
HAL Id: hal-02553123
https://hal.science/hal-02553123

Submitted on 24 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constrained interval-valued linear regression model
Feng Li, Shoumei Li, Nana Tang, Thierry Denoeux

To cite this version:
Feng Li, Shoumei Li, Nana Tang, Thierry Denoeux. Constrained interval-valued linear regression
model. 20th International Conference on Information Fusion (FUSION 2017), Jul 2017, Xi’an, China.
pp.1-8, �10.23919/ICIF.2017.8009676�. �hal-02553123�

https://hal.science/hal-02553123
https://hal.archives-ouvertes.fr


Constrained Interval-valued
Linear Regression Model

Feng Li∗, Shoumei Li∗, Nana Tang∗, Thierry Denœux∗†
∗College of Applied Science

Beijing University of Technology, Beijing 100124, China
Email: lishoumei2011@163.com

†Sorbonne Universités
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Abstract—In current interval-valued linear regression models,
meaningless predictions may be generated because the lower
bounds of the predicted intervals may be greater than their upper
bounds. To avoid this problem, we propose a constrained interval-
valued linear regression model based on random set theory.
However, due to the introduction of constraints in this model,
the expectation of the errors is no longer zero, and estimation
provided by traditional least square may produce systematic bias.
To address this issue, we introduce a two-step procedure: in the
first step, a dummy variable is defined and plugged into the
regression model to ensure that the expectation of errors is zero;
least square estimation is then used in the second step. To show
the validity of proposed method, experiments on simulated and
real data are presented.

I. INTRODUCTION

The classical linear regression model has been well devel-
oped in the pre-computer age of statistics, but even in today’s
computer era there are still good reasons to study and use
it. In past research, real-valued data have been exclusively
considered. However, in practice, set-valued observations, and
particularly interval-valued data, may be obtained in many
fields, such as medical diagnosis and weather forecasting. The
analysis of such data plays an important role in various fields,
and it is expected to have further extensive applications to
other areas.

Interval-valued data are quite common in our daily life. For
example, the highest and lowest values of daily temperature
are interval data. Until recently, a single point representing
an interval-valued observation has often been used to estimate
the parameters of the traditional linear regression. For instance,
when modeling stock prices, only the closing prices are typi-
cally considered in the model, in which case the information of
stock price fluctuations during each day is lost. Alternatively,
we can take into account the highest and lowest prices of
each day, which reflect the variability of stock prices over this
period.

The notion of set-valued random variable was first intro-
duced by Robbins [1] in 1944. Artstein then proved a strong
law of large numbers for random sets [2]; some details can
be found in [3]. In 1965, Aumann introduced the integral
of set-valued random variable [4], and Hiai later proposed
a definition of conditional expectations [5]. On the basis of

the above theory, the convergence of set-valued martingales
under different conditions was studied [6]–[11]. In recent
years, a systematic theory for set-valued random variables was
established [12], [13]. In 2007, Zhang et al. comprehensively
summarized the basic theory of set-valued random variables
and set-valued stochastic processes in [14]. All these contribu-
tions have laid the foundations of set-valued stochastic theory.

Since the hyperspace of sets is not linear with respect to
addition and scalar multiplication, it is difficult to define the
variance and covariance of set-valued random variables. In
2005, Yang and Li [15] proposed the Dp metric in the space
of set-valued random variables, and defined the variance and
covariance of set-valued random variable using this metric.
Later, Blanco [16] defined the dk-variance of interval-valued
random variables with underlying space R1, which is a special
case of [15]. Based on the Dp metric, Wang et al. [17]
defined a new type of interval-valued linear model, where
the inputs are real-valued random variables and the output is
an interval-valued random variable. They proved that the best
linear unbiased estimation for this model does not exist, but
the least square estimator is the best binary linear unbiased
estimator. In this paper, we introduce another type of interval-
valued linear model, in which the output and inputs are both
interval-valued random variables.

Other approaches to the analysis of interval-valued data
have been proposed. Billard [18] introduced a center model,
in which only the midpoints of the intervals are used for
fitting a linear regression model. The fitted model is then
used to predict the lower and upper bounds of the intervals.
Beside the center model, Lima Neto [19] proposed another
linear model for the ranges of the intervals. They proved that
this method reconstructs the boundaries of the intervals in a
more efficient way than does the Billard method. However, the
same problem happens with these methods, that is, the lower
bound of the predicted interval may be greater than its upper
bound. To avoid this problem, Lima Neto [20] introduced a
constrained version of the center and range method, where the
coefficients in the range model are forced to be nonnegative.
However, they also recognized that nonnegativity constraints
on the coefficients are inappropriate when the variables do
have a negative relationship.



Based on the natural requirement that the lower bound of an
interval should be less than or equal to its upper bound, some
improvements are proposed in this paper. First, in our model
the lower and upper bounds of the dependent interval-valued
variable are both related to the upper and lower bounds of
the independent interval-valued variables. Secondly, because
the expectation of the errors is not zero any more, the least-
squares estimates may be biased. To deal with this problem, we
propose a two-step procedure. In the first step, we introduce
an auxiliary variable, which can be treated as a new regressor
in the regression model. The least square estimator is then
computed in the second step. Results from numerical studies
show that our method outperforms other interval-valued linear
models.

This paper is organized as follows. In Section 2, some
background knowledge about set-valued random variables and
existing regression models is presented. Our new method is
explained in Section 3. Section 4 describes the results of
numerical and empirical studies. Concluding remarks are give
in Section 5.

