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AN ANALOGUE OF THE SQUEEZING FUNCTION
FOR PROJECTIVE MAPS

NIKOLAI NIKOLOV AND PASCAL J. THOMAS

Abstract. In the spirit of Kobayashi’s applications of methods of
invariant metrics to questions of projective geometry, we introduce
a projective analogue of the complex squeezing function. Using
Frankel’s work, we prove that for convex domains it stays uniformly
bounded from below. In the case of strongly convex domains, we
show that it tends to 1 at the boundary. This is applied to get a
new proof of a projective analogue of the Wong-Rosay theorem.

1. Introduction

The projective maps are the ones that preserve lines in projective
space. They are linear in the homogeneous coordinates, and in affine
space yield linear-fractional maps (which we will call projective too,
with a slight abuse of language). There is a long tradition of apply-
ing the appropriate analogues of convex objects to complex analysis.
Surprisingly, it is also sometimes useful to study geometrically convex
domains and projective maps, which are rather rigid objects, with the
methods developed for complex analysis in several variables. For in-
stance, one can use projective mappings from an interval into domains
to construct metrics analogous to the Carathéodory and Kobayashi
metrics, which recover the classical Hilbert metric in the case of con-
vex domains. Shoshichi Kobayashi developed this approach in [10], and
László Lempert summarized the analogy and built upon it in [11]. This
was pursued in papers such as [6] and [20].

The complex squeezing function was defined under this name in [1],
which provides a good overview of the motivations to study it. It has
been the object of numerous further works in recent years. We will
be using a “projective” analogue of the squeezing function study its
relationship with the properties of convex sets. Some of the results of
Sidney Frankel’s pioneering paper [6] can be rephrased as the fact that
the projective squeezing function of convex domains is bounded from
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below by a constant depending only on the dimension. We also give a
converse.

We shall use the behavior of the projective squeezing function to give
a necessary condition for a point of the boundary to be strictly convex
(see Definition 2).

We fix some notations. Let PRd = Rd+1\{0}/ ∼, where x ∼ y means
that there exists λ ∈ R \ {0} such that x = λy. As usual, embed Rd

as the classes represented by {(1 : x1 : · · · : xn)} in PRd, which form a
dense open set. A projective map of PRd is a map induced by a linear
map of Rd+1. We assimilate it with its restriction to Rd.

Definition 1. Given a domain D ⊂ Rd and z ∈ D, the (projective)
squeezing function of D at z is

sD(z) := sup {r > 0 : ∃Φ a projective map s. t. Φ(z) = 0,

Φ(D) ⊂ B(0, 1), and B(0, r) ⊂ Φ(D)} .

We set sD = 0 if the domain is not projectively equivalent to a
bounded domain (in which case the above supremum is over an empty
set); at the other extreme, if there is z ∈ D such that sD(z) = 1, then
D is projectively equivalent to the ball. As in the complex case [1,
Theorem 3.1], one can show that sD is a continuous function of z.

The complex squeezing function was defined by looking at (bounded)
domains in Cd and holomorphic maps. It yields a new holomorphic
invariant.

One of the motivations to introduce the squeezing function in the
holomorphic case was to compare the infinitesimal Kobayashi-Royden
and Carathéodory-Reiffen (pseudo)metrics. For a point z in a domain
D ⊂ C

d and a vector v ∈ C
d, let κD(z; v) stand for the Kobayashi-

Royden metric and γD(z; v) stand for the Carathéodory-Reiffen metric,
and SD(z) for the holomorphic squeezing function at z, as defined in
[1]. Then one can show [1], using the monotonicity properties of the
invariant metrics and their explicit expression in the ball, that

SD(z)γD(z; v) ≤ SD(z)κD(z; v) ≤ γD(z; v).

Bounded domains where sD ≥ c > 0 are called holomorphic homoge-
neous regular domains [12, 13]. On those, the Kobayashi, Carathéodory
and several other invariant metrics are equivalent. Those domains in-
clude several well-known classes: Teichmüller spaces, bounded domains
covering compact Kähler manifolds, and strictly convex domains with
C2-boundary [18].

