)

The combination of (5.5) and (5.6) yields the inequality Ψ0 ≤ Ψ and concludes the proof of the
theorem.

Remark 5.2. Observe that the functional Φ is also the lower semicontinuous envelope of

Φ̃0(u) :=


∫ 1

0

|u′|2 dx+
∑

x∈Jbu∪Γ

g(|[u](x)|, s(x))
if u ∈ SBV(0, 1)

with H0(Ju) <∞,
∞ otherwise,

which is finite only on functions with a finite number of jumps. Indeed, the functions of the recovery
sequence constructed in the second step of the proof of Theorem 5.1 are piecewise constant and
therefore they satisfy the additional constraint.

Remark 5.3. Notice that the relaxation Φ of Φ0 with respect to the weak*-topology of BV coincides
with the relaxation of Φ0 in the L1-topology, which is given by

Φ1(u) := inf
{

lim inf
n→∞

Φ0(un) : un → u in L1(0, 1)
}
. (5.7)

Indeed, the inequality Φ1 ≤ Φ is obvious. For the converse, first notice that the same estimate as
in (3.6) gives that for every sequence (un)n with supn ‖un‖∞ <∞ and supn Φ0(un) <∞ one also
has supn |Dun|(0, 1) < ∞. Then, given any sequence un → u in L1(0, 1) with supn Φ0(un) < ∞,
consider the truncation uMn := (−M) ∨ (un ∧M), for M > 0 sufficiently large. By the previous
observation we have uMn → uM in the weak*-topology of BV, and therefore

Φ(uM ) ≤ lim inf
n→∞

Φ0(uMn ) ≤ lim inf
n→∞

Φ0(un) .

By passing to the limit as M →∞, the inequality Φ ≤ Φ1 follows.
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6 Static phase-field approximation: the cohesive energy of
pristine material

The goal of this and the next section is to derive a cohesive energy density g(s, s′) from a (static)
phase-field approximation, and to show that the function obtained in this way satisfies the as-
sumptions in Section 2. In this section we focus on the cohesive energy g0 of “pristine” materials,
defined in (6.6): this corresponds to the function g(s, 0) in the notation of Section 2, i.e. it is
the energy at points which were not previously fractured. The definition of g0 is based on the
phase-field approximation proved in [20], which we state in Section 6.3.

6.1 A class of cohesive energies g0 for pristine material

Let f be a function with the following properties:

f ∈ C1([0, 1); [0,∞)) is nondecreasing, f−1(0) = {0}, (6.1)

f1(s) := sf(1− s) is strictly decreasing, and f1(
√
·) is convex, (6.2)

f1(s) = `− `1s+ o(s) as s→ 0+, (6.3)

for some `, `1 > 0, where lims→0+ o(s)/s = 0. The assumptions (6.2)–(6.3) are of technical nature
and are slightly stronger than the corresponding assumption in [20]: we need to include them in
order to guarantee further properties of the surface energy density g0 defined below. For instance,
prototype pairs (f, f1) with these properties are

fa(s) :=
`s

1− s and fa1 (s) := `(1− s), for any ` > 0, (6.4)

(with `1 = ` and s 7→ fa1 (
√
s) = `(1−√s) convex) as well as

f b(s) :=
(`+ b(1− s))s2

1− s and f b1(s) := (`+ bs)(1− s)2, for any ` > 0, b ∈ (−`, 2`), (6.5)

(with `1 = 2`− b and s 7→ f b1(
√
s) = (`+ b

√
s)(1−√s)2 convex).

We now introduce a function g0, depending on f , which will turn out to be a cohesive energy
density for a pristine material, i.e., using the notation of Section 2, will satisfy g0(·) = g(·, 0), for a
suitable g. The relation of the functions f and g0 to the phase-field model is discussed in Section
6.3 below, see in particular (6.16), (6.17) and (6.18). We define g0 : [0,∞) → [0,∞) as follows
(see Figure 2):

g0(s) := inf
(α,β)∈U1

Gs(α, β), (6.6)

where

Gs(α, β) :=

∫ ∞
−∞

(
s2f2(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt , (6.7)

U1 :=

{
(α, β) ∈ H1

loc(R)×H1
loc(R) : α′ ∈ L1(R),

∣∣∣∣ ∫ ∞
−∞

α′(t) dt

∣∣∣∣ = 1,

0 ≤ β ≤ 1, lim
|t|→∞

β(t) = 1

}
. (6.8)
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Figure 2: Graph of the function g0 for two different choices of f . Specifically, ga0 is generated using
the function fa defined in (6.4) with ` = 1, and obeys ga0 (s) = 1 for s ≥ sfrac with sfrac ∼ 3; gb0 is
generated using the function f b defined in (6.5) with ` = 1.5, `1 = 0.2 (hence b = 2.8), and obeys
gb0 < 1 for all s ∈ [0,∞).
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Figure 3: Left: Graph of an optimal pair (α, β) from the characterization of g0 in (6.10), for
fa1 (s) := `(1− s), ` = 1, as in (6.4). The dashed line is α(t) = t, the full curves are β with (from
top to bottom) s = 0.5, s = 1, s = 1.5, s = 2. Right: Graph of an optimal function γ from the
characterization of g0 in (6.11). From bottom to top, s = 0.5, s = 1, s = 1.5, s = 2.

6.2 Main properties of g0

In this section we summarize the main properties satisfied by the function g0, defined by (6.6).
Since the proofs are rather technical, we postpone all of them to Section 8.1.

We first observe that the following equivalent characterizations hold for g0:

g0(s) = inf
T>0

inf

{∫ T

−T

(
s2f2(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt : α, β ∈ H1(−T, T ),

α(−T ) = 0, α(T ) = 1, 0 ≤ β ≤ 1, β(±T ) = 1

}
(6.9)

= inf

{∫ 1

0

|1− β|
√
s2f2(β)|α′|2 + |β′|2 dt : (α, β) ∈ H1(0, 1)×H1(0, 1),

α(0) = 0, α(1) = 1, 0 ≤ β ≤ 1, β(0) = β(1) = 1

}
(6.10)

= inf

{∫ 1

0

√
s2(f1(

√
γ))2 + |γ′|2

4 dt : γ ∈W 1,1
0 ([0, 1], [0, 1])

}
. (6.11)

For a proof, see Proposition 8.1 and Proposition 8.3. See Figure 3 for the qualitative behaviour of
the optimal profiles in the minimum problems (6.10) and (6.11). We remark that (1 − β)f(β) =
f1(1 − β) by (6.3) is continuous at β = 1, so that the integrand in (6.10) is interpreted as s`|α′|
on the set {β = 1}. Notice also that the infimum in (6.10) is invariant under reparametrization of
the interval (0, 1).

The next theorem shows that g0 enjoys the same properties as the function g(·, 0) in Section 2.

27



The interpretation of g0 as a function of type g(·, 0), for a suitable function g, will be clear in
Section 7.

Theorem 6.1. Let g0 be defined by (6.6) with a function f satisfying properties (6.1), (6.2), (6.3).
Then g0 satisfies the following properties:

(i) g0 is monotone nondecreasing;

(ii) g0(s) ≤ 1 ∧ `s and lims→∞ g0(s) = 1;

(iii) there exists ˜̀> 0 such that

g0(s) = `s− ˜̀s5/3 + o(s5/3) as s→ 0+; (6.12)

(iv) for every s1, s2 ≥ 0,
g0(s1 + s2) ≤ g0(s1) + g0(s2) ; (6.13)

if in addition s1, s2 > 0, the inequality is strict;

(v) g0 is Lipschitz continuous with Lipschitz constant `.

The function g0 satisfies g0(s) ∈ [0, 1] for all s. Many properties of g0 are different if g0(s) < 1
or g0(s) = 1. Therefore we define

sfrac := sup{s : g0(s) < 1} ∈ (0,∞]. (6.14)

The existence and the properties of optimal profiles in the minimum problem (6.6) are discussed
in the following theorem. In particular we show that, in the case g0(s) < 1, the infimum in (6.6)
is attained by an optimal pair (αs, βs), and that the minimum value ms of the optimal profile βs
is uniquely determined by s, and is a monotone function of s.

Theorem 6.2. Let g0 be defined by (6.6) with a function f satisfying properties (6.1), (6.2), (6.3),
and let sfrac be defined as in (6.14). Then the following hold:

(i) For all s < sfrac one has g0(s) < 1, and there exists an optimal pair (αs, βs) ∈ U1 such that
g0(s) = Gs(αs, βs); the minimizer of (6.6) is unique up to translations, in the sense that if

(αs, βs) and (α̂s, β̂s) are minimizers then there are a1, t1 ∈ R such that αs(t) = a1+α̂s(t−t1),

βs(t) = β̂s(t− t1).

(ii) For all s ≥ sfrac one has g0(s) = 1, and g0(s) = Gs(0, βs), where βs(t) := 1− e− |t|2 .

Moreover, the value of the minimum of the optimal profile βs,

ms := min
t∈R

βs(t), (6.15)

is uniquely determined by s. The map s 7→ ms is continuous, strictly decreasing in [0, sfrac), with
m0 = 1 and ms = 0 for s ≥ sfrac.

Fig. 4 shows the behavior of an optimal pair (α, β) in the sense of Theorem 6.2(i).
In the following proposition we discuss under which conditions sfrac <∞.

Proposition 6.3. Let η := lim inft↑1
f1(t)
1−t2 , where f1 is the function defined in (6.2). If η = 0 then

g0(s) < 1 for all s, so that sfrac =∞. If η > 0 and sη ≥ 6 then g0(s) = 1, so that sfrac ≤ 6/η.

We observe that the function fa defined in (6.4) has η = 1
2` and therefore sfrac ∈ (0, 12/`],

whereas the function f b defined in (6.5) has η = 0 and therefore sfrac =∞. See also Figure 2.
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Figure 4: Graph of an optimal pair (α, β) from the definition of g0 in (6.6) with fa1 (s) := `(1− s),
` = 1, as in (6.4), for s = 0.5, s = 1, s = 1.5 and s = 2 (from left to right). In each graph α is
dashed, β is the full curve.

6.3 Phase-field approximation and blow-up around jump points

We now clarify in which sense the function g0, defined in (6.6), is related to a phase-field approx-
imation. Following [20], we introduce a family of functionals Fε : L1(0, 1) × L1(0, 1) → [0,∞],
depending on a real parameter ε > 0, by setting

Fε(u, v) :=


∫ 1

0

(
f2
ε (v)|u′|2 +

(1− v)2

4ε
+ ε|v′|2

)
dx

if u, v ∈ H1(0, 1),

0 ≤ v ≤ 1 L1-a.e. in (0, 1),

∞ otherwise.

(6.16)

Here the function fε : [0, 1]→ R is defined as

fε(s) := 1 ∧ ε1/2f(s), fε(1) = 1, (6.17)

where f is a fixed function satisfying the assumptions (6.1)–(6.3).
We also introduce the limit functional F : L1(0, 1)× L1(0, 1)→ [0,∞]:

F(u, v) :=


∫ 1

0

h(|u′|) dx+

∫
Ju

g0(|[u]|) dH0 + `|Dcu|(0, 1)
if u ∈ BV(0, 1),

v = 1 L1-a.e. in (0, 1),

∞ otherwise.

(6.18)

The density h : R→ [0,∞) is defined as in (2.9),

h(ξ) :=

{
ξ2 if 0 ≤ |ξ| ≤ `

2 ,

`|ξ| − `2

4 if |ξ| > `
2

(6.19)

and g0 : [0,∞)→ [0,∞) is the density defined in (6.6).
We will also consider the localized versions of the functionals above, by writing Fε(u, v;A)

and F(u, v;A) when the domain (0, 1) is replaced by an open set A ⊂ (0, 1). The following
Γ-convergence result is proved in [20].

Theorem 6.4 (Conti-Focardi-Iurlano [20]). Let f obey (6.1) and (6.2). The functionals Fε
defined in (6.16) Γ-converge as ε→ 0+ to the functional F defined in (6.18) in L1(0, 1)×L1(0, 1).
Moreover, if (uε, vε) satisfies the uniform bound

sup
ε

(
Fε(uε, vε) + ‖uε‖L1(0,1)

)
<∞, (6.20)

then there exists a subsequence (uεk , vεk)k and a function u ∈ BV(0, 1) such that uεk → u almost
everywhere in (0, 1) and vεk → 1 in L1(0, 1).

29



We next discuss the behavior of a recovery sequence of Fε near to a limit jump point. In such
points the material, originally pristine, develops a fracture. This investigation will motivate the
introduction, in Section 7, of an irreversibility constraint on the functionals Fε, which amounts
to consider the case when a fracture develops in a material that is not pristine, but already
pre-fractured in some points.

We show that the blow-ups of a recovery sequence (uε, vε) of Fε around a jump point x̄ of the
limit u converge to an optimal profile for g0(|[u](x̄)|), that is, to an optimal pair for the problem
(6.6). Motivated by Proposition 3.2, we will restrict to the case u ∈ SBV(0, 1), with |u′| ≤ `

2 ,
and for simplicity we will further assume H0(Ju) < ∞. The proof of the theorem is given in
Section 8.2.

Theorem 6.5 (Behaviour of recovery sequences). Let f obey (6.1)–(6.3) and let Fε be defined
as in (6.16)–(6.17). Let u ∈ SBV(0, 1) have a finite number of jumps and satisfy |u′| ≤ `

2 almost
everywhere in (0, 1). Let (uε, vε) be a recovery sequence for Fε corresponding to u, that is, (uε, vε) ∈
H1(0, 1)×H1(0, 1), 0 ≤ vε ≤ 1 almost everywhere, and

uε → u in L1(0, 1), vε → 1 in L1(0, 1), Fε(uε, vε)→ F(u, 1) (6.21)

as ε → 0+. Suppose in addition that supε ‖uε‖∞ < ∞. Then there exists a subsequence εk → 0
with the following properties:

(i) For every jump point x̄ ∈ Ju there exist xk → x̄ such that

wk(x) := vεk(xk + εkx)→ βs̄(x) strongly in H1
loc(R), (6.22)

where s̄ := |[u](x̄)| and βs̄ is an optimal profile for the definition of g0(s̄) in (6.6), in the
sense of Theorem 6.2. Moreover, in the case g0(|[u](x̄)|) < 1 we also have that

zk(x) := uεk(xk + εkx)→ s̄αs̄(x) strongly in H1
loc(R), (6.23)

where αs̄ is such that (αs̄, βs̄) ∈ U1 and g0(s̄) = Gs̄(αs̄, βs̄).
(ii) For every η > 0, setting Iη :=

⋃
x∈Ju(x− η, x+ η) we have that as ε→ 0∫

(0,1)\Iη
f2
ε (vε)|u′ε|2 dx→

∫
(0,1)\Iη

|u′|2 dx,

∫
(0,1)\Iη

( (1− vε)2

4εk
+ ε|v′ε|2

)
dx→ 0. (6.24)

7 Static phase-field approximation: the cohesive energy of
pre-fractured material

7.1 A class of cohesive energies g for pre-fractured material

We now introduce a new surface energy density g, depending on two variables s, s′, and detail
its connection with the phase-field approximating energies. We will show in particular that the
function g defined below satisfies all the assumptions in Section 2, so that for such an energy
density a quasi-static evolution can be constructed, as described in Section 4.