II. SET-VALUED RANDOM VARIABLES AND REGRESSION
MODEL FOR INTERVAL-VALUED DATA

As interval-valued random variables are a special case of the
set-valued random variables, we firstly recall the set-valued
theory in this section. Some existing regression models for
interval-valued data are then presented.

A. Set-valued random variables

1) Operations in the hyperspace: Suppose that (Ω,A) is
a measurable space, and X is a metric space. We denote by
K(X ) the family of all nonempty closed subsets of X , Kk(X )
the family of all nonempty compact subsets of X , Kc(X ) the
family of all nonempty closed convex subsets of X , Kkc(X )
the family of all nonempty compact and closed convex subsets
of X , and O(X ) the family of all nonempty open subsets of
X .

For any A,B ∈ K(X ), λ ∈ R, the addition and scalar
multiplication can be defined, respectively, as

A+B = {a+ b : a ∈ A, b ∈ B},

λA = {λa : a ∈ A}.

Remark that (K(X ),+, ·) is not a linear space in general,
since A + (−A) 6= {0}. When X is an infinite-dimensional
space, for A,B ∈ K(X ), A+B ∈ K(X ) may not be true, so
it is represented by A⊕B = cl{a+ b : a ∈ A, b ∈ B}. But if
A,B ∈ Kkc(X ) (or Kk(X )), A+B ∈ Kkc(X ) (or Kk(X )).

When X is a separable Banach space, the dual space of
X is X ∗, i.e., the set of all bounded linear functionals on X .
Specially when X = Rd, that is X is d dimensional Euclidean
space, X ∗ = Rd.

For each A ∈ Kc(X ), the support function is defined by

s(x∗, A) = sup{x∗(a) : a ∈ A}, x∗ ∈ X ∗.

It has the following properties:

s(x∗, A⊕B) = s(x∗, A+B) = s(x∗, A) + s(x∗, B),

s(x∗, λA) = λs(x∗, A), λ ≥ 0,

s(x∗,−A) = s(−x∗, A).

For 1 ≤ p < ∞, the metric dp of sets A,B ∈ Kkc(X ) is
defined by

dp(A,B) =
(∫

S∗
|s(x∗, A)− s(x∗, B)|pdµ

) 1
p

,

where S∗ is the unit sphere of X ∗, i.e., S∗ = {x∗ ∈ X :
‖ x∗ ‖X∗ = 1}, and µ is a measure on (X ∗,B(X ∗)). We de-
note the distance between A and {0} by ||A||dp = dp({0}, A),
where || · ||dp is just a notation, not a norm, since Kkc(X ) is
not a linear space in general.

Example 1. When X = R1, Kkc(R1) represents all closed
intervals of R1, namely

Kkc(R1) = {[a, b] : 0 < a ≤ b <∞, a, b ∈ R1}.

A scalar a ∈ R1 is actually a degenerate interval, that is
a = [a, a]. For any two closed intervals [ai, bi] ∈ Kkc(R1), i =
1, 2, λ ∈ R1, the addition and scalar multiplication of intervals
are

[a1, b1] + [a2, b2] = [a1 + a2, b1 + b2],

λ[a1, b1] =

{
[λa1, λb1] λ ≥ 0,

[λb1, λa1] λ < 0.

When X = R1, we have R1∗ = R1. For each A = [a, b] ∈
Kkc(R1), its support function is

s(x,A) =

{
bx x ≥ 0,

ax x < 0,

where x ∈ R1, and the unit sphere of R1 is S∗ = {−1, 1}.
Thus for any p ∈ [1,∞), the dp distance between any two
intervals A = [a1, b1], B = [a2, b2] is

dp(A,B) = (|b1 − b2|p + |a1 − a2|p)
1
p . (1)

2) Dp metric of set-valued random variables:

Definition 1. A set-valued mapping F : Ω → K(X ) is
called strongly measurable if ∀C ∈ K(X ), F−1(C) ∈ A,
where F−1(C) = {ω ∈ Ω : F (ω) ∩ C 6= ∅}. It is called
weakly measurable if ∀O ∈ O(X ), F−1(O) ∈ A. A weakly
measurable set-valued mapping is also called a set-valued
random variable for short (or a random set).

Theorem 1. A strongly measurable set-valued mapping is a
set-valued random variable.

Two set-valued random variables are said to be identical if
F1(ω) = F2(ω) for almost every ω ∈ Ω. Let U [Ω,Kk(X )] (or
U [Ω,Kkc(X )]) be the family of set-valued random variables
taking values in Kk(X ) (or Kkc(X )). The Dp metric of two



set-valued random variables F1, F2 ∈ U [Ω,Kk(X )] is defined
by

Dp(F1, F2) =
[
E(dpp(F1(ω), F2(ω)))

] 1
p .

Example 2. Let X = R1, and Fi(ω) = [ai(ω), bi(ω)], where
ai(ω) and bi(ω) are two random variables such that ai(ω) ≤
bi(ω), ∀ω ∈ Ω, i = 1, 2. Denote by ci = ai(ω)+bi(ω)

2 and ri =
bi(ω)−ai(ω)

2 , respectively, the midpoint and range of Fi, i =
1, 2, then

Dp(F1, F2) = [E|a2(ω)− a1(ω)|p + E|b2(ω)− a1(ω)]|p]
1
p

= [E|(c2 − c1)− (r2 − r1)|p + E|(c2 − c1) + (r2 − r1)|p]
1
p .

We define Lp[Ω,Kkc(X )] as the set {F ∈ U [Ω,Kkc(X )] :
E[||F ||pdp ] < +∞}. The space (Lp[Ω,Kkc(R

d)], Dp) is a
complete metric space.