S. Kobayashi defines in [10, (5.4)] a projective analogue of the Koba-
yashi-Royden metric. Let I be the interval (−1, 1). If p is a point of
a domain D ⊂ Pd (or more generally a manifold M with a projective
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structure), V a tangent vector at p, then

FD(p;X) :=

inf {2|V | : f is a projective map I → D, f(0) = p,Df(0)(V ) = X}

(the factor 2 is due to normalizations coming from the Poincaré or
Hilbert metric). The analogue of the Carathéodory-Reiffen metric can
likewise be defined as

CD(p;X) :=

sup {2|Df(p)(X)| : f is a projective map D → I, f(p) = 0} .

Then the analogue of the Schwarz lemma [10, Lemma 2.5] implies that
CD(p;X) ≤ FD(p;X) and one has, with the same proof as in the
holomorphic case,

(1) sD(p)FD(p;X) ≤ CD(p;X).

Let us add that [10] also defines the analogues of the Kobayashi and
Carathéodory pseudodistances for projective structures, and proves
that for convex domains in PRd, they coincide with the Hilbert pseu-
dodistance [10, Example 3.17]. That last distance is defined as follows:
given two points p, q ∈ D,

(2) dD(p, q) := |log(ab; pq)| ,
where a, b are the points where the line pq crosses ∂D and (ab; pq)
denotes the cross ratio of those four points.

Note that FD is the infinitesimal form of the above pseudodistance:

(3) FD(p;X) =
1

P+
+

1

P−
,

where

P± = inf{λ > 0 : p± λX /∈ D}.
We also point out that CD = CD̂ = FD̂, where D̂ is the (open) convex
hull of D.

As in [6], we say that a convex domain D ⊂ Rd (or PRd) is proper if
it contains no affine line. We state our results for domains in Rd, but
they still hold in the projective space.

A squeezing function varies between 0 and 1. For the projective
squeezing function, being bounded away from 0 is equivalent to proper
convexity of the domain.

Theorem 1. (1) For every d ∈ Z∗
+, there is rd > 0 such that for

any proper convex domain D ⊂ Rd, for any z ∈ D, sD(z) ≥ rd.
(2) If D ⊂ Rd is a domain such that infz∈D sD(z) > 0, then D is

convex and proper.
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This result evidences a gap in the behavior of the squeezing function:
if it does not tend to 0 near the boundary, then it must be bounded
below by a universal constant rd, so infD sD can never take any value
in (0, rd). It would be interesting to determine the precise value of rd.

The holomorphic analogue of this result holds for proper convex do-
mains [6, Theorem 1.1] (see also [9, Theorem 1.1]), as well as for non-
degenerate C-convex domains [14, Theorem 1].

We now turn to cases where the squeezing function approaches 1,
rather than 0, near some point of ∂D. On a ball (or a domain projec-
tively equivalent to a ball), the squeezing function is obviously identi-
cally equal to 1. The ball is the simplest example of a strictly convex
domain, i.e. a domain where all boundary points are strictly convex.

Definition 2. A point p ∈ ∂D is called strictly convex if ∂D is C2-
smooth in a neighborhood of p, and the restriction to the tangent hyper-
plane at p of the Hessian of the defining function is definite positive.

Theorem 2. Let D ⊂ Rn be a convex domain, and p ∈ ∂D. If p is a
strictly convex boundary point, then limx→p sD(x) = 1.

In the holomorphic case, this is [2, Theorem 1.3] (see also [9, Theorem
4.1]). The proof uses essentially the embedding in [3, Theorem 1.1].

The converse is an open and interesting question, to be compared
with results in the holomorphic case. Andrew Zimmer [21, Theorem
1.7] proved that for D ⊂ Cd, d ≥ 2, a bounded convex domain with
C2,α boundary, if sD tends to 1 at the boundary (and even under a
slightly weaker hypothesis), then D must be strongly pseudoconvex.
This was motivated by previous results from other authors showing
that any bounded strongly pseudoconvex domain D ⊂ Cd, d ≥ 2 with
∂D ∈ C2 must have sD tending to 1 at the boundary, but that the
converse fails, see the references in [21].

2. Proofs

2.1. Proof of Theorem 1 (1). It follows from:

Theorem 3. [6, Theorem 7.6 & Corollary 7.8, p. 200]
Let V := (−1,∞)d ⊂ Rd.
For every d ∈ Z∗

+, there exists r′d > 0 such that for any proper
convex domain D ⊂ Rd with 0 ∈ D, there is an affine map A such that
B(0, r′d) ⊂ D ⊂ V and A(0) = 0 (i.e. A is in fact linear).