We let f satisfy the assumptions (6.1)–(6.3), as in Section 6.1. For s, s′ ≥ 0 we set

g(s, s′) := inf
(α,β)∈Vs′

Gs(α, β), (7.1)

where
Vs′ :=

{
(α, β) ∈ U1 : inf β ≤ ms′

}
, (7.2)

Gs and U1 have been defined in (6.7) and (6.8) respectively, and ms′ denotes the value of the
minimum of an optimal profile for g0(s′), see (6.15). The effect of the second variable s′ is to
introduce a “memory effect” that takes into account the maximal amplitude of the jumps at
previous times. We remark that, when s′ = 0, the constraint is not active since m0 = 1, and
therefore

g(s, 0) = g0(s), (7.3)

where g0 is the function defined in (6.6). We refer to Figure 5 and Figure 6 for an illustration.
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Figure 5: Left: Graph of g0(s) and g(s, s′) for ms′ = 0.3, 0.5 and 0.7 (from bottom to top) and
f b1(s) in (6.5) with ` = 1.5, `1 = 0.2 as in Figure 1 and Figure 2. Middle and right: Graph of (α, β)
and γ from (7.5) and (7.6) for s = 0.3 and ms′ = 0.1, 0.2, 0.5, 0.7 and the same f b1 corresponding
to Figure 3. For ms′ = 0.7 the curves are the same as for g0. See also Figure 6.
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Figure 6: Graph of the optimal (α, β) entering (7.4) with a very large T , for s = 0.3 and ms′ =
0.7, 0.5, 0.2, 0.1, as in Figure 5. For the largest value of ms′ one sees that the constraint is not
active and β is smooth at t = 0; for the others the constraint is active and the derivative of β
jumps. Correspondingly, the profile of α becomes more concentrated.

7.2 Main properties of g

In this section we state the main properties of g, whose definition is given in (7.1). The cor-
responding proofs are postponed to Section 8.3. The next theorem establishes that g enjoys all
assumptions listed in Section 2.

Theorem 7.1. Let g be defined by (7.1) with a function f satisfying properties (6.1), (6.2), (6.3).
Then g satisfies hypotheses (i)–(iv) of Section 2.

Analogously to what happens for g0 (see Section 6.2), the following equivalent characterizations
hold for g:

g(s, s′) = inf
T>0

inf

{∫ T

−T

(
s2f2(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt : α, β ∈ H1(−T, T ),

|α(T )− α(−T )| = 1, 0 ≤ β ≤ 1, β(±T ) = 1, inf β ≤ ms′

}
(7.4)

= inf

{∫ 1

0

|1− β|
√
s2f2(β)|α′|2 + |β′|2 dt : (α, β) ∈ H1(0, 1)×H1(0, 1),

α(0) = 0, α(1) = 1, 0 ≤ β ≤ 1, β(0) = β(1) = 1, inf β ≤ ms′

}
(7.5)

= inf

{∫ 1

0

√
s2(f1(

√
γ))2 + |γ′|2

4 dt : γ ∈W 1,1
0 ([0, 1], [0, 1]), sup γ ≥ (1−ms′)

2

}
. (7.6)

Extending α and β by constants it is easy to show that the inf in the first line of (7.4) is nonin-
creasing in T . Finally, the following technical lemma holds.
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Lemma 7.2. For µ > 0, let g(µ) : [0,∞)× [0,∞)→ [0,∞) be defined by

g(µ)(s, s′) := inf
T>0

inf

{∫ T

−T

(
f2(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt : α, β ∈ H1(−T, T ),

|α(T )− α(−T )| = s, 0 ≤ β ≤ 1, β(±T ) = 1− µ, inf β ≤ ms′

}
.

(7.7)

Then we have
|g(s, s′)− g(µ)(s, s′)| ≤ 3µ2, (7.8)

for every s, s′ ≥ 0.

7.3 Phase-field approximation

In this subsection we show that the new energy density g defined in (7.1) appears in the Γ-limit of
the phase-field energies Fε introduced in (6.16) when we include a suitable irreversibility constraint.
Precisely, below we first introduce an irreversibility constraint at level ε on the functionals Fε,
in the form of a monotonicity condition on the minimum values of the damage variable vε. This
choice is motivated by the blow-up analysis performed in Theorem 6.5. Then, we prove that the
Γ-limit of such constrained functionals is of the form (2.8), with g given by (7.1).

We assume in the following that a pair (Γ, s) as in (2.5) is given: Γ is a finite subset of [0, 1],
and s : Γ → (0,∞). We also fix a boundary datum b : {0, 1} → R. In order to deal with the
boundary conditions, it is convenient to work in a larger open interval Ω containing [0, 1], for
instance Ω := (−1, 2). For ε > 0 let Lε > 0 be such that Lε → 0 and Lε

ε → ∞ as ε → 0. We
introduce a constrained functional, defined on L1(Ω)× L1(Ω), by setting

F̂ε(u, v; Γ, s, b) :=

Fε(u, v; Ω)
if v(x) ≤ ms(x) for every x ∈ Γ,

u(x) = b(0) for x < −Lε, u(x) = b(1) for x > 1 + Lε,

∞ otherwise.

(7.9)

Here ms denotes the minimum value of an optimal profile βs for g0(s), see Theorem 6.2 and in
particular (6.15). Recalling the definition (2.8) of the relaxed functional Φ(· ; Γ, s, b), the limit
functional is defined on L1(Ω)× L1(Ω) by

F̂(u, v; Γ, s, b) :=

Φ(u; Γ, s, b)
if u ∈ BV(Ω), v = 1 a.e.,

u(x) = b(0) for x < 0, u(x) = b(1) for x > 1,

∞ otherwise.

(7.10)

The main result of this section is the following.

Theorem 7.3. Let a finite set Γ ⊂ [0, 1], a map s : Γ→ (0,∞), and a boundary Dirichlet datum
b : {0, 1} → R be given. Then the functionals F̂ε(· ; Γ, s, b) Γ-converge as ε→ 0+ to F̂(· ; Γ, s, b) in
L1(Ω)× L1(Ω).

In the rest of this section we drop the dependence on (Γ, s, b) in the functionals F̂ε and F̂ to
lighten the notation, as these quantities are fixed. In order to prove the theorem we introduce the
following standard notions:

F̂ ′(u, v) := Γ- lim inf
ε→0

F̂ε(u, v)

:= inf
{

lim inf
ε→0

F̂ε(uε, vε) : (uε, vε)→ (u, v) in L1(Ω)× L1(Ω)
}
,

F̂ ′′(u, v) := Γ- lim sup
ε→0

F̂ε(u, v)

:= inf
{

lim sup
ε→0

F̂ε(uε, vε) : (uε, vε)→ (u, v) in L1(Ω)× L1(Ω)
}
.

The proof of Theorem 7.3 follows by combining Proposition 7.4 and Proposition 7.5 below.
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Proposition 7.4 (Liminf inequality). For every (u, v) ∈ L1(Ω)× L1(Ω) it holds

F̂(u, v) ≤ F̂ ′(u, v) . (7.11)

Proof. The proof follows the lines of [20, Proposition 5.1], with the natural modifications required
to include the additional constraint. We denote Γ = {x̄1, . . . , x̄k}, and s̄i = s(x̄i). Fix any
sequence (uε, vε)→ (u, v) in L1(Ω)×L1(Ω) with supε F̂ε(uε, vε) <∞. The proof will be achieved
by showing that u ∈ BV(Ω), v = 1 almost everywhere, and

F̂(u, 1) ≤ lim inf
ε→0

Fε(uε, vε; Ω) . (7.12)

By possibly passing to a subsequence, we can assume without loss of generality that the lim inf in
(7.12) is in fact a limit, and that the convergence of uε and vε is also pointwise almost everywhere.
The uniform bound on the energy of (uε, vε) gives v = 1 almost everywhere, and vε(x̄i) ≤ ms̄i < 1.
Moreover, u(x) = b(0) for x < 0, u(x) = b(1) for x > 1.

By repeating the construction in the first part of the proof of [20, Proposition 5.1], given any
δ > 0 one can determine a finite number of points S = {t1, . . . , tL} ⊂ Ω, with Γ ⊂ S, with the
following property: for all η > 0 sufficiently small, η � δ and η < 1−ms̄i for all i, setting

Sη :=

L⋃
i=1

(ti − η, ti + η),

one has for all ε sufficiently small (depending on η)

(1− ω(δ))

∫
Ω\Sη

h(|u′ε|) dx ≤ Fε(uε, vε; Ω\Sη) (7.13)

where ω(δ)→ 0 as δ → 0 is a modulus of continuity.
The uniform bound on the energies Fε(uε, vε), together with (7.13), yields

sup
η

sup
ε

∫
Ω\Sη

|u′ε|dx <∞ ,

and therefore u ∈ BV(Ω\Sη) for all η > 0; in turn we have u ∈ BV(Ω) by the finiteness of S, and
by lower semicontinuity we obtain

(1− ω(δ))F̂(u, 1; Ω\Sη) ≤ lim inf
ε→0

Fε(uε, vε; Ω\Sη) . (7.14)

We now estimate the contribution to the energy coming from the region Sη. We first consider
the points x̄i ∈ Γ, i = 1, . . . , k, which in particular belong to S (recall that Γ ⊂ S). Let J iη:=(x̄i−
η, x̄i + η). We introduce another small parameter µ > 0 and we choose x1, x2 ∈ J iη, x1 < x̄i < x2,
with the following properties:

vε(x1)→ 1, vε(x2)→ 1, (7.15)

uε(x1)→ u(x1), uε(x2)→ u(x2), (7.16)

|u(x1)− u−(x̄i)| < µ, |u(x2)− u+(x̄i)| < µ. (7.17)

We define I:=(x1, x2) and denote by Cε the connected component of the set

{x ∈ I : vε(x) < 1− η} (7.18)

containing x̄i, and by Cjε the connected components (different from Cε) of the same set (7.18)
in which vε achieves the value 1 − δ (recall that η � δ, η < 1 −ms̄i and (7.15)). In each such
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component Cjε we have, denoting by y its first endpoint and by z an interior point in which
vε(z) = 1− δ,

Fε(uε, vε;Cjε) ≥
∫ z

y

(
(1− vε)2

4ε
+ ε|v′ε|2

)
dx ≥

∫ z

y

(1− vε)|v′ε|dx

≥ 1

2

(
1− vε(z)

)2 − 1

2

(
1− vε(y)

)2
=
δ2 − η2

2
≥ 1

4
δ2 .

Therefore the number Nε of the components Cjε is uniformly bounded by c
δ2 , where c is a constant

independent of ε. Moreover in each set Cjε and in Cε we have fε(vε) =
√
εf(vε) for ε small, as

vε < 1 − η. Recalling that x̄i ∈ Cε and vε(x̄i) ≤ ms̄i , we can now compute using the rescaling
αε(t):=uε(x̄i + εt), βε(t):=vε(x̄i + εt)

Fε(uε, vε;Cε) =

∫
1
ε (Cε−x̄i)

(
f2(βε)|α′ε|2 +

(1− βε)2

4
+ |β′ε|2

)
dt

≥ g(η)

(∣∣∣∣ ∫
Cε

u′ε dx

∣∣∣∣, s̄i) ≥ g(∣∣∣∣ ∫
Cε

u′ε dx

∣∣∣∣, s̄i)− 3η2 , (7.19)

where g(η) is the function defined in (7.7) and the last inequality follows by Lemma 7.2. On the
other components Cjε the same argument gives

Fε(uε, vε;Cjε) ≥ g
(∣∣∣∣ ∫

Cjε

u′ε dx

∣∣∣∣, 0)− 3η2 = g0

(∣∣∣∣ ∫
Cjε

u′ε dx

∣∣∣∣)− 3η2 , (7.20)

where g0 has been defined in (6.6) and satisfies (7.3). Finally, outside the selected components,

that is in the set C̃ε := I\(Cε ∪
⋃Nε
j=1 C

j
ε), one has vε ≥ 1− δ and therefore an estimate analogous

to (7.13) holds:

Fε(uε, vε; C̃ε) ≥ (1− ω(δ))

∫
C̃ε

h(|u′ε|) dx ≥ (1− ω(δ))

[
`

∫
C̃ε

|u′ε|dx−
`2

4
|C̃ε|

]
≥ (1− ω(δ))g0

(∣∣∣∣ ∫
C̃ε

u′ε dx

∣∣∣∣)− `2

2
η . (7.21)

where we used the definition (6.19) of h and Theorem 6.1(ii). By collecting (7.19)–(7.21)

Fε(uε, vε; I) ≥ g
(∣∣∣∣ ∫

Cε

u′ε dx

∣∣∣∣, s̄i)− 3η2 +

Nε∑
j=1

g0

(∣∣∣∣ ∫
Cjε

u′ε dx

∣∣∣∣)− 3Nεη
2

+ (1− ω(δ))g0

(∣∣∣∣ ∫
C̃ε

u′ε dx

∣∣∣∣)− `2

2
η

≥ g
(∣∣∣∣ ∫

Cε

u′ε dx

∣∣∣∣, s̄i)+ (1− ω(δ))g0

(∣∣∣∣ ∫
I\Cε

u′ε dx

∣∣∣∣)− (3 +
c

δ2

)
η2 − `2

2
η

≥ (1− ω(δ))g
(
|uε(x2)− uε(x1)|, s̄i

)
− c

δ2
η2 − `2

2
η ,

where we used (6.13) in the second passage and (2.2) in the third one. Hence (7.16) and the
continuity of g yield

lim inf
ε→0

Fε(uε, vε; J iη) ≥ (1− ω(δ))g
(
|u(x2)− u(x1)|, s̄i

)
− c

δ2
η2 − `2

2
η ,

and finally letting µ→ 0

lim inf
ε→0

Fε(uε, vε; J iη) ≥ (1− ω(δ))g
(
|[u]|(x̄i), s̄i

)
− c

δ2
η2 − `2

2
η . (7.22)
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The inequality (7.22) gives an estimate of the contribution to the energy coming from the
points in Γ. For the points ti ∈ S\Γ, we can reproduce the argument above just removing the
component Cε (in this case the argument is the same as in the proof of [20, Proposition 5.1]) and
obtain that, for Iiη = (ti − η, ti + η),

lim inf
ε→0

Fε(uε, vε; Iiη) ≥ (1− ω(δ))g0(|[u]|(x̄i)) +O(η) . (7.23)

Eventually we collect (7.14), (7.22), and (7.23) and we let η → 0:

lim inf
ε→0

Fε(uε, vε; Ω) ≥ (1− ω(δ))F̂(u, 1).