3) Variance and covariance of set-valued random vari-
ables: The expectation of set-valued random variable F was
defined by Aumann [4] as

E[F ] =
{∫

Ω

fdP : f ∈ SF
}
,

where SF = {f : f(ω) ∈ F (ω) a.s.(P ), and f is integrable}
is called the selection set of the set-valued random variable
F . Based on this definition, Yang and Li [15] proposed to
define notions of variance and covariance via the Dp metric
on U [Ω,Kkc(X )], which is also used in Wang et al. [21]. Here,
we recall these definitions.

For a set-valued random variable F ∈ U [Ω,Kkc(X )], the
variance of F is defined as

Var(F ) = [D2(F,E(F ))]2

= E
{∫

S∗
[s(x∗, F (ω))− s(x∗, E(F (ω)))]2du

}
.

The covariance of two set-valued random variable F1, F2 ∈
U [Ω,Kkc(X )] is defined as

Cov(F1, F2) = E
{∫

S∗
[s(x∗, F1(ω))− s(x∗, E(F1))]

× [s(x∗, F2(ω))− s(x∗, E(F2))]du
}
.

The correlation coefficient of F1 and F2 is defined as

ρ(F1, F2) =
Cov(F1, F2)√

Var(F1)Var(F2)
,

where Var(F1)Var(F2) 6= 0.
The variance, covariance and correlation of set-valued ran-

dom variables have the following properties:
1) Var(C)=0 for any constant C ∈ Kkc(X ).
2) Var(aF ) = a2Var(F ), for any a > 0.
3) Cov(aF1, F2) = Cov(F1, aF2) = aCov(F1, F2).
4) Var(F1 + F2) = F1 + 2Cov(F1, F2) + F2.
5) P (d2(F,E(F )) ≥ ε) ≤ Var(F )

ε2 , for any ε > 0.
6) Cov(F1 + F2, F3) = Cov(F1, F2) + Cov(F2, F3).
7) |ρ| ≤ 1.
8) ρ(F1, F2) = 0 if F1 and F2 are independent.

Example 3. When X = R1, and for any interval-valued
random variable F (ω) = [a(ω), b(ω)] = (c(ω); r(ω)), where
c(ω) and r(ω) are the midpoint and range of F , respectively,
then

E(F (ω)) = [E(a(ω)),E(b(ω))],

Var(F (ω)) = Var(a(ω)) + Var(b(ω))

= 2Var(c(ω)) + 2Var(r(ω)).

And for any two interval-valued random variables Fi(ω) =
[ai(ω), bi(ω)] = (ci(ω); ri(ω)), i = 1, 2, where ci(ω) and
ri(ω) are defined as before,

Cov(F1(ω), F2(ω)) =

Cov(a1(ω), a2(ω)) + Cov(b1(ω), b2(ω)) =

2Cov(c1(ω), c2(ω)) + 2Cov(r1(ω), r2(ω)).

B. Linear regression model for interval-valued data

In this subsection, we briefly present three existing linear
regression models for interval-valued data, and discuss advan-
tages and disadvantages of these methods.

1) Center model: This model (also called CM method)
was first proposed by Billard and Diday [18]. In this model
only the midpoints of the intervals are considered to fitting
a linear model. More precisely, suppose that the interval-
valued variables Y can be explained by p interval-valued
variables X1, . . . , Xp. Typically we have a set of obser-
vation {(yi, xi1, · · · , xip)}i=i,··· ,n, where xij = [aij , bij ],
yi = [yli, yui], i = 1, · · · , n, j = 1, · · · , p. Let xcij and yci
be, respectively, the midpoints of the intervals xij and yi,
defined as xcij = (aij + bij)/2, and yci = (yli + yui)/2, i =
1, · · · , n, j = 1, · · · , p. The linear regression model is:

yc = Xcβc + εc, (2)

where yc = (yc1, · · · , ycn)T , and βc = (βc0, β
c
1, · · · , βcp)T ,

Xc = (xc1, · · · ,xcn)T , xci = (1, xci1, · · · , xcip)T (i =
1, · · · , n), εc = (εc1, · · · , εcn)T , xcij = (aij + bij)/2 and
yci = (yli + yui)/2. From (2), the sum of the squares of
deviations is

Scm =
n∑
i=1

(εci )
2, (3)

which is the sum of the midpoint squared errors. It can also be
interpreted as the sum of the square of the sum of the lower
and upper bound errors.

The value of β minimizing (3) is the least square estimate.
If Xc has full rank p+ 1 ≤ n, then

β̂c = ((Xc)TXc)−1(Xc)Tyc. (4)

Based on β̂c, given a new example x = (x1, · · · , xp) with
xj = [aj , bj ] (j = 1, · · · , p), the predicted value y is

ŷ = [xTl β̂
c,xTu β̂

c], (5)

where xl = (1, a1, · · · , ap)T , xu = (1, b1, · · · , bp)T .
This is a simple model for fitting a linear regression model

to interval-valued data. However, only the midpoints of the
intervals are considered in the model; other information, like
the range of the interval, is lost.



2) Center and range method: Based on the CM method,
Lima Neto and De Carvalho [19] proposed the center and
range model (CRM), in which both the centers and the ranges
of the intervals are used for fitting a linear regression model.
Let xcij and yci be defined as before. Meanwhile, let xrij and yri
be, respectively, the range of the intervals xij and yi, defined
as xrij = (bij − aij)/2, yri = (yli − yui)/2, i = 1, · · · , n, j =
1, · · · , p. The linear regression models are

yc = Xcβc + εc,

yr = Xrβr + εr,
(6)

where yr = (yr1, · · · , yrn)T , βr = (βr0 , β
r
1 , · · · , βrp)T , Xr =

(xr1, · · · ,xrn)T , xri = (1, xri1, · · · , xrip)T (i = 1, · · · , n), εr =
(εr1, · · · , εrn)T , and yc, Xc, εc are defined in (2).