Denote x = (x1, . . . , xd) ∈ Rd and define a projective map from Pd

to itself by its values on Rd \ {∑d
i=1 xi = −d− 1}:

Φ(x) :=
1√
d

x

d+ 1 +
∑d

i=1 xi

.
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Clearly Φ(0) = 0. We claim that for any r ∈ (0, 1),

B

(

0,
r

dr +
√
d(d+ 1)

)

⊂ Φ (B(0, r)) ⊂ Φ (V ) ⊂ B(0, 1),

which will finish the proof, with rd =
r′
d

dr′
d
+
√
d(d+1)

.

To get the right-hand inclusion, let x ∈ V , then d+1+
∑d

i=1 xi > 1,
so if for some k, xk < 0, then 0 > xk

d+1+
∑d

i=1 xi
> xk > −1.

On the other hand, if xk ≥ 0, then

0 ≤ xk

d+ 1 +
∑d

i=1 xi

≤ xk

d+ 1 + xk +
∑

i:i 6=k xi

≤ xk

xk + 2
< 1.

In each case, |Φ(x)k| < 1/
√
d, so ‖Φ(x)‖ < 1.

Conversely, note that

Φ−1(y) =

√
d(d+ 1)

1−
√
d
∑d

i=1 yi
y.

Choose y with (dr+
√
d(d+1))‖y‖ < r. Then, since

∑d
i=1 yi ≤ ‖y‖

√
d,

we have 1−
√
d
∑d

i=1 yi > 0, and

√
d(d + 1)‖y‖ + r

√
d

d
∑

i=1

yi < r ⇔
√
d(d+ 1)

1−
√
d
∑d

i=1 yi
‖y‖ < r.

�

2.2. Proof of Theorem 1 (2). First notice that D cannot contain
a whole line, because this would make any projective map f : D →
B(0, 1) degenerate, and so f(D) could not contain a non-trivial ball.

Assume that D is not convex, d ≥ 2. Then there is a boundary point
p ∈ ∂D ∩ D̂, where we recall that D̂ is the (open) convex hull of D; let

δ > 0 be such that B(p, δ) ⊂ D̂. Let D ∋ pk → p, and
Xk := ‖p− pk‖−1(p− pk). Then

CD(pk, Xk) = CD̂(pk, Xk) ≤ CB(p,δ)(pk, Xk) ≤ C < ∞.

To estimate FD(pk, Xk) when t is close to 0, we use the fact that I
is projectively isometric to (0,∞) with 0 going to 1. Any projective
map f : (0,∞) −→ D with f(1) = pk and Df(0)(V ) = Xk must verify
f((0,∞)) ⊂ p+ R−Xk, so

FD(pk, Xk) ≥ F(−∞,0)(−‖p− pk‖, 1) =
1

‖p− pk‖
.

Therefore sD(pk) ≤ CD(pk, Xk)/FD(pk, Xk) ≤ C‖p−pk‖ and in partic-
ular cannot be bounded below as pk → p.

Remarks.
(1) We have proved a bit more; suppose that ∂D has positive reach,

i.e. that when points are close enough to the boundary, there is a
unique closest point to them on it. This happens in particular when
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∂D is C1,1-smooth. Writing δD(z) for the distance of a point z ∈ D
to ∂D, we see that if δD(z) = o (sD(z)) (uniformly), then D must be
convex, and by Part (1) of the Theorem, if it is proper (for example,
bounded), then sD must be in fact bounded below, by a constant which
only depends on the dimension.

(2) Using [7, Theorem 2.1.27], one could find points tending to the
boundary such that the argument above could be carried out with a
constant vector X instead of Xk.

2.3. Proof of Theorem 2. Our proof is similar to that carried out
for the complex case in [5], where more precise results are obtained in
the C3- and C4-smooth settings.

First pick coordinates so that p = 0 and the tangent hyperplane to
∂D at p is given by x1 = 0. Locally, D = {(x, x′) : x1 + f(x′) <
0}, where x′ := (x2, . . . , xd), f(0) = 0, Df(0) = 0. The hypothesis
implies that the Hessian of f at 0 is definite positive, and since it
varies continuously, this is true uniformly for the points of ∂D in a
neighborhood U1 of p.