The conclusion (7.12) follows by letting δ → 0.

Proposition 7.5 (Limsup inequality). For every (u, v) ∈ L1(Ω)× L1(Ω) it holds

F̂ ′′(u, v) ≤ F̂(u, v) . (7.24)

Proof. Let us consider first the case v ≡ 1 and u ∈ SBV(0, 1), with u′ ∈ L2(0, 1) and H0(Ju) <∞,
and recall that by assumption also H0(Γ) <∞. By a localization argument we can further assume
that Γ consists of a single point x0 ∈ [0, 1], and that u has at most one jump point, also located at
x0. Indeed, in any interval which does not contain any point of Γ the conclusion follows directly
by Theorem 6.4.

Let therefore Γ = {x0}, x0 ∈ [0, 1], and let s0 := s(x0). Let us also assume for the moment
that u only takes the two values u±(x0) in a neighbourhood of x0. Given any σ > 0, using the
characterization (7.4) of g (and rescaling α) we can find T > 0 and α, β ∈ H1(−T, T ) such that
α(−T ) = u−(x0), α(T ) = u+(x0), 0 ≤ β ≤ 1, β(±T ) = 1, β(0) ≤ ms0 , and∫ T

−T

(
f2(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt ≤ g(|[u](x0)|, s0) + σ.

We then take as recovery sequence

uε(x) :=

{
α
(
x−x0

ε

)
if x ∈ Aε,

u(x) if x ∈ Ω\Aε,
vε(x) :=

{
β
(
x−x0

ε

)
if x ∈ Aε,

1 if x ∈ Ω\Aε,

where Aε := (x0−εT, x0+εT ). Notice that, since Lε
ε →∞ as ε→ 0, we have Aε ⊂ (x0−Lε, x0+Lε)

for ε small enough, and therefore uε satisfies the boundary conditions as in (7.9) in the case
x0 is a boundary point. It is easily seen that uε → u and vε → 1 in L1(0, 1). Moreover, as
vε(x0) = β(0) ≤ ms0 we have

F̂ε(uε, vε) =

∫
Ω\Aε

|u′|2 dx+

∫
Aε

(
f2
ε (vε)|u′ε|2 +

(1− vε)2

4ε
+ ε|v′ε|2

)
dx

≤
∫ 1

0

|u′|2 dx+

∫ T

−T

(
f2(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt

≤
∫ 1

0

|u′|2 dx+ g(|[u](x0)|, s0) + σ.

Since σ is arbitrary we obtain

F̂ ′′(u, 1) ≤ lim sup
ε→0

F̂ε(uε, vε) ≤
∫ 1

0

|u′|2 dx+ g(|[u](x0)|, s0). (7.25)

In order to remove the assumption that u is locally piecewise constant in a neighbourhood of x0,
we consider the sequence

uj(x) :=


u(x0 − 1

j ) for x0 − 1
j < x < x0,

u(x0 + 1
j ) for x0 < x < x0 + 1

j ,

u(x) for x ∈ Ω\(x0 − 1
j , x0 + 1

j ).
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In view of the previous discussion inequality (7.25) holds with u replaced by uj ; since uj → u in

L1(0, 1) and u′j → u′ in L2(0, 1) as j →∞, by lower semicontinuity of F̂ ′′ we conclude that (7.25)
is still satisfied by u.

The inequality (7.25), together with Theorem 6.4 and a localization argument, proves that for
every u ∈ SBV(0, 1) with u′ ∈ L2(0, 1) and H0(Ju) <∞ we have

F̂ ′′(u, 1) ≤
∫ 1

0

|u′|2 dx+
∑
x∈Γ

g(|[u](x)|, s(x)) +
∑

x∈Jb(u)\Γ

g0(|[u](x)|) .

Then the conclusion (7.24) follows since F̂ is the lower semicontinuous envelope of the right-hand
side, by Theorem 5.1 and Remark 5.2.

Remark 7.6. From Theorem 7.3, in the particular case Γ = ∅, it follows that the Γ-convergence
result of [20] (see Theorem 6.4) continues to hold if we include Dirichlet boundary conditions.

8 Static phase-field approximation: proofs

We prove in this section all properties stated in Sections 6.2 and 7.2 of the fracture energy densities
g0 and g, defined in (6.6) and (7.1) respectively. We also give the proof of the blow-up result in
Section 6.3. Along this section, we work under the assumptions (6.1)–(6.3) on f .

8.1 Proof of the statements of Section 6.2

We detail is a series of propositions the properties of the function g0, defined in (6.6). The proofs
of the results stated in Section 6.2 follow by combining the propositions below.

We start by proving the two alternative representation formulas (6.9) and (6.10) for g0, and
by discussing the existence and the properties of optimal profiles for the minimum problem (6.6).

Proposition 8.1. The following properties hold.

(i) The equivalent characterizations (6.9) and (6.10) hold.

(ii) For g0(s) < 1 the problem in (6.6) has a minimizer (αs, βs) ∈ U1.

(iii) Any minimizer obeys minβs ≥ 1−
√
g0(s).

(iv) If 0 ≤ s′ < s and g0(s) < 1, then g0(s′) < g0(s).

(v) For any minimizer (αs, βs) there is t∗ ∈ R such that βs is nonincreasing in (−∞, t∗) and
nondecreasing in (t∗,∞).

(vi) If g0(s) < 1, then for any minimizer (αs, βs) there are T−, T+ ∈ R ∪ {±∞} such that
βs ∈ C1((T−, T+); [0, 1)) and αs ∈ C1(R), with βs = 1 and α′s = 0 on R\(T−, T+). The map
αs − αs(−∞) is a C1 bijection of (T−, T+) onto (0, 1).

(vii) Any minimizer (αs, βs) obeys

s2f2(βs)|α′s|2 + |β′s|2 =
(1− βs)2

4
pointwise in R. (8.1)

Proof. To prove (i), we show the equivalence of (6.6) and (6.9); the equivalence of (6.9) and (6.10)
is proved in [20, Proposition 4.3]. Let ĝ denote the infimum in (6.9). Notice that the minimum
problems in (6.9) are decreasing with respect to T ; the inequality g0(s) ≤ ĝ(s) is trivial, since
if α, β ∈ H1(−T, T ) are admissible functions in (6.9) they can be extended as constants outside
(−T, T ) to obtain a pair in U1.

To prove the opposite inequality, we then have to show that for every (α, β) ∈ U1 the inequality
ĝ(s) ≤ Gs(α, β) holds. Since translations and truncations of α do not increase the energy, as well
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as the symmetric reflection with respect to the origin of α and β, we can assume without loss of
generality that 0 ≤ α ≤ 1, limt→−∞ α(t) = 0, limt→∞ α(t) = 1.

Fix T > 0 and let
MT := 1−

√
1− α(T ) .

Notice that 0 ≤MT ≤ 1 and limT→∞MT = 1. We define a new pair (αT , βT ), admissible for the
minimum problem (6.9), by modifying the functions (α, β) outside the interval (−T, T ) as follows:

αT (t) :=


α(t) if t ∈ (−T, T ),

α(T ) if t ∈ [T, T + 1),

linear interpolation if t ∈ [T + 1, T + 2),

1 if t ∈ [T + 2,∞),

βT (t) :=



β(t) if t ∈ (−T, T ),

linear interpolation if t ∈ [T, T + 1),

MT if t ∈ [T + 1, T + 2),

linear interpolation if t ∈ [T + 2, T + 3),

1 if t ∈ [T + 3,∞)

(in the interval (−∞,−T ) we do a symmetric construction, with the value MT replaced by M ′T :=

1 −
√
α(−T )). Then we have αT , βT ∈ H1(−T − 3, T + 3), αT (−T − 3) = 0, αT (T + 3) = 1,

0 ≤ βT ≤ 1, βT (−T − 3) = βT (T + 3) = 1, and the pair (αT , βT ) is therefore admissible in the
minimum problem (6.9). Furthermore

ω+(T ) : =

∫ T+3

T

(
s2f2(βT )|α′T |2 +

(1− βT )2

4
+ |β′T |2

)
dt

=

∫
(T,T+1)∪(T+2,T+3)

(
(1− βT )2

4
+ |β′T |2

)
dt+ s2f2(MT )|1− α(T )|2 +

(1−MT )2

4

=
1

4

∫ 1

0

(
1− β(T )− (MT − β(T ))t

)2
dt+

1

4

∫ 1

0

(
1−MT − (1−MT )t

)2
dt

+ |β(T )−MT |2 + |1−MT |2 + s2
(
f(MT )(1−MT )

)2
(1− α(T )) +

(1−MT )2

4
,

and from the fact that α(T ), β(T ),MT → 1 as T →∞ we obtain, using assumption (6.3),

ω+(T )→ 0 as T →∞ .

Similarly

ω−(T ) :=

∫ −T
−T−3

(
s2f2(βT )|α′T |2 +

(1− βT )2

4
+ |β′T |2

)
dt→ 0 as T →∞ .

Therefore

Gs(α, β) ≥
∫ T

−T

(
s2f2(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt

=

∫ T+3

−T−3

(
s2f2(βT )|α′T |2 +

(1− βT )2

4
+ |β′T |2

)
dt− ω+(T )− ω−(T )

≥ ĝ(s)− ω+(T )− ω−(T )

and the conclusion follows by sending T →∞. This concludes the proof of (i).
We now observe that for any β with 1− β ∈ H1(R) and any t0 ∈ R we have∫ ∞
−∞

( (1− β)2

4
+ |β′|2

)
dt ≥ −

∫ t0

−∞
(1− β)β′ dt+

∫ ∞
t0

(1− β)β′ dt = (1− β(t0))2, (8.2)
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with equality if and only if β(t) = 1− (1− β(t0))e−|t−t0|/2. Assertion (iii) follows immediately.
Let us prove (ii). Assume now that g0(s) < 1, which is equivalent to s < sfrac. By equation

(8.2), in the minimization it is sufficient to consider functions β which obey β > 0 almost every-
where. For a fixed β, (6.6) is a linear problem in α. One can check that the minimizer is such that
f2(β)α′ is constant on the set {β < 1}, and that α′ = 0 on {β = 1} (up to null sets). Therefore the
minimizer takes the form α′(t) = cf−2(β(t)) for some c = c(s, β) ∈ R, where to shorten notation
we write f−2(1) = 0. Integrating shows that 1 = c

∫∞
−∞ f−2(β) dt, so that

Ĝs(β) := min
α
Gs(α, β) = s2

(∫ ∞
−∞

f−2(β) dt

)−1

+

∫ ∞
−∞

( (1− β)2

4
+ |β′|2

)
dt.

Let now βk ∈ H1
loc(R; [0, 1]) be a minimizing sequence for Ĝs. Since inf Ĝs = g0(s) < 1 we

can assume that there is δ > 0 such that Ĝs(βk) ≤ 1 − δ for all k. By (8.2) we then obtain
1− δ ≥ (1− βk(t))2 and therefore βk(t) ≥ 1

2δ for all k and all t.
The sequence 1− βk is bounded in H1(R) and has therefore a subsequence converging weakly

to some function 1−βs. Since the second term in Ĝs is convex, if we prove that
∫∞
−∞ f−2(βk) dt→∫∞

−∞ f−2(βs) dt then βs is a minimizer of Ĝs, and by the formula stated above we can reconstruct
α. To prove continuity we observe that (possibly after extracting a further subsequence) βk → βs
pointwise almost everywhere, and that (6.2) and βk(t) ≥ 1

2δ imply f(βk) = f1(1− βk)/(1− βk) ≥
f1(1− 1

2δ)/(1−βk) and therefore 0 ≤ f−2(βk) ≤ Cs(1−βk)2 pointwise. Since
∫∞
−∞(1−βk)2 dt ≤ 4

and 1− βk → 1− β in L2(R), by Fatou’s Lemma we obtain∫ ∞
−∞

f−2(βs) dt = lim
k→∞

∫ ∞
−∞

f−2(βk) dt.

Therefore βs is a minimizer of Ĝs. This concludes the proof of (ii).
Assume now that s ∈ (0,∞), g0(s) < 1 and s′ ∈ [0, s). Let βs be a minimizer of Ĝs. By

the above estimates
∫∞
−∞ f−2(βs) dt ≤ Cs

∫∞
−∞(1 − βs)2 dt < ∞ and therefore g0(s′) ≤ Ĝs′(βs) <

Ĝs(βs) = g0(s). This concludes the proof of (iv).
In order to prove (v), it suffices to show that for any m ∈ [0, 1] the set Im := {t : βs(t) ≤ m}

is an interval. This will imply the stated monotonicity properties, with t∗ any point in the
intersection of all Im for m > inf βs. If Im were not an interval, there would be t1 < t2 ∈ Im with
m = βs(t1) = βs(t2) and βs(t) > m for t ∈ (t1, t2). We can construct an admissible competitor
(α, β) ∈ U1 by modifying (αs, βs) as follows:

α(t) :=


αs(t) if t ≤ t1,
αs(t1) + αs(t2)−αs(t1)

δ (t− t1) if t1 < t < t1 + δ,

αs(t+ t2 − t1 − δ) if t ≥ t1 + δ,

β(t) :=


βs(t) if t ≤ t1,
m if t1 < t < t1 + δ,

βs(t+ t2 − t1 − δ) if t ≥ t1 + δ,

where δ > 0 is to be chosen. Then, by using Young’s inequality and by (6.2),

Gs(αs, βs)− Gs(α, β) =

∫ t2

t1

(
s2f2(βs)|α′s|2 +

(1− βs)2

4
+ |β′s|2

)
dt

−
∫ t1+δ

t1

(
s2f2(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt

>

∫ t2

t1

sf(βs)(1− βs)|α′s|dt−
s2f2(m)|αs(t2)− αs(t1)|2

δ
− (1−m)2

4
δ

≥ sf(m)(1−m)|αs(t2)− αs(t1)| − s2f2(m)|αs(t2)− αs(t1)|2
δ

− (1−m)2

4
δ .
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By optimizing in δ we see that the right-hand side in the previous inequality is zero, and this
contradicts the minimality of (αs, βs). This concludes the proof of (v).