Thus, the sum of the squares of deviations is defined as

Scrm =

n∑
i=1

(εci )
2 +

n∑
i=1

(εri )
2, (7)

which represents the sum of the midpoint square errors plus
the sum of the range square errors. Assuming that the midpoint
and range of the intervals are independent, minimizing the cri-
terion above is equivalent to fitting two independent regression
models over the midpoint and range of interval values.

If Xc and Xr have full rank p + 1 ≤ n, the least-square
estimates of βc is given by (4), and the least square estimate
of βr is

β̂r = ((Xr)TXr)−1(Xr)Tyr. (8)

The fitted value is

ŷc = Xcβ̂c, ŷr = Xrβ̂r, (9)

and ŷ = [ŷc − ŷr, ŷc + ŷr].
In comparison to the CM method, CRM fits two linear

regression models using the information contained in the
midpoints and ranges of the intervals in order to improve
the model prediction performance. However, the CRM method
cannot ensure the natural assumption that the predicted range
ŷr should be not less than 0, namely, the predicted lower
bound ŷl should be lower than or equal to the upper bound
ŷu.

3) Constrained center and range model: To solve the
deficiency of the CRM method, Lima Neto and De Carvalho
later proposed a constrained version (called CCRM), to make
sure that the lower bound of any prediction interval is less
than or equal to its upper bound. The basic idea is to consider
inequality constraints over the parameters βr in (6), ensuring
that the estimated values of ŷr will always be greater than
or equal to zero. Remark that there are no restrictions on the
parameters βc. The regression model of CCRM method is

yc = Xcβc + εc,

yr = Xrβr + εr,

subject to βrj ≥ 0, j = 1, . . . , p.

(10)

The sum of squares of deviations is given by

Scrm =

n∑
i=1

(εci )
2 +

n∑
i=1

(εri )
2

subject to βrj ≥ 0, j = 1, . . . , p.

(11)

As no constraints are added to the center regression model,
the least square estimates of βc is given by (4) if Xc has
full rank. The estimation of βr with constraints is obtained
by adapting Lawson and Hanson’s algorithm [22].

By ensuring all the parameters in the range model to be
nonnegative, the CCRM method makes sure that the predicted
upper bound of the interval is greater than or equal to the lower
bound. But some problems still exits. Firstly, our ultimate aim
is to ensure ŷr ≥ 0, rather than all the parameters β̂j ≥
0, j = 1, . . . , p. Secondly, the approach may be misleading if
the relationship between variables is truly negative.

III. CONSTRAINED REGRESSION MODEL FOR
INTERVAL-VALUED DATA

A. General framework and basic assumption

In order to overcome the limitations of the previous meth-
ods, we introduce a constrained regression model. More
precisely, let X1, · · · , Xp be p independent interval-valued
variable, where Xj = [Xlj , Xuj ], j = 1, · · · , p, and let Y be
the interval-valued dependent variable, where Y = [Yl, Yu].
We suppose that there is a linear relationship between Y and
Xj , j = 1, 2, · · · , p,(

Yl
Yu

)
=

(
βl0
βu0

)
+

p∑
j=1

(
βj11 βj12

βj21 βj22

)(
Xlj

Xuj

)
+

(
εl
εu

)
subject to Yl ≤ Yu,

(12)

where ε = (εl, εu) is an error term. Some explanations are in
order:

1) In our model, the lower bound of Y is related to both
the upper and lower bounds of Xj , and similarly for the
upper bound of Y . Specially, when β12 = β21 = 0, the
upper (resp., lower) bound of the interval is only related
to the upper (resp.,lower) bound of Xj .

2) As the upper bound of the interval should not be less
than the lower bound, we cannot ignore the constraint
condition Yl ≤ Yu.

We define βl = (βl0, β
1
11, β

1
12, β

2
11, β

2
12, . . . , β

p
11, β

p
12)T ,

βu = (βu0, β
1
21, β

1
22, β

2
21, β

2
22, . . . , β

p
21, β

p
22)T , and X =

(1, Xl1, Xu1, Xl2, Xu2, · · · , Xlp, Xup). Then (12) can be writ-
ten in matrix form

Yl = Xβl + εl

Yu = Xβu + εu

subject to Yl ≤ Yu.
(13)

Suppose that we have observed n samples. Then we have
the following equations:

Yli = Xiβl + εli

Yui = Xiβu + εui

subject to Yli ≤ Yui, i = 1, 2, · · · , n,
(14)



where Xi = (1, xli1, xui1, xli2, xui2, · · · , xlip, xuip).
Before going on, we make some further assumptions about

the sampling process:
1) We suppose that the probability density of (εli, εui),

denoted by h(εli, εui), verifies E(εli) = E(εui) = 0,
E(ε2

li) = σ2
l <∞, E(ε2

ui) = σ2
u <∞, E(εliεui) = σ2

lu,
and E(εliεuj) = 0, (i 6= j), i, j = 1, 2, · · · , n

2) We assume that the matrix (XT
1 ,X

T
2 , · · · ,XT

n )T has
full rank, its size being n× (2p+ 1).

From now on, we discuss the expectation of the errors in
(14) based on the condition Yli ≤ Yui. Let Gli = Xiβl,
Gui = Xiβu, ∆Gi = Gui − Gli, ∆Yi = Yui − Yli. Due to
the constraint Yli ≤ Yui, that is ∆Yi ≥ 0, we have Gli+εli ≤
Gui+εui, which means ∆εi = εui−εli ≥ Gli−Gui = −∆Gi.