Suppose we have a sequence D ∋ qn → p. We may assume that n is
large enough so that the orthogonal projection pn of qn to ∂D is well
defined and belongs to U1. Performing a translation and rotation, we
may choose new coordinates so that pn = 0 and the tangent hyperplane
to ∂D at pn is given by x1 = 0. Since D is bounded, we may perform a
dilation of the x1 coordinate (with coefficient uniformly bounded above
and below w.r.t. n) so that inf{x1 : x ∈ D} = −1. Since the Hessian of
f at 0 is uniformly definite positive, we may apply a linear map in the x′

coordinate in Rd−1 which is uniformly bounded above and below so that
the Hessian becomes the identity matrix. Finally, we are reduced to
the situation where qn = (−δ, 0, . . . , 0), D = {(x, x′) : x1 + f(x′) < 0},
f(x′) = ‖x′‖2 + o(‖x′‖2), and δ ≍ dist(qn, ∂D), with constants uniform
in n.

For each δ > 0, consider the projective map

φδ : I × R
d−1 ∋ y 7→ 1

1 + y1

(

δ(y1 − 1)√
δy′

)

∈ (−∞, 0)× R
d−1.

It sends B((0, 0); 1) to {(x, x′) : x1 < −‖x′‖2} and (0, 0) to (−δ, 0). We
shall now check that φ−1

δ (D) lies between two balls with radii tending
to 1 as δ → 0.

Estimation from below. For any ε > 0, there exist R > 0 (uniform
in n) such that our domain in the new coordinates contains the lens-
shaped set LR := {−(1+ ε)R2 < x1 < −(1+ ε)‖x′‖2}. Let us compute
φ−1
δ (LR).
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Setting x = φδ(y), first,

x1 < −(1 + ε)‖x′‖2 ⇔ δ
−1 + y1
1 + y1

< −(1 + ε)δ
‖y′‖2

(1 + y1)2

⇔ y21 + (1 + ε)‖y′‖2 < 1.

This contains the ball B(0, (1 + ε)−1/2). So given any η > 0, we can
choose ε (and therefore R) so that B(0, 1− η) ⊂ B(0, (1 + ε)−1/2).

Second,

−(1 + ε)R2 < x1 ⇔ −1 <
δ

(1 + ε)R2

−1 + y1
1 + y1

⇔ y1 > −
1− δ

(1+ε)R2

1 + δ
(1+ε)R2

.

This last quantity can be made as close to −1 as desired by making
δ small, so once ε and R are fixed as above, we can choose δ so that

−1 + η > −
1− δ

(1+ε)R2

1+ δ

(1+ε)R2

, and B(0, 1− η) ⊂ φ−1
δ (LR) ⊂ φ−1

δ (D).

Estimation from above. We first include D into a slightly larger domain
with a simpler form.

Lemma 4. For any ε > 0, there exists r > 0 such that f(x′) ≥ f̃(x′),
where

f̃(x′) :=

{

(1− ε)‖x′‖2, for ‖x′‖ ≤ r
(1− ε)r(2‖x′‖ − r), for ‖x′‖ ≥ r.

Therefore D ⊂ D̃ := {x+ f̃(x′) < 0,−1 < x1}. Observe that this is
a domain with C1-smooth boundary outside of {x1 = −1}.
Proof. By Taylor’s formula at order 2 applied to f ,
f(x′) = ‖x′‖2(1 + ξ1(x

′)), with limx′→0 ξ1(x
′) = 0.

By convexity of f , for any x′ with ‖x′‖ ≥ r,

f(x′) ≥ f

(

r
x′

‖x′‖

)

+Df

(

r
x′

‖x′‖

)

·
(

x′ − r
x′

‖x′‖

)

.

Using the fact that D2f(0) = 2Id and Taylor’s formula at order 1
applied to Df , we have for any h ∈ R

d−1

Df

(

r
x′

‖x′‖

)

· h =

〈

2r
x′

‖x′‖ + rξ2(r
x′

‖x′‖), h
〉

,

with limr→0 ‖ξ2(r)‖ = 0. Regrouping the terms, and setting ξ̃1(r) :=
min‖x′‖≤r ξ1(x