Let us prove (vi). Let g0(s) < 1 and choose an optimal pair (αs, βs) ∈ U1 for g0(s). By (iii)
and (6.1) we have f(βs) ≥ f(1−

√
g0(s)) > 0 on R. Let T− := inf{t : βs(t) < 1} ∈ R ∪ {−∞},

T+ := sup{t : βs(t) < 1} ∈ R ∪ {∞}. By (v) we have βs < 1 in (T−, T+), by finiteness of the
integral we have α′s = 0 in R\(T−, T+). By taking variations in the variable α in the minimum
problem (6.6) we find, as in the proof of (ii),

f2(βs)α
′
s = const. almost everywhere in (T−, T+).

Therefore α′s > 0 in (T−, T+) with limt↑T+
= limt↓T− α

′
s(t) = 0, and in particular αs : (T−, T+)→

(αs(T−), αs(T+)) is a C1, bijective map (with αs(T±) interpreted as the limit of αs(t) for t→ ±∞
if T± = ±∞). By taking variations in the variable β we obtain instead∫ ∞

−∞

(
s2f(βs)f

′(βs)|α′s|2ϕ−
(1− βs)ϕ

4
+ β′sϕ

′
)

dt = 0 for all ϕ ∈ C∞c (T−, T+),

from which it follows by standard arguments that βs ∈ C1(T−, T+). Hence (vi) is proved.
Finally, taking internal variations (in the sense of considering competitors of the type (αs(t+

εϕ(t)), βs(t + εϕ(t)), for ϕ ∈ C1
c (R)) one also obtains the usual equipartition result, in the sense

that the minimizer fulfills (8.1). This proves (vii).

We next list in the following proposition some basic properties of the function g0, already
observed in [20, Proposition 4.1] for the exception of (v), which guarantees that the function g0 is
strictly below the linear function `s: for the proof of this last property, we require the additional
assumption (6.3) (which is not needed for the Γ-convergence result in [20]). Notice that this
condition, which is used in the proof of the strict subadditivity of g0 (Proposition 8.4), will be
significantly improved in Proposition 8.5.

Proposition 8.2. The function g0 defined in (6.6) enjoys the following properties:

(i) g0(0) = 0, and g0 is subadditive, i.e. g0(s1 + s2) ≤ g0(s1) + g0(s2) for every s1, s2 ∈ R+;

(ii) g0 is nondecreasing, g0(s) ≤ 1∧ `s, and g0 is Lipschitz continuous with Lipschitz constant `;

(iii) lims→∞ g0(s) = 1;

(iv) lims→0+
g0(s)
s = `;

(v) g0(s) < `s for all s > 0.

Proof. Only the statement (v) requires a new proof, the others follow from [20, Proposition 4.1]
using Proposition 8.1(i). With fixed s > 0, let σ ∈ (0, 1) and set α(t) := 0 in [0, 1

3 ], α(t) := 1 in
[ 2
3 , 1], and the linear interpolation between these two values in [ 1

3 ,
2
3 ]; set also β(t) := σ in [ 1

3 ,
2
3 ],

and the linear interpolation between the values σ and 1 in each of the two intervals [0, 1
3 ] and

[ 2
3 , 1]. By using the pair (α, β) as a competitor in the characterization (6.10) of g0 we find

g0(s) ≤ inf
σ∈(0,1)

[
s(1− σ)f(σ) + (1− σ)2

]
= inf
σ∈(0,1)

[
s`− s`1(1− σ) + o(1− σ) + (1− σ)2

]
,

(8.3)

where we used the assumption (6.3). The strict inequality g0(s) < `s follows from (8.3), by
choosing a σ sufficiently close to 1.

In the following proposition we prove the representation formula (6.11) for g0, which removes
the invariance under reparametrization in (6.10) and has a unique minimizer. We recall the
definition (6.14) of the threshold sfrac.
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Proposition 8.3. The following properties hold:

(i) The characterization (6.11) of g0 holds.

(ii) For s ∈ (0, sfrac) the variational problem (6.11) has a unique minimizer γs. It obeys γs ∈
C1(0, 1), γs(

1
2 ) = max γs = (1−minβs)

2, where βs is any minimizer from Proposition 8.1(ii).

(iii) If 0 < s1 < s2 < sfrac then 0 < γs1(t) < γs2(t) for all t ∈ (0, 1).

(iv) The function

ms :=

{
1−

√
γs(

1
2 ), if s ∈ [0, sfrac),

0, if s > sfrac,
(8.4)

is continuous and strictly decreasing in [0, sfrac).

(v) For s < sfrac, the minimizer of (6.6) is unique up to translations, in the sense that if (αs, βs)

and (α̂s, β̂s) are minimizers then there are a1, t1 ∈ R such that αs(t) = a1 + α̂s(t − t1),

βs(t) = β̂s(t− t1).

Proof. (i): The identity (6.11) follows from (6.10) by reparametrization: indeed, first observe that
by a density argument the infimum in (6.10) can be written as

inf

{∫ 1

0

√
s2(1− β)2f2(β)|α′|2 +

1

4

∣∣∣ d

dt
(1− β)2

∣∣∣2 dt : (1− β)2 ∈ C1
c (0, 1), 0 ≤ β ≤ 1,

α ∈ C1([0, 1]), α(0) = 0, α(1) = 1, α′ > 0

}
.

(8.5)

Similarly, the infimum in (6.11) can be considered on the class of γ ∈ C1
c (0, 1) with 0 ≤ γ ≤ 1.

Then, for (α, β) admissible in (8.5), the reparametrization

γ(t) := (1− β)2 ◦ α−1(t) (8.6)

gives an admissible profile for (6.11) with∫ 1

0

√
s2(1− β)2f2(β)|α′|2 +

1

4

∣∣∣ d

dt
(1− β)2

∣∣∣2 dt =

∫ 1

0

√
s2(f1(

√
γ))2 + |γ′|2

4 dt. (8.7)

Conversely, given γ ∈ C1
c (0, 1) with 0 ≤ γ ≤ 1, we consider the pair (α, β) defined by α(t) := t,

β(t) := 1−
√
γ(t), which is admissible in (8.5) and satisfies (8.7). This proves (i).

(ii): Assume now g0(s) < 1 and let (αs, βs) ∈ U1 be a minimizer for (6.6) with αs(−∞) = 0,
which exists by Proposition 8.1(ii). We consider the rescaled profile γs : [0, 1] → [0, 1], γs(t) :=
(1− βs ◦ α−1

s (t))2: we have γs ∈ C1(0, 1), 0 ≤ γs ≤ 1, γs(0) = γs(1) = 0, and, with T−, T+ as in
Proposition 8.1(vi),

g0(s) = Gs(αs, βs) ≥
∫ T+

T−

|1− βs|
√
s2f2(βs)|α′s|2 + |β′s|2 dt =

∫ 1

0

√
s2
(
f1(
√
γs)
)2

+
|γ′s|

2

4 dt,

which shows that γs is a minimizer in problem (6.11). We have 1 − minβs = max
√
γs and by

symmetrization the maximum is attained at the point t = 1
2 . Thanks to the convexity assumption

(6.2), the minimizer γs of (6.11) is unique.
(iii) and (iv): We will exploit further properties of the optimal profile γs for s < sfrac: by

computing the Euler-Lagrange equation satisfied by a C1-minimizer of problem (6.11) we find(
γ′s

2

√
s2
(
f1(
√
γs)
)2

+ 1
4 |γ′s|2

)′
=

s2f1(
√
γs)f

′
1(
√
γs)

√
γs

√
s2
(
f1(
√
γs)
)2

+ 1
4 |γ′s|2

in (0, 1),
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which yields the C2-regularity of γs in (0, 1) and, after elementary computations,

γ′′s =
f1(
√
γs)f

′
1(
√
γs)√

γs

(
2s2 +

|γ′s|2(
f1(
√
γs)
)2
)

in (0, 1). (8.8)

Furthermore, the equation (8.8) has a first integral:

(f1(
√
γs))

2 = c

√
s2(f1(

√
γs))2 +

1

4
|γ′s|2 in (0, 1)

for a constant c > 0, which can be computed by imposing that γs has a maximum at the point
t = 1

2 with value (1−ms)
2: this gives c = 1

sf1(1−ms) and in turn

γ′s = ±2sf1(
√
γs)

√( f1(
√
γs)

f1(1−ms)

)2

− 1 in (0, 1) (8.9)

(with positive sign in (0, 1
2 ), and negative sign in ( 1

2 , 1)).
By using the previous equations we can now show the continuity of the map s 7→ ms. Indeed,

consider a sequence sn → s ∈ [0, sfrac) and the corresponding optimal profiles γsn . In view of
(8.9), the first derivatives γ′sn are uniformly bounded in L∞(0, 1), hence possibly extracting a
subsequence we have γsn ⇀ γ weakly* in W 1,∞(0, 1) (and uniformly), for some γ vanishing at the
boundary. By continuity of g0 we find that γ is the unique minimizer in problem (6.11) for g0(s);
in particular (1 −ms)

2 = γ( 1
2 ) = limn γsn( 1

2 ) = limn(1 −msn)2, which proves the continuity of
ms.

We then show that the map s 7→ ms is injective (then also the strict monotonicity follows).
Assume by contradiction that for two different values s1 < s2 one has ms1 = ms2 , and let
γ := γs2 − γs1 be the difference of the corresponding optimal profiles. By (8.9) we have γ′(0) > 0,
and hence γ(t) > 0 for all sufficiently small t. On the other hand, at the point t = 1

2 by assumption
γ( 1

2 ) = γ′s1( 1
2 ) = γ′s2( 1

2 ) = 0, therefore we find using (8.8)

γ′′( 1
2 ) = 2(s2

2 − s2
1)
f1(1−ms1)f ′1(1−ms1)

1−ms1

< 0

(by the assumption (6.2)). We conclude that γ(t) < 0 for t sufficiently close to 1
2 . Let then

t̄ ∈ (0, 1
2 ) be the smallest value with γ(t̄) = 0, that is γs1(t̄) = γs2(t̄) =: σ. By (8.9)

γ′(t̄) = 2(s2 − s1)f1(
√
σ)

√( f1(
√
σ)

f1(1−ms1)

)2

− 1 > 0,

which is a contradiction.
At this point we conclude the proof of (iii). Fix two values s1 < s2 < sfrac and let γ := γs2−γs1

be the difference of the corresponding optimal profiles. Then ms2 < ms1 , hence f1(1 −ms2) <
f1(1 − ms1) and by (8.9) we have γ′(0) > 0, and hence γ(t) > 0 for all sufficiently small t. If
γ(t) > 0 for all t ∈ (0, 1), we are done. Otherwise, let t̄ ∈ (0, 1) be the smallest value with γ(t̄) = 0.
Then (8.9) implies γ′(t̄) > 0, which is a contradiction.

(v): Let (αs, βs) and (α̂s, β̂s) ∈ U1 be minimizers for (6.6). Without loss of generality we can
assume αs(−∞) = α̂s(−∞) = 0. By Proposition 8.1(vi), αs is a C1 bijection from (T−, T+) onto
(0, 1); αs and βs are constant on (−∞, T−) and (T+,∞) (if these intervals are nonempty). We
define γ ∈ C1(0, 1) by γ := (1 − βs)2 ◦ α−1

s , so that γ(t) → 0 as t → 0 and t → 1. Then γ is a
competitor in (6.11). Using first equipartition, that was proven in (8.1), and then the change of
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variables r := αs(t), we have∫ ∞
−∞

(
s2f2(βs)|α′s|2 +

(1− βs)2

4
+ |β′s|2

)
dt =

∫ ∞
−∞

√
(1− βs)2s2f2(βs)|α′s|2 + (1− βs)2|β′s|2 dt

=

∫ T+

T−

√
s2f2

1 (
√
γ ◦ αs)|α′s|2 +

1

4
|γ′|2 ◦ αs|α′s|2 dt

=

∫ 1

0

√
s2f2

1 (
√
γ) +

1

4
|γ′|2 dr,

so that γ is a minimizer of (6.11). By uniqueness, the pair (α̂s, β̂s) has to produce the same γ,

so that βs ◦ α−1
s = β̂s ◦ α̂−1

s . The function ϕ := α̂−1
s ◦ αs is a C1 bijection from (T−, T+) onto

(T̂−, T̂+). Then βs = β̂s ◦ ϕ, αs = α̂s ◦ ϕ. Recalling the equipartition condition (8.1),

0 = s2f2(βs)|α′s|2 + |β′s|2 −
(1− βs)2

4

=
[
s2f2(β̂s)|α̂′s|2 + |β̂′s|2

]
◦ ϕ|ϕ′|2 − (1− β̂s)2

4
◦ ϕ =

(1− β̂s)2 ◦ ϕ
4

[
|ϕ′|2 − 1

]
where in the last step we used the equipartition condition (8.1) for (α̂s, β̂s). We conclude that

|ϕ′| = 1 wherever β̂s(ϕ) < 1, which implies ϕ(t) = t + t1 for some t1 ∈ R and concludes the
proof.

We remark that (α, β) minimizing (6.10) is not unique, as the variational problem (6.10) is
invariant under reparametrization. However, if one fixes α, for example by setting α(t) = t, then
for s < sfrac one easily obtains uniqueness of the corresponding β. Indeed, any minimizer β
produces an optimal γ via (8.6). Analogously, once α is fixed, monotonicity of s 7→ γs(t) implies
monotonicity of β with respect to s.