For given Xi, Yi and the constraints ∆Yi ≥ 0, the condi-
tional expectations of εli and εui are

E[εli|Xi,∆Yi ≥ 0] = E[εli|Xi,∆εi ≥ ∆Gi],

E[εui|Xi,∆Yi ≥ 0] = E[εui|Xi,∆εi ≥ ∆Gi].

Since εli and εui are dependent on ∆εi = εui − εli, when
P{∆εi ≥ −∆Gi} 6= 0, the conditional expectations are not
zero any more, which can lead to systematic bias of the least
square estimates. Thus, we consider a two-step procedure: we
first need to modify the model in such a way that the expected
errors are equal to zero, and then we can use the least square
estimation, as done in [23].

Before deriving the parameter estimates, an additional as-
sumption is first presented, that is, h(εl, εu) is a bivariate
normal distribution.

Assumption 1. The error term ε = (εl, εu) has a bivariate
normal distribution, with joint probability density

f(ε) = (2π)−1 | Σ |−1/2 exp{−εTΣ−1ε/2},

where Σ =
(

σ2
l ρσlσu

ρσlσu σ2
u

)
.

The motivation for this assumption is technical: the com-
bination of normal distributions is still a normal distribution,
and it is easy to compute conditional probability density under
truncation conditions.

B. Preliminaries

For convenience, we omit the subscript i. The difference of
the two equations in (13) is Yu−Yl = Xβu+εu−Xβl−εl,
which can also be written in equivalent form

∆Y = X∆β + ∆ε, (15)

As ∆ε is the difference between εu and εl, from the property
of the normal distribution we know that ∆ε has a normal
distribution, with E(∆ε) = E(εu)− E(εl) = 0, V ar(∆ε) =
V ar(εu) + V ar(εl) − 2Cov(εu, εl) = σ2

u + σ2
l − 2ρσuσl.

Let σ2
m = V ar(∆ε), then ∆ε ∼ N(0, σ2

m), or equivalently
∆ε/σm ∼ N(0, 1).

Remark that if σm = 0, ∆ε boils down to zero almost
everywhere, and (15) becomes a non random equation, in
which case the condition ∆Y ≥ 0 is useless: we can directly

use least-square estimation. Thus, to make sure σm > 0,
σu = σl and ρ = 1 cannot hold at the same time.

Proposition 1. (1) ∀c ∈ R, the probability density of a random
variable ∆ε under the condition {∆ε ≥ c} is

f(z|∆ε ≥ c) =


φ(z/σm)

σm(1− Φ(c/σm))
z ≥ c,

0 z < c.

(2) Let ∆Y = ∆ε+∆G, the probability density of ∆Y under
the condition {∆Y ≥ 0} is

g(∆y|∆Y ≥ 0) =
φ(∆y/σm −∆G/σm)

σm(1− Φ(−∆G/σm))
.

where φ and Φ are, respectively, the normal probability density
and cumulative distribution functions.

Based on Assumption 1 and results in [24], we have the
following lemma:

Lemma 1. Under Assumption 1, the conditional expectation
of the error term is

E(εl|X,∆ε ≥ −∆G) =
ρσlσu − σ2

l

σm
τ,

E(εu|X,∆ε ≥ −∆G) =
σ2
u − ρσlσu
σm

τ,

where τ = φ(z)/(1 − Φ(z)) = φ(z)/Φ(−z), z = −∆G/σm.
Parameter τ is called the inverse of Mill’s ratio.

We define Cl =
ρσlσu − σ2

l

σm
and Cu =

σ2
u − ρσlσu
σm

. Then,

the conditional expectations of Yli and Yui are

E(Yli|Xi,∆Yi ≥ 0) = Xiβl + Clτi,

E(Yui|Xi,∆Yi ≥ 0) = Xiβu + Cuτi.

Moreover, the regression model with constraints can be
written as

Yli = E(Yli|Xi, τi,∆Yi ≥ 0) + Vli,

Yui = E(Yui|Xi, τi,∆Yi ≥ 0) + Vui,
(16)

where

Vli = εli − Clτi, Vui = εui − Cuτi,
E(Vli|Xi, τi,∆εi ≥ −∆Gi) = 0,

E(Vui|Xi, τi,∆εi ≥ −∆Gi) = 0,

E(VliVui|Xi, τi,∆εi ≥ −∆Gi) = 0,

E(V 2
li |Xi, τi,∆εi ≥ −∆Gi)

= σ2
l −

σ2
l (ρσu − σl)2

σ2
m

∆Gi
σm

τi,

E(V 2
ui|Xi, τi,∆εi ≥ −∆Gi)

= σ2
u −

σ2
l (σu − ρσl)2

σ2
m

∆Gi
σm

τi,

E(VliVuj |Xi, τi,∆εi ≥ −∆Gi)

= ρσlσu −
σlσu(ρσu − σl)(σu − ρσl)

σ2
m

∆Gi
σm

τi, i 6= j.



This model can be viewed as a multiple linear regression
model with two dependent variables Yl and Yu, and 2p + 1
independent variables Xl1, Xu1, · · · , Xlp, Xup, τ . Once we
have computed τi, we can obtain the least-square estimates
β̂l and β̂u. It should be noted that the least-square estimators
are unbiased but inefficient, which is the consequence of
heteroscedasticity. More details can be found in [23].