′), we have for ‖x′‖ ≥ r

f(x′) ≥ (1+ ξ̃1(r))r
2+2r‖x′‖− 2r2+ r

〈

rξ2(r
x′

‖x′‖),
(

x′ − r
x′

‖x′‖

)〉

≥ r(‖x′‖ − r) + r‖x′‖+ ξ̃1(r)r
2 − ξ̃2(r)r‖x′‖,

where ξ̃2(r) := maxx′ 6=0 ξ2(r
x′

‖x′‖). We may now choose r > 0 so that

ξ̃1(r) > −ε/2 , ξ̃2(r) < ε/2 and we obtain the Lemma. �
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Since D̃ is the convex hull of
(

∂D̃ ∩ {x1 = −1}
)

∪
{

x1 = −(1− ε)‖x′‖2, ‖x′‖ ≤ r
}

,

its preimage under φδ will be obtained by taking the convex hull of
the preimages of those two sets. The second one is given by x1 = −1

and (1− ε)r(2‖x′‖ − r) ≤ 1, i.e. ‖x′‖ ≤ 1
2

(

r + 1
(1−ε)r

)

. Computing its

preimage, we find

y1 =
−1 + δ

1 + δ
, ‖y′‖ ≤

√
δ

1 + δ

(

r +
1

(1− ε)r

)

.

An easy computation shows that then y21 + ‖y′‖2 ≤ 1 + O(δ) (the
constants in O depend on r).

On the other hand, φ−1
δ {x1 = −(1− ε)‖x′‖2, ‖x′‖ ≤ r} is contained

in y21 + (1− ε)‖y′‖2 = 1, and one can check that locally near the origin
φ−1
δ (D̃) will be inside that ellipsoid. Notice that when we let δ → 0,

the preimage of the neighborhood of the origin in ∂D̃ given by ‖x′‖ ≤ r
will tend to cover the whole ellipsoid (leaving out the point (−1, 0) of
course).

So given η > 0, taking first ε > 0 small enough, then δ > 0 very
small, φ−1

δ (D) ⊂ φ−1
δ (D̃) ⊂ B(0, 1 + η).

3. An application

The famous Wong-Rosay theorem (see [17, Theorem], [15, Proposi-
tion]) states that if a bounded strictly pseudoconvex domain in C

d has
a non-compact group of holomorphic automorphism, then D is biholo-
morphically equivalent to the unit ball. This result has been extended
in [4, Theorem 3] to any domain in Cd having a strictly pseudoconvex
boundary point which is an accumulation point of the group action.

The same is true in Rd if we replace pseudoconvexity by convexity
and holomorphicity by projectivity (see [16, Théorème 1], [8, Theorem
1.1], [19, Theorem 3]).

Our purpose is to give a short proof of this fact by using the squeezing
function.

Theorem 5. Let D be a domain in Rd. Assume that there exist points
p ∈ ∂D, q ∈ D and a sequence (ϕj) of projective automorphisms of D
such that qj := ϕj(q) → p. If p is strictly convex, then D is projectively
equivalent to the unit ball.

The converse is obviously true, since the group of projective auto-
morphisms of the unit ball acts transitively.

Proof. Let U be a neighborhood of p such that D ∩ U is convex. Set
Dj = ϕ−1

j (D ∩ U).

Lemma 6. (Dj) is an exhaustion of D.
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Then, similarly to [2, Theorem 2.1] in the complex case, we have

sDj
(q) → sD(q).

On the other hand, Theorem 2 implies that

sDj
(q) = sD∩U(qj) → 1,

So, sD(q) = 1 and Theorem 5 follows.

Proof of Lemma 6. Denote by kD the “projective” Kobayashi metric,
i.e. the integrated form of FD.

Let K ⋐ D and

M := sup
K

kD(q, ·) = sup
ϕj(K)

kD(qj , ·).

Since p is strictly convex, it follows by (3) that there exists a neigh-
borhood of p, V ⋐ U , such that

2FD ≥ FD∩U on (D ∩ V )× R
d.

Hence

2 inf
D∩∂V

kD(qj , ·) ≥ inf
D∩∂V

kD∩U(qj , ·) =: Mj if qj ∈ V.

Since qi → p, using (2), we may find a j0 ∈ N such that Mj > 2M
for j ≥ j0. Then K ⊂ Dj if j ≥ j0. �

Remark. Similar arguments imply that Lemma 6 holds in the com-
plex case if p is a local holomorphic peak function. Then, as above, the
holomorphic analogue of Theorem 2, namely [2, Theorem 1.3], leads to
the already mentioned complex version of Theorem 5 (see [4, Theorem
3]).
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