Proposition 8.4 (Strict subadditivity). For every s > 0 and t ∈ (0, 1) the function g0 satisfies
the inequality g0(ts) > tg0(s). In particular g0 is strictly subadditive: for every s1, s2 > 0

g0(s1 + s2) < g0(s1) + g0(s2) .

Proof. Let s > 0, t ∈ (0, 1), s̄ = ts. If g0(s̄) = 1, then tg0(s) < 1 = g0(ts) and the first assertion
is proven. Otherwise, by Proposition 8.1(ii) there is (αs̄, βs̄) ∈ U1 such that Gs̄(αs̄, βs̄) = g0(s̄).
Then by rescaling α̃(y) := αs̄(ty), β̃(y) := βs̄(ty) we have (α̃, β̃) ∈ U1 and therefore

g0(s̄) =

∫ ∞
−∞

(
t2s2f2(βs̄)|α′s̄|2 +

(1− βs̄)2

4
+ |β′s̄|2

)
dx

=

∫ ∞
−∞

(
s2f2(β̃)|α̃′|2 +

(1− β̃)2

4
+
|β̃′|2
t2

)
tdy

= tGs(α̃, β̃) +
(1

t
− t
)∫ ∞
−∞
|β̃′|2 dy

≥ tg0(s) +
(1

t
− t
)
t

∫ ∞
−∞
|βs̄′|2 dy > tg0(s) ,

where the last inequality follows by βs̄ 6= 0. This proves the first part of the statement. By writing

g0(s1) + g0(s2) = g0

(
(s1 + s2)

s1

s1 + s2

)
+ g0

(
(s1 + s2)

s2

s1 + s2

)
> g0(s1 + s2)

the strict subadditivity of g0 follows.

In the following proposition we perform a careful asymptotic analysis of the function g0(s) as
s→ 0+. Notice that, in view of Proposition 8.2, g0 is differentiable at the origin, with positive and
finite slope; we now compute the second order correction by means of a Γ-convergence expansion
in the minimum problems (6.11).
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Proposition 8.5. There exists ˜̀> 0 such that

g0(s) = `s− ˜̀s5/3 + o(s5/3) as s→ 0+. (8.10)

Moreover, if γs is a minimizer in problem (6.11), then the sequence s−4/3γs converges uniformly
in [0, 1] as s→ 0+ to the unique solution η̄ ∈ H1

0 (0, 1) of the minimum problem

min

{
H(η) : η ∈ H1

0 (0, 1), η ≥ 0

}
(8.11)

where

H(η) :=

∫ 1

0

(
− `1

`

√
η +
|η′|2
8`2

)
dt . (8.12)

In particular
(1−ms)

2 = max
t∈[0,1]

γs(t) ≤ cs4/3 (8.13)

for all s > 0 small enough and for a uniform constant c > 0.

We remark that the minimum in (8.11) can be found explicitly, and leads to

˜̀= −`minH(η̃) =`
4/3
1 `1/3

3

10

(3

2

)2/3

' 0.4`
4/3
1 `1/3. (8.14)

The computation is straightforward but somewhat cumbersome, we do not report it for brevity
since this result is not needed for what follows.

Proof. To guess the order of the second term in the expansion of g0 as s→ 0, we perform a Taylor
expansion in the energy of a minimizer γs for (6.11). Let γs be an optimal profile for problem
(6.11), as in Proposition 8.3(ii). Using max γs = γs(

1
2 ) = (1−ms)

2 and Proposition 8.2(ii) gives

`s ≥ g0(s) ≥ 1

2

∫ 1

0

|γ′s|dt = (1−ms)
2,

and therefore
0 ≤ γs(t) ≤ `s for all t ∈ [0, 1]. (8.15)

Furthermore, by the Euler-Lagrange equation (8.9) satisfied by γs we further deduce for s small,
using (8.15) and (6.3), the bound on the derivative

|γ′s(t)| = 2sf1(
√
γs)

√( f1(
√
γs)

f1(1−ms)

)2

− 1

≤ 2s
f1(
√
γs)

f1(1−ms)

√
2``1

(
1−ms −

√
γs
)

+ o(1−ms) ≤ c0s
5
4

(8.16)

for all t ∈ [0, 1], for some positive constant c0, independent of s. Since γs converges to zero
uniformly as s→ 0, we can formally expand the energy of γs by using (6.3) and neglecting higher
order terms:

g0(s) =

∫ 1

0

√
s2
(
f1(
√
γs)
)2

+
|γ′s|

2

4 dt ∼
∫ 1

0

√
s2`2 − 2s2``1

√
γs +

|γ′s|
2

4 dt

∼ s`+ s`

∫ 1

0

(
−`1
`

√
γs +

|γ′s|2
8s2`2

)
.

For s small, the two terms in the last integral are of the same order if γs ∼ s4/3, so that, in turn,
we might expect g0(s)− `s ∼ s5/3.
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The previous formal considerations can be made rigorous by means of an asymptotic devel-
opment by Γ-convergence. The expected decay of minimizers of (6.11) suggests to consider the

rescaling η(t) := s−
4
3 γ(t): with this position the minimum problem (6.11) can be reformulated as

g0(s) = inf

{∫ 1

0

√
s2
(
f1(s2/3η1/2)

)2
+ s8/3|η′|2

4 : η ∈W 1,1
0 (0, 1), 0 ≤ η ≤ s−4/3

}
. (8.17)

We compute the Γ-limit as s→ 0, with respect to the strong topology of L1(0, 1), of the family of
functionals defined by

Hs(η) :=
1

s2/3

(
1

s`

∫ 1

0

√
s2
(
f1(s2/3η1/2)

)2
+
s8/3|η′|2

4
dt− 1

)
(8.18)

if η ∈ W 1,1
0 (0, 1), 0 ≤ η ≤ `s−1/3, and |η′| ≤ c0s

−1/12, and Hs(η) := ∞ otherwise in W 1,1
0 (0, 1).

Notice that the previous bounds are satisfied by the (rescaled) minimizer γs, in view of (8.15)–
(8.16). We will prove that the Γ-limit is given by the functional H defined as the expression in
(8.12) for η ∈ H1

0 (0, 1), η ≥ 0, and H(η) :=∞ otherwise in W 1,1
0 (0, 1).

We first prove the Γ-liminf inequality, together with the compactness of sequences with bounded
energy with respect to the weak topology of H1(0, 1). Without loss of generality, we consider a
subsequence ηs ∈ W 1,1

0 (0, 1), not relabeled, such that 0 ≤ ηs ≤ `s−1/3, |η′s| ≤ c0s
−1/12, and

lims→0Hs(ηs) <∞. Since s2/3η
1/2
s ≤ `1/2s1/2, by (6.3) we have

f1(s2/3η1/2
s ) = `− `1s2/3η1/2

s + o(s2/3η1/2
s ),

and therefore

Hs(ηs) =
1

s2/3

(
1

s`

∫ 1

0

√
s2
(
`− `1s2/3η

1/2
s + o(s2/3η

1/2
s )

)2
+
s8/3|η′s|2

4
dt− 1

)
=

1

s2/3

(∫ 1

0

√
1− 2

`1
`
s2/3η

1/2
s + o(s2/3η

1/2
s ) +

s2/3|η′s|2
4`2

dt− 1

)
.

Now, since ∣∣∣∣− 2
`1
`
s2/3η1/2

s + o(s2/3η1/2
s ) +

s2/3|η′s|2
4`2

∣∣∣∣ ≤ cs1/2,

a Taylor’s expansion gives

Hs(ηs) =

∫ 1

0

(
−`1
`
η1/2
s +

|η′s|2
8`2

)
dt+

1

s2/3

∫ 1

0

o
(
s2/3η1/2

s + s2/3|η′s|2
)

dt. (8.19)

Notice that, for s small enough, the second term in the right-hand side of (8.19) can be controlled
by the first one:

Hs(ηs) ≥
∫ 1

0

(
−2`1

`
η1/2
s +

|η′s|2
16`2

)
dt.

Now, for any ε > 0 we have η
1/2
s ≤ εη2

s + cε by Young’s inequality; therefore, using also Poincaré’s
inequality we end up with

Hs(ηs) ≥ −
2ε`1
`

∫ 1

0

η2
s dt− 2cε`1

`
+

1

16`2

∫ 1

0

|η′s|2 dt ≥
( 1

16`2
− 2ε`1

`

)∫ 1

0

|η′s|2 dt− 2cε`1
`

,

and choosing ε small enough we deduce that the sequence (ηs)s is uniformly bounded in H1
0 (0, 1).

Up to subsequences, ηs ⇀ η weakly in H1(0, 1) (and uniformly) for some η ∈ H1
0 (0, 1), η ≥ 0. By

(8.19) we also deduce that

lim inf
s→0

Hs(ηs) ≥
∫ 1

0

(
−`1
`
η1/2 +

|η′|2
8`2

)
dt = H(η).
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As for the Γ-limsup inequality, fixed η ∈ C1
c (0, 1), η ≥ 0, we simply define ηs := η. Hence,

(8.19) gives for s small enough

Hs(ηs) =

∫ 1

0

(
−`1
`
η1/2 +

|η′|2
8`2

)
dt+ o(1) = H(η) + o(1),

where o(1) depends on η and tends to 0 as s → 0. The Γ-limsup inequality follows by density of
C1
c (0, 1) in H1

0 (0, 1).
The existence of a minimizer η̄ ∈ H1

0 (0, 1) for the limit functional H follows by a standard ap-
plication of the direct method of the Calculus of Variations, and its uniqueness by strict convexity
of the functional H. We can now check that the value of the minimum of H is strictly negative:
by considering λ sin(πt) as a competitor, with λ > 0, we have

min
η∈W 1,1

0 (0,1)
H(η) ≤ −`1

`
λ1/2

∫ 1

0

sin1/2(πt) dt+
λ2

8`2

∫ 1

0

π2 cos2(πt) dt,

which is strictly negative if λ is small enough. We denote ˜̀ := −`minH > 0. By (8.17) and
standard properties of Γ-convergence we obtain the convergence of the minimizers of Hs to η̄ and

g0(s)− `s
`s5/3

= min
η∈W 1,1

0 (0,1)
Hs(η)→ min

η∈W 1,1
0 (0,1)

H(η) = −
˜̀

`
as s→ 0+,

so that (8.10) and (8.13) follow.

We are now in position to give the proofs of the results in Section 6.2, which essentially collect
the main properties of g0 from the previous statements.

Proof of Theorem 6.1. The result follows by combining Proposition 8.2, Proposition 8.4, and
Proposition 8.5.

Proof of Theorem 6.2. The first assertion follows from Proposition 8.1(ii) and Proposition 8.3(v).
The second follows from monotonicity (Proposition 8.2(ii)) and an explicit computation (see also
(8.2)). The remaining assertions follow from Proposition 8.3.

Proof of Proposition 6.3. First we observe that η = lim inft↑1
f1(
√
t)

1−t , that by convexity of f1(
√·)

the lim inf is actually a limit, and that, using convexity, f1(0) = ` and f1(1) = 0, we have

η(1− t) ≤ f1(
√
t) ≤ `(1− t) for all t ∈ [0, 1],

which implies η ∈ [0, `] and f1(1 − b) ≥ η(1 − (1 − b)2) = η(2b − b2) for all b ∈ [0, 1]. We also
observe that, using (6.2), the integrand in (6.10) can be estimated by

(1− β)
√
s2f2(β)(α′)2 + (β′)2 =

√
s2f2

1 (1− β)(α′)2 +
1

4

( d

dt
(1− β)2

)2
≥
√
s2η2(2β − β2)2(α′)2 +

1

4

( d

dt
(1− β)2

)2
.

(8.20)

To prove the first assertion we construct a competitor for the characterization of g0 in (6.10).
Assume η = 0 and fix s > 0. By definition of η we can find qs ∈ (0, 1) such that sf1(qs) ≤ 1

2 (1−q2
s).

We let β = 1− qs in ( 1
3 ,

2
3 ), β = 1 in {0, 1}, and the linear interpolation in between; we let α = 0

in (0, 1
3 ), α = 1 in (2

3 , 0), and the linear interpolation in between. A straightforward computation
shows that

g0(s) ≤
∫ 1

0

√
s2f2

1 (1− β)(α′)2 +
1

4

( d

dt
(1− β)2

)2

dt = q2
s + sf1(qs) ≤

1

2
(1 + q2

s) < 1.
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We now turn to the second assertion. We assume sη ≥ 6, let α ∈ H1(0, 1), β ∈ H1(0, 1) be test
functions in the characterization (6.10) of g0, denote by I(α, β) the integral in (6.10), and prove
I(α, β) ≥ 1.

Assume first that there is q ∈ (0, 1
2 ] such that sη

∫
{q≤β<2q} |α′|dt ≥ 2. Then (8.20) yields∫ 1

0

(1− β)
√
s2f2(β)(α′)2 + (β′)2 dt ≥

∫
{q≤β<2q}

sη(2β − β2)|α′|dt+

∫
{2q≤β≤1}

1

2

∣∣∣ d

dt
(1− β)2

∣∣∣dt
≥ 2(2q − q2) + (1− 2q)2 = 1 + 2q2 > 1

and the proof is concluded.
We let βmin := minβ. If βmin = 0 then necessarily I(α, β) ≥ 1 and we are done. We can

therefore assume βmin > 0. We also define, for j ∈ N, βj := min{2jβmin, 1} and Ej := {t : βj ≤
β < βj+1}. We let J be the largest index with βJ < 1 and observe that (Ej), j = 0, . . . , J ,
is a partition of (0, 1), with β(inf Ej) = β(supEj) = βj+1 and minβ(Ej) = βj . We define
aj :=

∫
Ej
|α′|dt, which obey

∑
j aj≥ 1, and

gj :=

∫
Ej

(1− β)
√
s2f2(β)(α′)2 + (β′)2 dt ≥

∫
Ej

√
s2η2(2βj − β2

j )2(α′)2 +
1

4

( d

dt
(1− β)2

)2

dt.

We first treat gJ . We observe that

I(α, β) ≥ gJ ≥
∫
EJ

sη(2βJ − β2
J)|α′|dt = sη(2βJ − β2

J)aJ ≥ sη
3

4
aJ ,

so that if sηaJ ≥ 4
3 we are done. Therefore we can assume sηaJ <

4
3 in the following.