C. Two-step estimation
1) First step: In this step, we want to estimate τi. To this

end, we model the range of the interval (14),

∆Yi = Xi∆β + ∆εi. (17)

From Proposition 1, the probability density of ∆yi is

f(∆Yi|∆Yi ≥ 0) =

1

σm

φ(∆Yi/σm + (Gli −Gui)/σm)

1− Φ((Gli −Gui)/σm)
. (18)

Based on (18), we can construct the log-likelihood function
of n observations

n−1L(∆Y ; ∆β, σm) =
1

n

n∑
i=1

(logf(∆Yi|∆Yi ≥ 0)). (19)

By maximizing (19), max∆β,σm
[n−1L(∆Y ; ∆β, σm)], we

can obtain the ML estimators ∆β̂ and σ̂m. The ML estimators
are substituted to obtain τ̂i.

2) Second step: After plugging τ̂i into (16), we can ob-
tain the following multiple linear regression model with two
dependent variables:

Y = Xβ + V , (20)

where

Y =

(
yl1 yl2 · · · yln
yu1 yu2 · · · yun

)T
,

V =

(
Vl1 Vl2 · · · Vln
Vu1 Vu2 · · · Vun

)T
,

X =


1 xl11 xu11 · · · xl1p xu1p τ̂1
1 xl21 xu21 · · · xl2p xu2p τ̂2
...

...
...

. . .
...

...
...

1 xln1 xun1 · · · xlnp xunp τ̂n

 ,

β =

(
βl0 β1

11 β1
12 · · · βp11 βp12 Cl

βu0 β1
21 β1

22 · · · βp21 βp22 Cu

)T
.

The corresponding residual sum of squares is given by

S =

n∑
i=1

d2
2

(
[yli, yui], [ŷli, ŷui]

)
=

n∑
i=1

(yli − ŷli)2 +

n∑
i=1

(yui − ŷui)2

=

n∑
i=1

(
V 2
li + V 2

ui

)
.

(21)

Minimizing (21) gives the least square estimation of β

β̂ = (XTX)−1XTY .

TABLE I
CONFIGURATIONS OF DATA GENERATING PROCESSES FOR SIMULATION

Parameters DGP1 DGP2 DGP3 DGP4
βl0 0 0 0 0
βu0 0.2 0.2 0.2 0.2
β11 0.8 0.8 0.85 0.85
β12 0.1 0.1 0.15 0.15
β21 0.1 0.1 0.1 0.1
β22 0.8 0.8 0.8 0.8
Cl -0.2236 -0.6524 -0.2236 -0.6524
Cu 0.2236 -0.1603 0.2236 -0.1603
σ2
l 0.1 0.5 0.1 0.5
σ2
u 0.1 0.1 0.1 0.1
ρ 0 0.8 0 0.8

Sample sizes T=200, 500, 1000
Number of replication=1000

IV. NUMERICAL STUDIES

To show the usefulness of proposed method in our paper,
experiments on simulated and real interval-valued data are
reported in this section.

A. Simulation Experiment

The data generating process (DGP) is governed by the
regression model(

Yl
Yu

)
=

(
βl0
βu0

)
+

(
β11 β12

β21 β22

)(
Xl

Xu

)
+

(
εl
εu

)
subject to Yl ≤ Yu,

(22)

where ε = (εl, εu) ∼ N(0,Σ).
To guarantee the inequality constraint yl ≤ yu, which is also

equivalent to ∆ε ≥ −∆G, we proceeded as follows. After
obtaining [xl, xu], we first calculated ∆G, ∆G = Gu − Gl,
where Gu = βu0 +β21xl+β22xu, Gl = βl0 +β11xl+β12xu.
Then the error term (εl, εu) was drawn from the truncated
bivariate normal distribution with the truncation condition
∆ε ≥ −∆G. Finally, Yl and Yu were obtained, respectively,
as Yl = Gl + εl, Yu = Gu + εu.

Through the above DGP, we can ensure that the error term
has the truncated bivariate normal distribution. Furthermore,
all the pairs [Yl, Yu] satisfy inequality constraint.

We considered the four different configurations shown in
Table I. In two configurations, the coefficients of the indepen-
dent variables are symmetric (β11 = β22 and β12 = β21).
Two different forms of covariance matrices Σ for error term
where considered in our experiments: one with zero correlation
coefficient (σ2

l = σ2
u = 0.1, ρ = 0) and the other with

larger variance and highly correlated errors (σ2
l = 0.5, σ2

u =
0.1, ρ = 0.8). For each DGP, the results obtained by the
two-step procedure (Two-step) and the classical least square
(LS) estimation are displayed in Tables II and III. To illustrate
the effect of sample size, three different sample size were
considered: 200, 500 and 1000, with 1000 replications per
DGP. Due to space limitation, only parts of the results are
presented in Table II for DGP1 and Table III for DGP4.

Some conclusions can be drawn from Table III:
1) The means of LS estimates are close to the true values

for DGP1; however for both DGP2 (with asymmetric
coefficients) and DGP3 (with highly correlated errors),



TABLE II
SIMULATION RESULTS FOR DGP1

Two-step
T=200 T=500 T=1000

Parameters Mean RMSE Mean RMSE Mean RMSE
βl0 = 0 0.0018 0.1362 0.0015 0.0814 0.0023 0.0569
βu0 = 0.2 0.1969 0.1330 0.1984 0.0853 0.1995 0.5736
β11 = 0.8 0.7989 0.0882 0.7993 0.0526 0.8017 0.3733
β12 = 0.1 0.1008 0.0880 0.1002 0.0524 0.0982 0.3709
β21 = 0.1 0.0989 0.0864 0.1001 0.0550 0.0998 0.0376
β22 = 0.8 0.8012 0.0861 0.8000 0.0549 0.8002 0.0372