By Jensen’s inequality, for any functions h, k : Ej → R we have |Ej |−1
∫
Ej

√
h2 + k2 dt ≥√

(|Ej |−1
∫
Ej
hdt)2 + (|Ej |−1

∫
Ej
k dt)2 and therefore

∫
Ej

√
h2 + k2 dt ≥

√
(
∫
Ej
|h|dt)2 + (

∫
Ej
|k|dt)2.

For j < J ,
∫
Ej

1
2 | ddt (1−β)2|dt ≥ (1−βj)2−(1−βj+1)2 = (βj+1−βj)(2−βj+1−βj) = βj(2−3βj).

Therefore, again for j < J ,

gj ≥
√
s2η2β2

j (2− βj)2a2
j + (βj(2− 3βj))2 = βj(2− 3βj)

√
1 + x2

j

with xj := (sηaj)(2− βj)/(2− 3βj). Recalling sηaj ≤ 2 and βj ≤ 1
2 we obtain xj ∈ [0, 6]. We use

the fact that
√

1 + x2 ≥ 1 + 1
8x

2 for all x ∈ [0, 6] and obtain, inserting first the definition of xj
and then the one of βj ,

gj ≥ βj(2− 3βj)
(

1 +
1

8

s2η2a2
j (2− βj)2

(2− 3βj)2

)
≥ (1− βj)2 − (1− βj+1)2 + βmin

1

8

(2− βj)2

2− 3βj
2j(sηaj)

2.

We observe that (2−x)2

2−3x ≥ 2 for x ∈ [0, 1
2 ], sum over j, and recall that gJ ≥ (1− βJ)2. This gives

∑
j

gj ≥ (1− βmin)2 + βmin
1

4

∑
j<J

2j(sηaj)
2.

We recall that we are working under the assumption that
∑
j sηaj ≥ sη ≥ 6 and sηaJ ≤ 4

3 , which
imply 4 ≤∑j<J sηaj . By Hölder’s inequality,

16 ≤
(∑
j<J

sηaj

)2

≤
∑
j<J

2j(sηaj)
2 ·
∑
j<J

2−j ≤ 2
∑
j<J

2j(sηaj)
2.

Therefore
∑
j<J 2j(sηaj)

2 ≥ 8, so that I(α, β) =
∑
j gj ≥ (1 − βmin)2 + 2βmin = 1 + β2

min > 1.
This concludes the proof.
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8.2 Proof of Theorem 6.5 in Section 6.3

This section is devoted to the proof of Theorem 6.5, which will be achieved through a sequence of
lemmas. In the following we assume that u, uε and vε satisfy the assumption of Theorem 6.5. We
start by (i). Since this assertion is local, we can assume without loss of generality that the jump
set of u consists of a single point x̄ ∈ (0, 1), Ju = {x̄}. We let

Iη := (x̄− η, x̄+ η),

where η > 0 is always supposed to be small enough so that Iη ⊂ (0, 1). Notice that, since the
endpoints of Iη are not in the jump set of u, one has the localized convergence

lim
ε→0
Fε(uε, vε; Iη) = F(u, 1; Iη).

In the following, we will work with a fixed subsequence εk → 0+, k →∞; to lighten the notation
we will replace the subscript εk by k (thus, for instance, we set uk := uεk , vk := vεk ,. . . ). We
further assume that for this subsequence uk → u and vk → 1 almost everywhere in (0, 1), and
choose a continuous representative for uk and vk.

Lemma 8.6. For L1-a.e. η sufficiently small we have uk(x̄± η)→ u(x̄± η), vk(x̄± η)→ 1, and,
if xk ∈ Iη is a minimum point of vk in the interval Iη, in the sense that

mk := inf
x∈Iη

vk(x) = vk(xk) , (8.21)

then the following properties hold:

(i) fk(vk(xk)) = fk(mk)→ 0 as k →∞;

(ii) lim supk→∞mk < 1;

(iii) xk → x̄ as k →∞;

(iv) if g0(|[u](x̄)|) < 1, then lim infk→∞mk > 0.

Proof. Since we are assuming that uk → u and vk → 1 almost everywhere in (0, 1), the convergence
at the endpoints of the interval Iη is automatically satisfied for almost every η.

(i): If for a subsequence we had fk(mk) ≥ σ > 0, then as the energies Fk(uk, vk) are equi-
bounded we would get

C ≥
∫
Iη

f2
k (vk)|u′k|2 dx ≥ σ2

∫
Iη

|u′k|2 dx .

Therefore u ∈ H1(Iη), which is a contradiction since x̄ ∈ Ju ∩ Iη.
(ii): Suppose by contradiction that for a subsequence mk → 1. For a given δ > 0, we have

vk(x) ≥ 1− δ in Iη for k sufficiently large; by assumption (6.3) this implies that

|(1− vk)f(vk)− `| ≤ `ω(δ)

for some modulus of continuity ω(δ)→ 0 as δ → 0. Therefore for k large enough

Fk(uk, vk; Iη) ≥
∫
Iη

(
f2
k (vk)|u′k|2 +

(1− vk)2

4εk

)
dx ≥

∫
Iη

|u′k|2 ∧
(
εkf

2(vk)|u′k|2 +
(1− vk)2

4εk

)
dx

≥
∫
Iη

(
|u′k|2 ∧ (1− vk)f(vk)|u′k|

)
dx ≥ (1− ω(δ))

∫
Iη

(
|u′k|2 ∧ `|u′k|

)
dx (8.22)

≥ (1− ω(δ))

(
`

∫
Iη

|u′k|dx−
`2

4
2η

)
.
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Notice now that in view of (6.12) we have g0(s) ≤ `s− g̃(s) for s small and for some continuous
and strictly positive function g̃(s) > 0; inserting this inequality into (8.22) we find

Fk(uk, vk; Iη) ≥ (1− ω(δ))

[
g0

(∣∣∣ ∫
Iη

u′k dx
∣∣∣)+ g̃

(∣∣∣ ∫
Iη

u′k dx
∣∣∣)− `2η

2

]
= (1− ω(δ))

[
g0

(
|uk(x̄+ η)− uk(x̄− η)|

)
+ g̃
(
|uk(x̄+ η)− uk(x̄− η)|

)
− `2η

2

]
.

By passing to the limit as k →∞, since the left-hand side converges to the limit energy in Iη and
by assumption uk(x̄± η)→ u(x̄± η) we have∫

Iη

h(|u′|) dx+ g0(|[u](x̄)|) = F(u, 1; Iη)

≥ (1− ω(δ))
[
g0

(
|u(x̄+ η)− u(x̄− η)|

)
+ g̃
(
|u(x̄+ η)− u(x̄− η)|

)
− `2η

2

]
.

Therefore, letting first δ → 0 and then in turn η → 0, we conclude that

g0(|[u](x̄)|) ≥ g0(|[u](x̄)|) + g̃(|[u](x̄)|) > g0(|[u](x̄)|) ,

which is a contradiction.
(iii): By contradiction, assume that for a (not relabeled) subsequence xk → x̃ 6= x̄. Fix

δ ∈ (0, η) such that vk(x̃ + δ) → 1 and x̄ /∈ [x̃− δ, x̃ + δ]. For k large enough, xk ∈ (x̃− δ, x̃ + δ)
and

Fk(uk, vk; (x̃−δ, x̃+ δ)) ≥
∫ x̃+δ

x̃−δ

( (1− vk)2

4εk
+ εk|v′k|2

)
dx ≥

∫ x̃+δ

xk

(1− vk)v′k dx

=
1

2

(
1−mk

)2 − 1

2

(
1− vk(x̃+ δ)

)2
.

Notice that the lim inf as k → ∞ of the right-hand side is a strictly positive quantity, in view of
property (ii), which does not depend on δ. On the other hand

lim
k→∞

Fk(uk, vk; (x̃− δ, x̃+ δ)) = F(u, 1; (x̃− δ, x̃+ δ)) =

∫ x̃+δ

x̃−δ
h(|u′|) dx ,

and therefore we conclude that
∫ x̃+δ

x̃−δ h(|u′|) dx ≥ 1
2 lim infk→∞(1−mk)2 > 0. This is a contradic-

tion since δ can be chosen arbitrarily small.
(iv): By arguing as in the previous step and using the fact that xk ∈ Iη for k large by (iii) we

have the inequality

Fk(uk, vk; Iη) ≥
∫ x̄+η

x̄−η
(1− vk)|v′k|dx ≥

1

2

∫ xk

x̄−η

[
(1− vk)2

]′
dx− 1

2

∫ x̄+η

xk

[
(1− vk)2

]′
dx

≥ (1−mk)2 − 1

2
(1− vk(x̄− η))2 − 1

2
(1− vk(x̄+ η))2 .

By letting k →∞, and using that vk(x̄± η)→ 1, we have

lim sup
k→∞

(1−mk)2 ≤
∫
Iη

h(|u′|) dx+ g0(|[u](x̄)|) ,

and the right-hand side is strictly smaller than one provided η is small enough.

In the following we fix η > 0 such that the conclusions of Lemma 8.6 hold, and we define xk
and mk as in (8.21). Since these quantities depend on the choice of η, in the arguments below
we will always let k → ∞ and η → 0 in this order. The following formula, obtained by a simple
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change of variables, will be often useful: for every fixed T > 0 and for k ≥ kT , for some kT large
enough,

Fk(uk, vk; (xk − εkT, xk + εkT )) =

∫ xk+εkT

xk−εkT

(
f2
k (vk)|u′k|2 +

(1− vk)2

4εk
+ εk|v′k|2

)
dx

=

∫ T

−T

( 1

εk
f2
k (wk)|z′k|2 +

(1− wk)2

4
+ |w′k|2

)
dx ,

(8.23)

where wk and zk are the functions defined in (6.22) and (6.23) respectively.

Lemma 8.7 (Compactness of wk). Up to subsequences, wk ⇀ w weakly in H1
loc(R) and therefore

locally uniformly for some function w such that 1− w ∈ H1(R). In particular w satisfies

lim
|x|→∞

w(x) = 1 , w(0) = lim
k→∞

vk(xk) = lim
k→∞

mk < 1.

Proof. The result is an immediate consequence of the uniform bound on ‖1 − wk‖H1(−T,T ) for
every T > 0, which follows from (8.23) and the fact that (uk, vk) is a recovery sequence and has
therefore equibounded energy. The fact that w(0) < 1 follows from Lemma 8.6(ii).

In order to proceed with the proof of Theorem 6.5, it is convenient to distinguish between
the cases w(0) = 0 and w(0) > 0. Indeed, we will see that these conditions correspond to
g0(|[u](x̄)|) = 1 and g0(|[u](x̄)|) < 1 respectively; according to Theorem 6.2 the behaviour of
minimizing sequences for the minimum problem defining g0 is different in the two cases.

We first consider the (easier) case w(0) = 0.

Lemma 8.8. If w(0) = 0, then Theorem 6.5(i) holds.

Proof. By (iv) of Lemma 8.6 it has to be g0(|[u](x̄)|) = 1. Therefore for η > 0 and T > 0 we have
by (8.23)

F(u, 1; Iη) = lim
k→∞

Fk(uk, vk; Iη)

≥ lim inf
k→∞

∫ T

−T

( (1− wk)2

4
+ |w′k|2

)
dx ≥

∫ T

−T

( (1− w)2

4
+ |w′|2

)
dx ,

where the last inequality follows by lower semicontinuity with respect to the weak convergence of
wk to w in H1(−T, T ), proved in Lemma 8.7. By letting first T →∞ and then η → 0 we obtain

1 = g0(|[u](x̄)|) = lim
η→0
F(u, 1; Iη) ≥

∫ ∞
−∞

( (1− w)2

4
+ |w′|

)
dx .

As w(0) = 0, by Young inequality we conclude that the right-hand side of the previous expression

is exactly 1 and then w(x) = 1− e− |x|2 is the optimal profile for g0(|[u](x̄)|).
It remains to prove the strong convergence in H1

loc(R). To this aim, it is sufficient to show
convergence of the energies: suppose by contradiction that for some M > 0 and σ > 0

lim sup
k→∞

∫ M

−M

( (1− wk)2

4
+ |w′k|2

)
dx =

∫ M

−M

( (1− w)2

4
+ |w′|2

)
dx+ σ . (8.24)

Then for every η > 0 and T > M one has

F(u, 1; Iη) = lim
k→∞

Fk(uk, vk; Iη) ≥ lim sup
k→∞

∫ T

−T

( (1− wk)2

4
+ |w′k|2

)
dx

≥ lim sup
k→∞

∫ M

−M

( (1− wk)2

4
+ |w′k|2

)
dx+ lim inf

k→∞

∫
[−T,T ]\[−M,M ]

( (1− wk)2

4
+ |w′k|2

)
dx

≥
∫ T

−T

( (1− w)2

4
+ |w′|2

)
dx+ σ ,
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so that by letting first T →∞ and then η → 0 we end up with

g0(|[u](x̄)|) ≥
∫ ∞
−∞

( (1− w)2

4
+ |w′|2

)
dx+ σ ,

which is a contradiction. This completes the proof.

Lemma 8.9. If w(0) > 0, there is a subsequence such that zk converges to some z ∈ H1
loc(R) ∩

L∞(R) strongly in H1
loc(R), and wk converges to w ∈ H1

loc(R) strongly in H1
loc(R). The pair

(s̄−1z, w), where s̄ := [u](x̄), is a minimizer of the functional G|s̄|, introduced in (6.7), in the class
U1.

Proof. Preliminaries. We first prove the weak compactness of the sequence zk. For every fixed
T > 0 and for k ≥ kT one has

min
[−T,T ]

wk = min
[xk−εkT,xk+εkT ]

vk = vk(xk) = wk(0)→ w(0) > 0,

so that

inf
k≥kT

min
[−T,T ]

1

εk
f2
k (wk) = inf

k≥kT

1

εk
∧ f2(wk(0)) > 0.

By (8.23) it follows that for every T > 0

sup
k≥kT

∫ T

−T
|z′k|2 dx <∞ . (8.25)

Since by assumption the sequence zk is also uniformly bounded in L∞, we can extract a further
subsequence such that

zk ⇀ z weakly in H1
loc(R) (8.26)

for some function z ∈ H1
loc(R)∩L∞(R). Possibly after extracting a subsequence, by (8.25) we can

assume that |z′k|2L1 converges weakly in measures to a Radon measure µ. By lower semicontinuity,
this implies

|z′|2L1 ≤ µ as measures, (8.27)

with µ(−T, T ) =
∫ T
−T |z′|2 dx if and only if zk → z strongly in H1(−T, T ).

Step 1. We prove that µ({w = 1}) = 0 and

g0(|[u](x̄)|) ≥
∫
R
f2(w) dµ+

∫ ∞
−∞

( (1− w)2

4
+ |w′|2

)
dx .

To see this, we first observe that for almost any T > 0 we have µ({−T, T}) = 0 and, by (8.23),

F(u, 1; Iη) = lim
k→∞

Fk(uk, vk; Iη)≥ lim sup
k→∞

∫ T

−T

( 1

εk
f2
k (wk)|z′k|2 +

(1− wk)2

4
+ |w′k|2

)
dx.

For δ > 0, we let Aδ := {x ∈ (−T, T ) : w(x) < 1− δ}. For almost every δ we have µ(∂Aδ) = 0. By
uniform convergence (Lemma 8.7), for sufficiently large k we have wk(x) < 1− 1

2δ on Aδ, therefore

f(wk)→ f(w) uniformly on Aδ. Since µ(∂Aδ) = 0, |z′k|2L1 ⇀ µ, and f(w) ∈ C0(Aδ),∫
Aδ

f2(w) dµ = lim
k→∞

∫
Aδ

f2(w)|z′k|2 dx = lim
k→∞

∫
Aδ

f2(wk)|z′k|2 dx ≤ lim inf
k→∞

∫ T

−T

1

εk
f2
k (wk)|z′k|2 dx.

By monotone convergence, this implies∫
(−T,T )∩{w<1}

f2(w) dµ = lim
δ→0

∫
Aδ

f2(w) dµ ≤ lim inf
k→∞

∫ T

−T

1

εk
f2
k (wk)|z′k|2 dx. (8.28)
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Also by uniform convergence of wk to w, for k sufficiently large we have 1 − 2δ ≤ wk(x) on
Bδ := (−T, T )\Aδ. Recalling (6.1), for large k we have f2(1 − 2δ) ≤ ε−1

k ∧ f2(wk) = ε−1
k f2

k (wk)
on Bδ. Since µ(∂Bδ) = 0,

f2(1− 2δ)µ(Bδ) = f2(1− 2δ) lim
k→∞

∫
Bδ

|z′k|2 dx ≤ lim inf
k→∞

∫
Bδ

1

εk
f2
k (wk)|z′k|2 dx ≤ C.

By monotone convergence,

µ((−T, T ) ∩ {w = 1}) = lim
δ→0

µ(Bδ) ≤ lim
δ→0

C

f2(1− 2δ)
= 0.

Since wk converges to w weakly in H1(−T, T ) (Lemma 8.7), (8.28) yields∫
(−T,T )

f2(w) dµ+

∫
(−T,T )

( (1− w)2

4
+ |w′|2

)
dx ≤ lim

k→∞
Fk(uk, vk; Iη) = F(u, 1; Iη)

for all T and all η. Sending first T →∞ and then η → 0,∫
R
f2(w) dµ+

∫
R

( (1− w)2

4
+ |w′|2

)
dx ≤ g0(|[u](x̄)|). (8.29)

Step 2. By Lemma 8.7 and (8.26), for every j ∈ N we can pick Tj > j such that |w(±Tj)−1|2 ≤ 2−j

and zk(±Tj) → z(±Tj) as k → ∞. Since uk and zk are bounded in L∞, possibly passing to a
subsequence we have

z+ := lim
j→∞

z(Tj), z− := lim
j→∞

z(−Tj). (8.30)

We intend to show that z+ − z− = [u](x̄).
To do so, we separate the part of the profile in the inner interval (a, b) := (ajk, b

j
k) := (xk −

εkTj , xk + εkTj) from the part outside (for sufficiently large k we can assume [a− εk, b+ εk] ⊂ Iη).
Specifically, we set

uin
k,j(x) :=


uk(a) if x ≤ a,
uk(x) if a < x ≤ b,
uk(b) if x > b,

uout
k,j (x) :=


uk(x)− uk(a) if x ≤ a,
0 if a ≤ x ≤ b,
uk(x)− uk(b) if x > b

which implies, since uk(a) = zk(−Tj)→ z(−Tj) and uk(b) = zk(Tj)→ z(Tj), that

uin
k,j(x)→ uin

j (x) :=

{
z(−Tj) if x ≤ x̄,
z(Tj) if x > x̄ ,

uout
k,j → uout

j := u− uin
j

in L1(Iη) (as k →∞). Correspondingly, we define

vin
k,j(x) :=


1 if x ≤ a− εk,
vk(x) if a ≤ x ≤ b,
1 if x ≥ b+ εk,

affine interp. in between,

vout
k,j (x) :=


vk(x) if x ≤ a,
1 if a+ εk ≤ x ≤ b− εk,
vk(x) if x ≥ b,
affine interp. in between.

We observe that vin
k,j → 1 with min vin

k,j = vin
k,j(xk) = mk → w(0) < 1; vout

k,j → 1. By Lemma 8.7

and |w(±Tj)− 1| ≤ 2−j , for k sufficiently large (on a scale depending on j) we have |vk(ajk)− 1| ≤
2−j+1 and |vk(bjk)− 1| ≤ 2−j+1. The energy then obeys

Fk(uin
k,j , v

in
k,j ; Iη) ≤ Fk(uk, vk; (a, b)) + c2−j ,

Fk(uout
k,j , v

out
k,j ; Iη) ≤ Fk(uk, vk; Iη\(a, b)) + c2−j ,
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so that
Fk(uin

k,j , v
in
k,j ; Iη) + Fk(uout

k,j , v
out
k,j ; Iη) ≤ Fk(uk, vk; Iη) + c2−j .

Passing to the limit and using (6.21),

F(uin
j , 1; Iη) + F(uout

j , 1; Iη) ≤ lim inf
k→∞

Fk(uk, vk; Iη) + c2−j = F(u, 1; Iη) + c2−j

for all j and η. Using the explicit form of uin
j , uout

j and F , we obtain

g0(|[uin
j ]|) + g0(|[uout

j ]|) ≤ g0(|[u]|) + c2−j , (8.31)

where all jumps are evaluated at x̄. Recalling min vin
k,j = vin

k,j(xk) = mk → w(0) < 1 and vin
k,j = 1

on ∂Iη,

(1−mk)2 ≤
∫
Iη

|1− vin
k,j ||(vin

k,j)
′|dx ≤

∫
Iη

(
(1− vin

k,j)
2

4εk
+ εk|(vin

k,j)
′|2
)

dx ≤ Fk(uin
k,j , v

in
k,j ; Iη)

which gives, by the same argument, first

(1− w(0))2 + F(uout
j , 1; Iη) ≤ F(u, 1; Iη) + c2−j

and then
(1− w(0))2 + g0(|[uout

j ]|) ≤ g0(|[u]|) + c2−j . (8.32)

Taking j →∞ in (8.31) and (8.32) we obtain, with (8.30),

g0(|z+−z−|)+g0(|[u]−(z+−z−)|) ≤ g0(|[u]|) and (1−w(0))2+g0(|[u]−(z+−z−)|) ≤ g0(|[u]|).

Recalling that g0 is strictly subadditive on (0,∞), we see that one of the two terms in the first
inequality must vanish. The second inequality excludes the case z+ = z−, therefore z+−z− = [u].

In order to show that z′ ∈ L1(R), we prove that z is monotone. Assume for definiteness that
z− ≤ z+. We define

z̄ := z− ∨ (z+ ∧ z) and ẑ(x) :=

{
min z̄([x, 0]) if x ≤ 0,

max z̄([0, x]) if x > 0.

Then z− ≤ ẑ ≤ z̄ on (−∞, 0) and z̄ ≤ ẑ ≤ z+ on (0,∞), hence ẑ(±t)→ z± for t→∞. Obviously
ẑ is monotone. Further, ẑ ∈ H1

loc(R), 0 ≤ ẑ′ ≤ |z′|,
∫
R ẑ
′ dx = z+ − z−, and∫ ∞

−∞
f2(w)|ẑ′|2 dx ≤

∫ ∞
−∞

f2(w)|z′|2 dx,

with equality if and only if ẑ = z almost everywhere, which would imply that z is also monotone.
In particular, (s̄−1ẑ, w) ∈ U1 for s̄ = [u](x̄). Using (6.6), |ẑ′| ≤ |z′|, (8.27) and (8.29) we obtain

g0(|[u](x̄)|) ≤
∫ ∞
−∞

(
f2(w)|ẑ′|2 +

(1− w)2

4
+ |w′|2

)
dx

≤
∫ ∞
−∞

(
f2(w)|z′|2 +

(1− w)2

4
+ |w′|2

)
dx

≤
∫
R
f2(w) dµ+

∫ ∞
−∞

( (1− w)2

4
+ |w′|2

)
dx ≤ g0(|[u](x̄)|).

Therefore equality holds throughout. This implies in particular ẑ = z, so that z is monotone,
(s̄−1z, w) ∈ U1, and µ = |z′|2L1, which gives strong convergence of zk to z in H1(−T, T ) for all T .
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Step 3. In order to complete the proof it only remains to show the strong convergence of wk to
w. We have for all T > 0

lim inf
k→∞

∫ T

−T

( (1− wk)2

4
+ |w′k|2

)
dx ≥

∫ T

−T

( (1− w)2

4
+ |w′|2

)
dx (8.33)

and

lim inf
k→∞

∫ T

−T

1

εk
f2
εk

(wk)|z′k|2 dx ≥
∫ T

−T
f2(w)|z′|2 dx .

Then arguing as in the case w(0) = 0 and assuming by contradiction that (8.24) holds, it is easily
seen that one gets the contradiction

g0(|[u](x̄)|) ≥
∫ ∞
−∞

(
f2(w)|z′|2 +

(1− w)2

4
+ |w′|2

)
dx+ σ ,

proving that (8.33) actually holds with an equality and a limit on the left-hand side. This gives
the strong convergence of wk to w.

Proof of Theorem 6.5. The first assertion follows from Lemma 8.8 and Lemma 8.9. We remark
that the uniqueness result of Theorem 6.2(i) implies convergence of the entire sequence (after
suitable translations).

It remains to prove the second assertion of Theorem 6.5. We fix η > 0 and we let A :=
(0, 1)\⋃x∈Ju [x− η, x+ η]. We first remark that

vε → 1 uniformly on A .

Indeed, this follows by the same argument used to prove Lemma 8.6(iii). Therefore by assumption
(6.3) we can write

(1− vε)f(vε) ≥ (1− ω(ε))` on A,

for some modulus of continuity ω(ε) → 0 as ε → 0. We introduce the set Aε := {x ∈ A :
fε(vε)(x) < 1} and we observe that, since fε(vε) =

√
εf(vε) on Aε,∫

A

(
f2
ε (vε)|u′ε|2 +

(1− vε)2

4ε

)
dx ≥

∫
Aε

(
εf2(vε)|u′ε|2 +

(1− vε)2

4ε

)
dx+

∫
Acε

f2
ε (vε)|u′ε|2 dx

≥
∫
Aε

(1− vε)f(vε)|u′ε|dx+

∫
Acε

|u′ε|2 dx (8.34)

≥ `(1− ω(ε))

∫
Aε

|u′ε|dx+

∫
Acε

|u′ε|2 dx .

The sequence u′εχAcε is bounded in L2(A), and therefore, possibly passing to a subsequence, has a
weak limit p ∈ L2(A). The sequence u′εχAε is bounded in L1(A), and analogously we can assume
that u′εχAε ⇀ µ and |u′ε|χAε ⇀ ν weakly in measures, with

|µ|(A) ≤ ν(A) ≤ lim inf
ε→0

∫
A

|u′ε|χAε dx.

Since u′ε = u′εχAε + u′εχAcε converges distributionally to u′ ∈ L∞(A), we have µ + pL1 = u′L1,
which implies that µ = (u′ − p)L1 and |µ|(A) =

∫
A
|u′ − p|dx. Thus (8.34) gives

lim inf
ε→0

∫
A

(
f2
ε (vε)|u′ε|2 +

(1− vε)2

4ε

)
dx ≥

∫
A

(`|u′ − p|+ p2) dx ≥
∫
A

(|u′|2 + |u′ − p|2) dx,

where in the last step we used that for any t ∈ [− `
2 ,

`
2 ] and any y ∈ R one has

`|t− y|+ y2 ≥ t2 + (t− y)2.
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Indeed, this inequality is the same as `|t− y| ≥ 2t(t− y), which is true since ` ≥ 2|t|.
Since we know that

lim sup
ε→0

∫
A

(
f2
ε (vε)|u′ε|2 +

(1− vε)2

4ε

)
dx ≤ F(u, 1;A) =

∫
A

|u′|2 dx,

we conclude that p = u′. In particular∫
A

|u′|2 dx ≤ lim inf
ε→0

∫
Acε

f2
ε (vε)|u′ε|2 dx ≤ lim inf

ε→0

∫
A

f2
ε (vε)|u′ε|2 dx

≤ lim sup
ε→0

Fε(uε, vε;A) = F(u, 1;A) =

∫
A

|u′|2 dx,

hence equality holds throughout and (6.24) is proven. This completes the proof.

8.3 Proof of the statements of Section 7.2

Let g be defined as in (7.1). First, let us observe that g(s, 0) = g0(s) and that the characteri-
zations of g given in (7.4)–(7.6) follow by the same arguments used to prove the corresponding
characterizations of g0 in (6.9)–(6.11). We collect the main properties of the function g in the
following proposition.

Proposition 8.10. The function g enjoys the following properties:

(i) g is monotone nondecreasing in both variables, g(s, s′) = g0(s) if s ≥ s′;
(ii) for every s1, s2, s

′ ≥ 0,
g(s1 + s2, s

′) ≤ g0(s1) + g(s2, s
′) ; (8.35)

(iii) g(0, s′) = (1−ms′)
2, (1−ms′)

2 ≤ g(s, s′) ≤ 1 ∧
(
(1−ms′)

2 + `s
)
;

(iv) g is continuous in both variables and, for fixed s′, the map g(·, s′) is Lipschitz continuous
with Lipschitz constant ` (in particular g is globally continuous);

(v) lims↑∞ g(s, s′) = 1; for s′ > 0 lims↓0
g(s,s′)−g(0,s′)

s = 0.