Cl = −0.2236 -0.2245 0.3227 -0.2225 0.2050 -0.2266 0.1362
Cu = 0.2236 0.2264 0.3288 0.2250 0.2059 0.2241 0.1442

LS
βl0 = 0 -0.0829 0.1000 -0.0797 0.0874 -0.0806 0.0845
βu0 = 0.2 0.2811 0.0983 0.2811 0.0879 0.2810 0.0845
β11 = 0.8 0.7475 0.0649 0.7474 0.0580 0.7469 0.0557
β12 = 0.1 0.1528 0.0648 0.1524 0.0576 0.1529 0.0554
β21 = 0.1 0.1527 0.0652 0.1532 0.0579 0.1524 0.0549
β22 = 0.8 0.7470 0.0649 0.7470 0.0576 0.7475 0.0549

Number of replication=1000

TABLE III
SIMULATION RESULTS FOR DGP4

Two-step
T=200 T=500 T=1000

Parameters Mean RMSE Mean RMSE Mean RMSE
βl0 = 0 -0.0001 0.2795 -0.0044 0.1737 -0.0069 0.1262
βu0 = 0.2 0.2026 0.1340 0.1983 0.0791 0.1977 0.0583
β11 = 0.85 0.8549 0.2319 0.8459 0.1500 0.8438 0.1066
β12 = 0.15 0.1474 0.2079 0.1538 0.1346 0.1559 0.0961
β21 = 0.1 0.1044 0.1205 0.0996 0.0728 0.0979 0.0530
β22 = 0.8 0.7967 0.1066 0.8006 0.0643 0.8020 0.0470

Cl = −0.6524 -0.6644 0.2945 -0.6550 0.1809 -0.6506 0.1283
Cu = −0.1603 -0.1689 0.1706 -0.1627 0.1011 -0.1602 0.0716

LS
βl0 = 0 -0.4328 0.4452 -0.4327 0.4381 -0.4322 0.4345
βu0 = 0.2 0.0927 0.1214 0.0940 0.1117 0.0942 0.1086
β11 = 0.85 0.4103 0.4454 0.4089 0.4435 0.4099 0.4413
β12 = 0.15 0.5314 0.3876 0.5325 0.3852 0.5315 0.3827
β21 = 0.1 -0.0072 0.1135 -0.0072 0.1098 -0.0076 0.1089
β22 = 0.8 0.8930 0.0999 0.8929 0.0958 0.8932 0.0946

Number of replication=1000

the mean values of LS estimates are quite far from the
true values. This is also true for the results for DGP4
(with both asymmetric coefficients and highly correlated
errors).

2) The means of the two-step estimates are very close to
the true values for all cases. The results get better when
the sample size is increased, and the RMSE is much
smaller.

The results obtained from two-step estimation are much
better than those from LS estimation, which confirms our
previous discussion. To further illustrate the effectiveness
of the proposed method, we compared two-step (Two-step)
estimation with the center and range model (CRM). The
constrained center and range model (CCRM) was also taken
into account.

To evaluate the performances of different methods, three
criteria were used: (1) Root Mean Squared Error for upper
and lower bounds of the intervals, (2) Coverage (CR) and
Efficiency Rates (ER) of the predicted intervals, (3) Mean
Distance Error (MDE) between the predicted and true in-
tervals. For a sample of size n, assuming that the fitted
values ŷi = [ŷli, ŷui](i = 1, · · · , i = n) of the true values
yi = [yli, yui](i = 1, · · · , n) have been obtained by each
method, the criteria were defined as follows:

TABLE IV
CONFIGURATIONS OF DATA GENERATING PROCESSES FOR COMPARING

βl0 βu0 β11 β12 β21 β22 σl σu ρ
DGP1 0 0.2 -0.8 -0.1 0.1 0.8 0.1 0.1 0
DGP2 0 0.2 -0.8 -0.1 0.1 0.8 0.5 0.1 0.8
DGP3 0 0.2 -0.85 -0.15 0.1 0.8 0.1 0.1 0
DGP4 0 0.2 -0.85 -0.15 0.1 0.8 0.5 0.1 0.8

TABLE V
EXPERIMENTAL EVALUATION FOR DGP1

RMSE CR & ER MDE
Lower Upper CR ER (CR+ER)/2 q = 1 q = 2

CRM 2.7092 2.6614 0.8555 0.7731 0.8143 2.3507 2.6854
CCRM 2.6787 2.6430 0.8543 0.7722 0.8132 2.3341 2.6609

Two-step 0.3281 0.3211 0.9620 0.9583 0.9601 0.2885 0.3246

1) RMSE:

RMSEl =

√√√√ N∑
i=1

(ŷli − yli)2/N,

RMSEu =

√√√√ N∑
i=1

(ŷui − yui)2/N ;

2) CR and ER: CR = 1
N

∑N
i=1 w(yi

⋂
ŷi)/w(yi),ER =

1
N

∑N
i=1 w(yi

⋂
ŷi)/w(ŷi), where yi

⋂
ŷi is the inter-

section of two intervals, and w(·) is the width of an
interval. The average of the two rates (CR + ER)/2
was used as an evaluation criterion.

3) MDE: Let d2(ŷi, yi) be defined by (1), the mean distance
error of the fitted and true intervals was defined as

MDEq({ŷi}, {yi}) = [

N∑
i=1

dq2(ŷi, yi)/
√

2N ]1/q.

In this paper, we considered two cases for q, namely,
q = 1 and q = 2.