Proof. (i): The monotonicity of g in the first variable follows from Gs1(α, β) ≤ Gs2(α, β) for s1 < s2,
while the monotonicity in the second variable follows since the map s′ 7→ ms′ is decreasing. If
s ≥ s′, the optimal profile βs for g0(s) is admissible in the minimum problem which defines g(s, s′),
by monotonicity of ms′ , and therefore the values of the two functions coincide. This completes
the proof of (i).

(ii): Fix σ > 0 and let T > 0, (α1, β1), (α2, β2) ∈ H1(−T, T ) × H1(−T, T ) be such that
αi(−T ) = 0, αi(T ) = si, 0 ≤ βi ≤ 1, βi(±T ) = 1, inf β2 ≤ βs′(0), and∫ T

−T

(
f2(β1)|α′1|2 +

(1− β1)2

4
+ |β′1|2

)
dt ≤ g0(s1) + σ ,∫ T

−T

(
f2(β2)|α′2|2 +

(1− β2)2

4
+ |β′2|2

)
dt ≤ g(s2, s

′) + σ ,

according to the representation formulas (6.9) and (7.4) after rescaling α. By defining

α(t) =

{
α1(t) if t ∈ [−T, T ],

α2(t− 2T ) + s1 if t ∈ [T, 3T ],
β(t) =

{
β1(t) if t ∈ [−T, T ],

β2(t− 2T ) if t ∈ [T, 3T ],

we have α, β ∈ H1(−T, 3T ), with α(−T ) = 0, α(3T ) = s1 + s2, β(−T ) = β(3T ) = 1, 0 ≤ β ≤ 1,
inf β ≤ βs′(0). By using the pair ( 1

s1+s2
α, β) as a competitor in (7.4) we obtain

g(s1 + s2, s
′) ≤ g0(s1) + g(s2, s

′) + 2σ ,
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and the conclusion follows as σ is arbitrary.

(iii): The value of g(0, s′) can be computed by observing that in this case the minimum problem
(7.1) defining g is independent of α, and the optimal profile is given by the function

β̄s′(t) := 1− (1−ms′)e
− |t|2 . (8.36)

The lower bound on g(s, s′) follows directly by monotonicity. To derive the upper bound with the
constant 1, one can simply consider the admissible pair (α, β) ∈ Vs′ given by

α(t) =


0 if t ∈ (−∞,−1),
t
2 + 1

2 if t ∈ [−1, 1],

1 if t ∈ (1,∞),

β(t) =


1− e t+1

2 if t ∈ (−∞,−1),

0 if t ∈ [−1, 1],

1− e− t−1
2 if t ∈ (1,∞).

The inequality g(s, s′) ≤ g(0, s′) + `s follows directly from (8.35) and g0(s) ≤ `s.
(iv): The continuity of s′ 7→ g(s, s′) can be proved by taking into account the continuity of the

map s′ 7→ ms′ , proved in Theorem 6.2. The Lipschitz continuity of s 7→ g(s, s′) is a consequence of
the monotonicity of this map, of the subadditivity inequality (8.35), and of the bound g0(s) ≤ `s.

(v): The first limit is a trivial consequence of g(s, s′) = g0(s) for s ≥ s′, and of Theorem 6.1.
To compute the slope of g(·, s′) at the origin, notice that given any α such that α′ has compact
support and the pair (α, β̄s′) belongs to Vs′ , where β̄s′ is the optimal profile defined in (8.36), we
have

g(s, s′) ≤
∫ ∞
−∞

(
s2f2(β̄s′)|α′|2 +

(1− β̄s′)2

4
+ |β̄′s′ |2

)
dt =

∫ ∞
−∞

s2f2(β̄s′)|α′|2 dt+ (1−ms′)
2 .

Dividing by s and letting s → 0+ we obtain the inequality lim sups→0+
g(s,s′)−g(0,s′)

s ≤ 0. The
lower bound g(s, s′) ≥ g(0, s′) concludes the proof.

The next proposition shows that the inequality (8.35) is strict.

Proposition 8.11 (Strict subadditivity). For every s1 > 0, s2 ≥ 0, and s′ > 0, we have

g(s1 + s2, s
′) < g0(s1) + g(s2, s

′). (8.37)

Proof. If s1 + s2 ≥ s′, then g(s1 + s2, s
′) = g0(s1 + s2) and (8.37) holds since g0 is strictly

subadditive by Theorem 6.1. If g0(s1) = 1 the assertion follows from g(s1 + s2, s
′) ≤ 1 and

g(s2, s
′) > 0. Analogously if g(s2, s

′) = 1. Let us assume now that s1 + s2 < s′, s1 < sfrac

and g(s2, s
′) < 1. Fixed η ∈ (0, 1

2 (1 − g(s2, s
′))), let γ1, γ2 ∈ W 1,1

0 ([0, 1], [0, 1]) be such that
max γ2 ≥ (1−ms′)

2 and

1 >g0(s1) =

∫ 1

0

√
s2

1(f1(
√
γ1))2 +

|γ′1|
2

4 dt, (8.38)

1 >g(s2, s
′) + η ≥

∫ 1

0

√
s2

2(f1(
√
γ2))2 +

|γ′2|
2

4 dt. (8.39)

Notice that this is possible by the characterization (7.6) and Proposition 8.3(ii). In particular γ1 is
the unique minimizer of the problem defining g0(s1), and (8.39) implies 0 ≤ γ2 ≤ 1

2 (1+g(s2, s
′)) <

1 as well as
∫ 1

0
|γ′2|dt ≤ 2.

The function γ := (γ1+γ2)∧1 is admissible for g(s1+s2, s
′), being max γ ≥ max γ2 ≥(1−ms′)

2.
Therefore,

g(s1 + s2, s
′) ≤

∫ 1

0

√
(s1 + s2)2(f1(

√
γ))2 + |γ′|2

4 dt

≤
∫ 1

0

√
s2

1(f1(
√
γ))2 +

|γ′1|
2

4 dt+

∫ 1

0

√
s2

2(f1(
√
γ))2 +

|γ′2|
2

4 dt.
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In order to estimate the first integral, we observe that γ ≥ γ1 by definition and that by (6.2)
f1(
√·) is strictly decreasing, hence∫ 1

0

√
s2

1(f1(
√
γ))2 +

|γ′1|
2

4 dt≤
∫ 1

0

√
s2

1(f1(
√
γ1))2 +

|γ′1|
2

4 dt. (8.40)

As for the second integral, we first assume s2 > 0 and show that there exists a constant cs1,s2,s′> 0,
only depending on s1, s2 and s′, such that∫ 1

0

√
s2

2(f1(
√
γ))2 +

|γ′2|
2

4 dt ≤
∫ 1

0

√
s2

2(f1(
√
γ2))2 +

|γ′2|
2

4 dt− cs1,s2,s′ . (8.41)

This would lead to

g(s1 + s2, s
′) ≤

∫ 1

0

√
s2

1(f1(
√
γ1))2 +

|γ′1|
2

4 dt+

∫ 1

0

√
s2

2(f1(
√
γ2))2 +

|γ′2|
2

4 dt− cs1,s2,s′

≤ g0(s1) + g(s2, s
′) + η − cs1,s2,s′ ,

and then to (8.37) as η → 0.

In order to check (8.41), we let ρ := 1−g(s2,s′)
2 ∧ 1

2γ1( 1
2 ) > 0. Then there is δ > 0, only depending

on s1, s2 and s′, such that γ1 ≥ ρ in J := ( 1
2−δ, 1

2 +δ). This implies γ = 1∧(γ1 +γ2) ≥ γ2 +ρ in J .
Convexity and strict monotonicity of f1(

√·) imply convexity and strict monotonicity of (f1(
√·))2,

and hence monotonicity of its difference quotients. Therefore

f2
1 (
√
γ2)− f2

1 (
√
γ) ≥ f2

1 (
√
γ2)− f2

1 (
√
γ2 + ρ) ≥ f2

1 (
√

1− ρ)− f2
1 (1) =: c̃ > 0 in J.

We remark that c̃ only depends on ρ and therefore on s1, s2, s′. Let Iη := {t ∈ J : |γ′2|(t) ≤ 2δ−1}.
From

∫ 1

0
|γ′2|dt ≤ 2 and L1(J) = 2δ we obtain L1(Iη) ≥ δ. Since

√
A− ε ≤

√
A− ε

2
√
A

whenever

0 ≤ ε ≤ A and f1 ≤ `,∫
Iη

√
s2

2(f1(
√
γ))2 +

|γ′2|
2

4 dt ≤
∫
Iη

√
s2

2(f1(
√
γ2))2 +

|γ′2|
2

4 − s2
2c̃dt

≤
∫
Iη

√
s2

2(f1(
√
γ2))2 +

|γ′2|
2

4 dt− s2
2c̃δ

2
√
s2

2`
2 + δ−2

,

where the last term is nonzero and only depends on s1, s2 and s′. Hence (8.41) follows.
It remains to deal with the case s2 = 0. In this situation we can take γ2(t) = 2(t∧ (1− t))(1−

ms′)
2 and η = 0 in (8.39), then γ > γ1 pointwise in (0, 1) and (8.40) is a strict inequality; by

monotonicity of f1 (8.41) holds with cs1,s2,s′ = 0. The proof is then concluded as above.

Proof of Theorem 7.1. All the properties listed in Section 2 follow by combining Theorem 6.1,
Proposition 8.10 and Proposition 8.11, and observing that by definition one has g(s, 0) = g0(s).

Proof of Lemma 7.2. Given T > 0 and an admissible pair (αµ, βµ) for g(µ)(s, s′), we construct
an admissible pair (α, β) for g(s, s′) in (−T − 1, T + 1) by setting α ≡ αµ(−T ) in (−T − 1,−T ),
α = αµ in (−T, T ), α ≡ αµ(T ) in (T, T + 1), and by setting β = βµ in (−T, T ) and linearly linked
to the value 1 in (−T − 1,−T ) and (T, T + 1). Then by (7.4), scaling α,

g(s, s′) ≤
∫ T+1

−T−1

(
f2(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt

≤
∫ T

−T

(
f2(βµ)|α′µ|2 +

(1− βµ)2

4
+ |β′µ|2

)
dt+ 3µ2 ,

from which it follows that g(s, s′) ≤ g(µ)(s, s′)+3µ2. The other inequality follows by an analogous
construction, reversing the roles of g and g(µ).
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[27] G. Dal Maso, G. Orlando, R. Toader, Fracture models for elasto-plastic materials as
limits of gradient damage models coupled with plasticity: the antiplane case. Calc. Var. Partial
Differential Equations 55 (2016), no. 3.

[28] G. Dal Maso, R. Toader, A model for the quasi-static growth of brittle fractures: existence
and approximation results. Arch. Ration. Mech. Anal. 162 (2002), no. 2, 101–135.

[29] G. Dal Maso, C. Zanini, Quasi-static crack growth for a cohesive zone model with prescribed
crack path. Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 2, 253–279.

[30] G. del Piero, L. Truskinovsky, A one-dimensional model for localized and distributed
failure. J. Phys. IV 8 (1998), 95–102.

[31] G. del Piero, L. Truskinovsky, Macro- and micro-cracking in one-dimensional elasticity.
Int. J. Solids Struct. 38 (2001), 1135–1148.

[32] J. L. Doob, Stochastic Processes. John Wiley & Sons, Inc., New York; Chapman & Hall,
Limited, London (1953), viii+654 pp.

58

https://arxiv.org/abs/math/0401196
https://arxiv.org/abs/math/0401196


[33] G. Francfort, A. Garroni, A Variational view of partial brittle damage evolution. Arch.
Ration. Mech. Anal. 182, 125-152 (2006).

[34] G. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem.
J. Mech. Phys. Solids 46 (1998), no. 8, 1319–1342.

[35] G. Francfort, C. Larsen, Existence and convergence for quasi-static evolution in brittle
fracture. Comm. Pure Appl. Math. 56 (2003), no. 10, 1465–1500.

[36] F. Freddi, F. Iurlano, Numerical insight of a variational smeared approach to cohesive
fracture. J. Mech. Phys. Solids 98 (2017), 156–171.

[37] A. Garroni, C. J. Larsen, Threshold-based quasi-static brittle damage evolution. Arch.
Ration. Mech. Anal. 194, 585–609 (2009).

[38] A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle frac-
tures. Calc. Var. Partial Differential Equations 22 (2005), no. 2, 129–172.

[39] A. Giacomini, Size effects on quasi-static growth of cracks. SIAM J. Math. Anal. 36 (2005),
no. 6, 1887–1928.

[40] A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London
Ser. A 221 (1920), 163–198.
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[44] A. Mielke, T. Roub́ıček Rate-independent systems. Applied Mathematical Sciences 193,
Springer 2015.

[45] M. Negri, R. Scala, A quasi-static evolution generated by local energy minimizers for an
elastic material with a cohesive interface. Nonlinear Anal. Real Word Appl. 38 (2017), no. 7,
271–305.

[46] M. Negri, E. Vitali, Approximation and characterization of quasi-static H1-evolutions
for a cohesive interface with different loading-unloading regimes. Interfaces Free Bound. 20
(2018), no. 1, 25–67.

[47] M. Thomas, C. Zanini, Cohesive zone-type delamination in visco-elasticity. Discrete Contin.
Dyn. Syst. Ser. S 10 (2017), no. 6, 1487–1517.

59


	Introduction
	Cohesive quasi-static evolution: general setting and assumptions of the model
	Cohesive quasi-static evolution: the time-discrete evolution
	Cohesive quasi-static evolution: the time-continuous evolution
	Relaxation of the cohesive energy
	Static phase-field approximation: the cohesive energy of pristine material
	A class of cohesive energies  for pristine material
	Main properties of g0
	Phase-field approximation and blow-up around jump points

	Static phase-field approximation: the cohesive energy of pre-fractured material
	A class of cohesive energies  for pre-fractured material
	Main properties of g
	Phase-field approximation

	Static phase-field approximation: proofs
	Proof of the statements of Section 6.2
	Proof of Theorem 6.5 in Section 6.3
	Proof of the statements of Section 7.2