Again, four DGPs where considered, shown in Table IV.
As in Table I, we compared these methods in different
cases, correspond to symmetric/asymmetric coefficients, and
correlated/uncorrelated errors. Moreover, to illustrate the fact
that the constraints requiring the coefficients to be nonnegative
in CCRM method are not suitable, negative values of the
coefficients where considered in each DGP. Only parts of the
results are reported in Table V for DGP1 and VI for DGP4.

From these results, we can see that, as the constrained
version of CRM method, CCRM method does not make a
big improvement, and sometimes is worse than CRM method,
which confirms our point. Our method is obviously superior
to the two reference methods for all cases.

TABLE VI
EXPERIMENTAL EVALUATION FOR DGP4

RMSE CR & ER MDE
Lower Upper CR ER (CR+ER)/2 q = 1 q = 2

CRM 2.8838 2.7666 0.8515 0.7677 0.8096 2.5054 2.8258
CCRM 2.8824 2.7962 0.8562 0.7767 0.8165 2.4818 2.8396

Two-step 0.7003 0.3136 0.9365 0.9370 0.9367 0.4490 0.5426



TABLE VII
EVALUATION FOR CARDIOLOGICAL INTERVAL DATA

RMSE CR & ER MDE
Lower Upper CR ER (CR+ER)/2 q = 1 q = 2

CRM 8.6026 8.6035 0.7199 0.6772 0.6985 7.9011 8.6030
CCRM 8.7186 8.5574 0.7208 0.6735 0.6972 7.9262 8.6384

Two-step 7.8304 8.3506 0.7043 0.6881 0.6962 7.2938 8.0947

B. Empirical Study

In this section, we apply the two-step procedure to real
data. This is a cardiological interval dataset, including three
attributes, namely: pulse rate Y = [Yl, Yu], systolic blood
pressure X1 = [Xl1, Xu1] and diastolic blood pressure X2 =
[Xl2, Xu2] for eleven patients [18]. We aim to predict Y by
the relationship(

Yl
Yu

)
=

(
βl0
βu0

)
+

2∑
i=1

(
βi11 βi12

βi21 βi22

)(
Xli

Xui

)
+

(
εl
εu

)
subject to Yl ≤ Yu,

where ε = (εl, εu) is the error term.
The results obtained from our method, as well as the CRM

and CCRM methods, are shown in Table VII. We can see that
the CCRM method yields similar results to those of CRM. The
two-step method is slightly better than the other two in terms
of RMSE and MDE, and the three methods perform similarly
in terms of average CR and ER.

V. CONCLUSION

Existing linear regression methods for interval-valued data,
such as the CM and CRM methods, cannot ensure that the
predicted lower bound of the interval is lower than or equal to
its upper bound. To meet this condition, the CCRM method
imposes nonnegativity constraint on the coefficients in the
range model. However, we argue that this restriction is too
strict.

A new constrained linear regression model for interval-
valued data has been proposed in this paper. In our model, the
lower and upper bounds of dependent variable are associated
with both the lower and upper bounds of the independent
variables. As a result, our model is more flexible than the other
models. We provided a two-step procedure for this model, in
which an auxiliary variable is first introduced before applying
the least-square procedure. Experiments on both simulated
data and real data have shown that our method outperforms
the CRM and CCRM method.

There is still room for improvement in this method. For
example, as the model is heteroscedastic, generalized least
square estimation can be used, and some properties of the
estimates should be deduced. Furthermore, other forms of error
distribution could also be studied.
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[4] R. J. Aumann, “Integrals of set-valued functions,” Journal of Mathemat-

ical Analysis and Applications, vol. 12, no. 1, pp. 1–12, 1965.
[5] F. Hiai and H. Umegaki, “Integrals, conditional expectations, and

martingales of multivalued functions,” Journal of Multivariate Analysis,
vol. 7, no. 7, pp. 149–182, 1977.

[6] C. Hess, “On multivalued martingales whose values may be unbounded:
martingale selectors and Mosco convergence,” Journal of Multivariate
Analysis, vol. 39, no. 1, pp. 175–201, 1991.

[7] N. S. Papageorgiou, “On the theory of Banach space valued multifunc-
tions: 2. set valued martingales and set valued measures,” Journal of
Multivariate Analysis, vol. 17, no. 2, pp. 207–227, 1985.

[8] ——, “On the conditional expectation and convergence properties of
random sets,” Transactions of the American Mathematical Society, vol.
347, no. 7, pp. 2495–2515, 1995.

[9] S. Li and Y. Ogura, “Convergence of set valued sub- and super-
martingales in the Kuratowski-Mosco sense,” The Annals of Probability,
vol. 26, no. 3, pp. 1384–1402, 1998.

[10] ——, “Convergence of set-valued and fuzzy-valued martingales,” Fuzzy
Sets and Systems, vol. 101, no. 3, pp. 453–461, 1999.

[11] S. Li, J. Li, and X. Li, “Stochastic integral with respect to set-valued
square integrable martingales,” Journal of Mathematical Analysis and
Applications, vol. 370, no. 2, pp. 659–671, 2010.

[12] S. Li, Y. Ogura, and V. Kreinovich, Eds., Limit Theorems and Applica-
tions of Set-Valued and Fuzzy Set-Valued Random Variables. London:
Springer, 2002.

[13] I. Molchanov, Theory of Random Sets. London: Springer, 2005.
[14] W. Zhang, S. Li, and Y. Gao, Set-Valued Stochastic Processes. Science

Publisher (in Chinese), 2007.
[15] X. Yang and S. Li, “The dp-metric space of set-valued random variables

and its application to covariances,” Journal of Multivariate Analysis,
vol. 1, no. 1, pp. 73–82, 2005.
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